Vincent van Oostrom

Theoretical Philosophy
Universiteit Utrecht
The Netherlands
this month at LIX

February 1, 2008
Z

Z for λ-calculi

Z or not
A rewrite relation \rightarrow has the Z-property
A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects.
A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step from a to b.
A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step from a to b there is a reduction from b to a^\bullet.
A rewrite relation \rightarrow has the Z-property if there is a map \bullet from objects to objects such that for any step from a to b there is a reduction from b to a^\bullet and there is a reduction from a^\bullet to b^\bullet.
\(\exists \bullet : A \rightarrow A, \forall a, b \in A : a \rightarrow b \Rightarrow b \rightarrow a\bullet, a\bullet \rightarrow b\bullet \)
This talk: (short) history, interest, and (non-)examples
self-distributivity: \[xyz \rightarrow xz(yz) \]

Theorem

self-distributivity has the Z-property
self-distributivity: $xyz \rightarrow xz(yz)$

Theorem

Self-distributivity has the Z-property

Map

\[
\begin{align*}
 x^* &= x \\
 (ts)^* &= t^*[x_1:=x_1s^*, x_2:=x_2s^*, \ldots]
\end{align*}
\]
self-distributivity: $xyz \rightarrow xz(yz)$

Theorem

Self-distributivity has the Z-property

Map

$$x^* = x$$

$$(ts)^* = t^*[x_1:=x_1^*, x_2:=x_2^*, \ldots]$$

Example

$$(xy)^* = xy$$

Proof. This works: Braids and Self-distributivity (Dehornoy 2000)
self-distributivity: $xyz \rightarrow xz(yz)$

Theorem

self-distributivity has the Z-property

Map

\[
\begin{align*}
 x^\bullet &= x \\
 (ts)^\bullet &= t^\bullet[x_1:=x_1 s^\bullet, x_2:=x_2 s^\bullet, \ldots]
\end{align*}
\]

Example

\[
\begin{align*}
 (xy)^\bullet &= xy \\
 (xyz)^\bullet &= xz(yz)
\end{align*}
\]
Theorem

self-distributivity has the Z-property

Map

\[
\begin{align*}
x \bullet &= x \\
(ts) \bullet &= t \bullet [x_1 := x_1 s \bullet, x_2 := x_2 s \bullet, \ldots]
\end{align*}
\]

Example

\[
\begin{align*}
(xy) \bullet &= xy \\
(xyz) \bullet &= xz(yz)
\end{align*}
\]

Proof.

This works: Braids and Self-distributivity (Dehornoy 2000)
Theorem

Every normalising and confluent rewrite relation has the Z-property
Theorem

Every normalising and confluent rewrite relation has the Z-property

Let \bullet map every object to its normal form
(exists by normalisation, unique by confluence)
Theorem
Every normalising and confluent rewrite relation has the Z-property
Let \bullet map every object to its normal form
(exists by normalisation, unique by confluence)

Proof.
If $a \rightarrow b$, then $b \rightarrow a^\bullet \rightarrow b^\bullet$ since b reduces to its normal form b^\bullet
which is the same as the normal form a^\bullet of a. \square
Theorem

Every normalising and confluent rewrite relation has the Z-property

Let \bullet map every object to its normal form
(exists by normalisation, unique by confluence)

Proof.
If $a \rightarrow b$, then $b \rightarrow a^\bullet \rightarrow b^\bullet$ since b reduces to its normal form b^\bullet which is the same as the normal form a^\bullet of a.

Corollary

Z-property for β-reduction in typed λ-calculi by using meta-theory
Theorem
Every normalising and confluent rewrite relation has the Z-property

Let • map every object to its normal form
(exists by normalisation, unique by confluence)

Proof.
If $a \rightarrow b$, then $b \rightarrow a^\bullet \rightarrow b^\bullet$ since b reduces to its normal form b^\bullet which is the same as the normal form a^\bullet of a. □

Corollary
Z-property for β-reduction in typed λ-calculi by using meta-theory

Here reverse: Z-property to establish meta-theory
Theorem

If a rewrite relation has the Z-property then it is confluent
Theorem

If a rewrite relation has the Z-property then it is confluent

Proof.

\[a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \cdots \rightarrow a_{n+1} \]
Theorem

If a rewrite relation has the Z-property then it is confluent

Proof.

\[
\begin{array}{c}
a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow a_{n+1} \\
\end{array}
\]
If a rewrite relation has the Z-property then it is confluent

Proof.
Theorem

If a rewrite relation has the Z-property then it is confluent

Proof.
Theorem

If a rewrite relation has the Z-property then it is confluent

Proof.
Theorem

If a rewrite relation has the Z-property then it is confluent

Proof.
Z ⇒ hyper-cofinal

Definition (●-strategy)

\(a \rightarrow_{\bullet} b \) if \(a \) is not a normal form and \(b = a^\bullet \)
Hyper-cofinality of \rightarrow:
for any reduction which eventually always contains \rightarrow-step
any co-initial reduction can be extended to reach the first
Theorem

\[\Rightarrow \text{is hyper-cofinal} \]

Proof.
Theorem
\[\bullet \rightarrow \text{is hyper-cofinal} \]

Proof.

Summary: \[\bullet \rightarrow \text{confluent, (hyper-)normalising, bullet-fast,} \]
\[\beta \text{ has } Z \]

Theorem

\[(\lambda x. M)N \rightarrow M[x:=N] \text{ has the } Z\text{-property for } \lambda\text{-calculus}\]
\(\beta \) has Z

Theorem

\[(\lambda x. M)N \rightarrow M[x:=N] \text{ has the } Z\text{-property for } \lambda\text{-calculus} \]

Proof.

Full-development map (contract all redexes present)

\[
\begin{align*}
x^\bullet &= x \\
(\lambda x. M)^\bullet &= \lambda x. M^\bullet \\
(MN)^\bullet &= M'[x:=N^\bullet] \quad \text{if } M \text{ is an abstraction, } M^\bullet = \lambda x. M' \\
&= M^\bullet N^\bullet \quad \text{otherwise}
\end{align*}
\]

Example

\[
\begin{align*}
\rightarrow I^\bullet = I; \quad (I = \lambda x. x) \\
\rightarrow I(II)^\bullet = I, \quad III^\bullet = II; \\
\rightarrow (\lambda xy. x)zw^\bullet = (\lambda y.z)w; \\
\rightarrow ((\lambda xy. lyx)zl)^\bullet = (\lambda y.yz)l;
\end{align*}
\]
Theorem

\((\lambda x. M) N \rightarrow M[x:=N]\) has the Z-property for \(\lambda\)-calculus

Proof.

Full-development map (contract all redexes present)

\[
\begin{align*}
x^\bullet &= x \\
(\lambda x. M)^\bullet &= \lambda x. M^\bullet \\
(MN)^\bullet &= M'[x:=N^\bullet] \quad \text{if } M \text{ is an abstraction, } M^\bullet = \lambda x. M' \\
&= M^\bullet N^\bullet \quad \text{otherwise}
\end{align*}
\]

(Self) \(M \rightarrow M^\bullet\);

(Rhs) \(M^\bullet[x:=N^\bullet] \rightarrow M[x:=N]^\bullet\); and

(Z) \(M \rightarrow N \Rightarrow N \rightarrow M^\bullet \rightarrow N^\bullet\).

each by induction and cases on \(M\).
\(\beta \) has Z

Theorem

\((\lambda x. M)N \rightarrow M[x:=N]\) has the Z-property for \(\lambda\)-calculus

Proof.

Full-superdevelopment map (redexes present or upward-created)

\[
\begin{align*}
\bar{x}^* &= x \\
(\lambda x. M)^* &= \lambda x. M^* \\
(MN)^* &= M'[x:=N^*] \quad \text{if } M \text{ is a term, } M^* = \lambda x. M' \\
&= M^* N^* \quad \text{otherwise}
\end{align*}
\]

Example

\[
\begin{align*}
\&\quad I^* = I; \quad (I = \lambda x.x) \\
\&\quad I(I) = I, \quad III^* = I; \\
\&\quad (\lambda xy.x)zw^* = z; \\
\&\quad ((\lambda xy.lyx)z)l^* = lz
\end{align*}
\]
\[\beta \text{ has } Z \]

Theorem
\[(\lambda x. M)N \rightarrow M[x:=N] \text{ has the } Z\text{-property for } \lambda\text{-calculus}\]

Proof.

Full-superdevelopment map (redexes present or upward-created)
\[
\begin{align*}
x^\bullet &= x \\
(\lambda x. M)^\bullet &= \lambda x. M^\bullet \\
(MN)^\bullet &= M'[x:=N^\bullet] \text{ if } M \text{ is a term, } M^\bullet = \lambda x. M' \\
 &= M^\bullet N^\bullet \text{ otherwise}
\end{align*}
\]

Replace ‘is an abstraction’ by ‘is a term’ in development proof. \[\square\]
\(\beta \) has Z

Theorem
\[(\lambda x. M)N \rightarrow M[x:=N] \text{ has the Z-property for } \lambda\text{-calculus}\]

Proof.

Full-superdevelopment map (redexes present or upward-created)

\[
\begin{align*}
 x^\bullet &= x \\
 (\lambda x. M)^\bullet &= \lambda x. M^\bullet \\
 (MN)^\bullet &= M'[\!x:=N^\bullet] \quad \text{if } M \text{ is a term, } M^\bullet = \lambda x. M' \\
 &= M^\bullet N^\bullet \quad \text{otherwise}
\end{align*}
\]

Replace ‘is an abstraction’ by ‘is a term’ in development proof.

Moral: possibly more than one witnessing map for Z-property
Comparison

- Dehornoy:
 Z-property of \rightarrow for \bullet;

- Tait–Martin Löf:
 $\rightarrow \subseteq \diamondsuit \subseteq \twoheadrightarrow$ and diamond (◊) property of $\diamondsuit \rightarrow$;

- Takahashi:
 $\rightarrow \subseteq \triangleleft \subseteq \twoheadrightarrow$ and angle (⟨⟩) property of $\triangleleft \rightarrow$ for \bullet.
Comparison

- Dehornoy:
 Z-property of \rightarrow for \bullet;

- Tait–Martin Löf:
 $\rightarrow \subseteq \circlearrowleft \subseteq \circlearrowright$ and diamond (◊) property of \circlearrowright;

- Takahashi:
 $\rightarrow \subseteq \circlearrowleft \subseteq \circlearrowright$ and angle (⟨⟩) property of \circlearrowright for \bullet.

Mnemonics: $\rightarrow \bullet$ is full \circlearrowright
Comparison

- **Dehornoy:**
 Z-property of \rightarrow for \bullet;

- **Tait–Martin L¨of:**
 $\rightarrow \subseteq \leftrightarrow \subseteq \rightarrow$ and diamond (\diamond) property of \leftrightarrow;

- **Takahashi:**
 $\rightarrow \subseteq \leftrightarrow \subseteq \rightarrow$ and angle (\angle) property of \leftrightarrow for \bullet.

How do Z, \diamond, \angle relate?
Angle property
Theorem

for any map \(\bullet \), \(Z \iff \text{both } \implies \circ \implies \subseteq \implies \rangle \text{ and } \langle \)

Proof.
Theorem

for any map •, Z ⇔ both → ⊆ −→ ⊆ ↠ and ⟨

Proof.

(Iff)

\[a \rightarrow b \]
Theorem

for any map \(\bullet \), \(Z \iff both \to \subseteq \implies \subseteq \implies \) and \(\langle \)

Proof.

(Iff)
Theorem
for any map \(\bullet \), \(Z \iff both \to \subseteq \circ \subseteq \to \) and \(\langle \)

Proof.

(Iff)

\[
\begin{array}{c}
a \\
\downarrow \quad \langle \\
\downarrow \\
a^* \\
\end{array}
\quad \begin{array}{c}
\rightarrow \quad \rightarrow \\
\rightarrow \subseteq \\
\rightarrow \subseteq \\
\rightarrow \to \\
b^* \\
\end{array}
\]
Theorem
for any map \(\bullet \), \(Z \Leftrightarrow \) both \(\rightarrow \subseteq \leftarrow \subseteq \rightarrow \) and \(\langle \)

Proof.
(Iff)
Theorem
for any map \(\bullet \), \(Z \iff \text{both} \to \subseteq \iff \subseteq \to \) and \(\langle \)

Proof.
(only if) Def. \(a \iff b \) if \(b \) between \(a \) and \(a^\bullet \), i.e. \(a \to b \to a^\bullet \):

\[
\begin{align*}
\text{Suppose } a \iff b. \\
\quad & a \to b \implies b \to a^\bullet \implies \to \subseteq \iff. \\
\quad & a \iff b \implies a \to b \implies \iff \subseteq \to. \\
\end{align*}
\]

\[\square\]
Theorem

\(\lambda \sigma \) has \(Z \) property
Theorem
\(\lambda \sigma \) has Z property

Proof.
Map: first \(\sigma \)-normalise (\(\uparrow \)) then Beta-full development (\(\rightarrow \rightarrow \))
Theorem
\(\lambda \sigma \) has \(Z \) property

Proof.
Map: first \(\sigma \)-normalise (\(\triangleright \)) then \(Beta \)-full development (\(\rightarrow \rightarrow \))

\(\Delta \): angle property of \(\rightarrow \rightarrow \)

\(E \): \(Beta \) commutes with \(\sigma \)-normalisation

\(\Gamma \): \(\sigma \) is terminating and confluent
\(\lambda \beta \eta \) has \(Z \) property

Theorem

Weakly orthogonal rewrite system \(\Rightarrow \) *\(Z \) property*

Proof.

Map:
Contract maximal set of non-overlapping redexes *inside-out*

Example

\[
\begin{align*}
c(x) &\rightarrow x \\
f(f(x)) &\rightarrow f(x) \\
g(f(f(f(x)))) &\rightarrow g(f(f(x)))
\end{align*}
\]
\[\lambda \beta \eta \text{ has } Z \text{ property}\]

Theorem

Weakly orthogonal rewrite system \(\Rightarrow \) Z property

Proof.

Map:
Contract maximal set of non-overlapping redexes *inside-out*

Example

\[
\begin{align*}
c(x) & \rightarrow x \\
n(f(f(x))) & \rightarrow f(x) \\
g(f(f(f(x)))) & \rightarrow g(f(f(x))) \\
g(f(f(c(f(f(x)))))) & = g(f(f(x))) = g(f(f(f(f(f(x))))))
\end{align*}
\]
\(\lambda \beta \eta\) has Z property

Theorem

Weakly orthogonal rewrite system \(\Rightarrow\) Z property

Proof.

Map:

Contract maximal set of non-overlapping redexes inside-out

Example

\[
\begin{align*}
c(x) & \rightarrow x \\
f(f(x)) & \rightarrow f(x) \\
g(f(f(f(x)))) & \rightarrow g(f(f(x)))
\end{align*}
\]

Outside-in (Takahashi) does not give Z (in general)!
\[g(f(f(c(f(f(x)))))) \rightarrow g(f(f(f(f(x)))))\] holds...
\(\lambda \beta \eta \) has Z property

Theorem

Weakly orthogonal rewrite system \(\Rightarrow \) Z property

Proof.
Map:
Contract maximal set of non-overlapping redexes **inside-out**

Example

\[
\begin{align*}
 c(x) & \rightarrow x \\
 f(f(x)) & \rightarrow f(x) \\
 g(f(f(f(x)))) & \rightarrow g(f(f(x)))
\end{align*}
\]

Outside-in *(Takahashi) does not give Z (in general)!*

\[\ldots \text{not} \ g(f(f(x))) \rightarrow g(f(f(f(x))))! \]
Some more consequences of Z

- if $a \to b$ then $a^\bullet \to b^\bullet$ (monotonicity)
- \to has Z-property iff $\to^=\equiv$ has (IZ-property)
- If \bullet_1, \bullet_2 have the Z-property for \to, so does their composition $\bullet_1 \circ \bullet_2$. Moreover, $a^{\bullet i} \to (a^{\bullet 2})^{\bullet 1}$

May be used to get ideas about systems which do not have Z
Easy to turn into a finite term rewriting system
Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known
Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known
- Conjecture: β with restricted η-expansion does not have Z
Conclusions

- Surprising outsider (Dehornoy) input: simple yet not known
- Conjecture: β with restricted η-expansion does not have Z
- Problem: characterize systems having Z-property