
LMNLP 2012. Take-home assignment 2

1

Background: Wadler, A Taste of Linear Logic.

The ! connective establishes the relation between the multiplicative and additive con-
junctions:

〈 !(A&B) 〉 ` !A⊗ !B 〈 !A⊗ !B 〉 ` !(A&B)

exercise prove these equivalences.

Below a translation embedding intuitionistic logic into linear logic.

A→ B = !A(B
A×B = A&B
A+B = !A⊕ !B

exercise Show that the intuitionistic rules for ×, + can be derived from the corres-
ponding rules of linear logic, together with the ! intro/elim rules.

1

2

The following context-free grammar recognizes well-bracketed strings over two pairs of
parentheses, a, a and b, b.

G :
S −→ a S a S | b S b S
S −→ ε

In this exercise we consider non-empty strings recognized by G, i.e. L(G) \ {ε}

1. Lexicalize G. Get rid of the epsilon rule. Turn the ‘open bracket’ symbols (a, b)
into the lexical anchors of the new rules. Call the lexicalized grammar G′.

2. Give a derivation in G′ for the string abbaaa.1

3. Compute the dependency structure induced by that derivation (see Kuhlmann,
§6.1)

3

In this exercise, we consider the lexicalized grammar G′ you obtained in §2.

1. Turn G′ into a typelogical grammar for NL. Recall that in NL, linear order and
phrase structure (bracketing) are respected.

1This example replaces the one we did together in class.

2

2. Provide a bracketing for the string abbaaa which allows you to derive conclusion s
from the lexical type-assignments to the elements of that string.

3. Give the proof net corresponding to that derivation and verify that it satisfies the
NL criteria (acyclicity/connectedness, planarity, balance).

4. Compute the lambda term corresponding to the L proof net for this derivation
(i.e. treating the lexical assumptions as a string, rather than a bracketed string).
Use constants for the lexical items.

5. Assume a map h(p) = (∗(∗) for atomic types p and the homomorphic extension
h(A/B) = h(B\A) = h(B) (h(A), where ∗ (∗ is understood as the string
type. Provide appropriate lexical terms for the vocabulary items a, a, b, b under
their different type assignments. Substitute these lexical terms in the proof term
for the derivation of abbaaa. Apply β-reduction to compute the string image of
the proof term.

For the last step, Slide 33 of the Part 2 slides provides an example (but with a different
map h). Slide 47 explains the modeling of strings as functions of type (∗ (∗), with
concatenation as function composition, and λi.i for the empty string.

4

In this exercise, we return to L2s, the language of two shuffled parenthesis systems:
words w ∈ {a, a, b, b}+ such that

3

|w|a = |w|a and |w|b = |w|b,

for every prefix w′ of w, |w|a ≥ |w|a and |w|b ≥ |w|b

For those of you who like counting, the number of shuffled strings of length 2n is
the sequence http://oeis.org/A005568, the product of two successive Catalan numbers
CnCn+1:

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660, 81662152, 987369656, 12228193432, . . .

Below, for n = 3, the thirty strings (out of seventy) of L2s that are not recognized by
your typelogical grammar of §3 (or by G′ of §2).

aabaab aababa aaabab abaaab ababaa abbabb abbbab abaaab abaaba ababbb
ababaa ababbb abbbab aaabab aababa baaaba baabaa bababb babbba baaaba
babaaa babbab babbba babaaa bababb bbabab bbabba bbbaba bbabab bbbaba

1. Generalize the NL grammar of §3 to NL♦, with the extraction postulates (P1), (P2)
below.

2. Provide appropriate type assignments for ‘displaced’ occurrences of the vocabulary
items, and appropriate terms given the interpretation map h of §3, extended with
h(♦A) = h(�A) = h(A), i.e. treating the control features as having no effect on
the interpretation.

4

http://oeis.org/A005568

3. Give a derivation in NL♦ for ababaa, where you obtain that string as a structural
deformation of a string that is derivable with your NL grammar of §3.

4. Compute the proof term for that derivation, and its string image.

Below the postulates for extraction from right branches:

(A⊗B)⊗ ♦C ` A⊗ (B ⊗ ♦C) (P1)

(A⊗B)⊗ ♦C ` (A⊗ ♦C)⊗B (P2)

In rule format for use with the N.D. inference rules:

Γ[∆′] ` D
Γ[∆] ` D P1;P2

where ∆ is
◦

�

∆3

◦

∆2∆1

5

and ∆′:
◦

◦

�

∆3

∆2

∆1
or

◦

∆2◦

�

∆3

∆1

The following derived inference rule telescopes (/I), (♦E), a sequence (possibly empty)
of P1/P2 restructurings, and finally (�E) when the marked hypothesis has found the
position where it can be used as a regular B. You can use (xright) to give your derivation
in an abbreviated format.

Γ[∆ ◦B] ` A
Γ[∆] ` A/♦�B xright

Hint You can use the discussion of ‘Controlling structural resource management’ in
§3.1 of the SEP article on Typelogical Grammar for inspiration. Assign an extra higher-
order type to the closing brackets a, b, allowing them to appear in surface structure in
a position to the right of the position where they would be canonically required, given
the type assignments of the NL grammar you found for Assignment §3.

6

A

Here is the unlexicalized grammar G.

G :
S −→ a S a S | b S b S
S −→ ε

(1)

In order to lexicalize it, we have to do two things: (i) get rid of the epsilon rule; (ii) have a
single lexical anchor for each rule. For (i), we multiply the rules for the four possibilities
of having the first/second rhs S empty. For (ii), we pick the opening brackets a, b
as anchors, and introduce new non-terminals for the closing brackets a, b: A,B. The
resulting lexicalized grammar is G′.

G′ :

S −→ a A | a A S | a S A | a S A S
S −→ b B | b B S | b S B | b S B S
A −→ a

B −→ b

(2)

B

1. Recasting G′ as a NL categorial grammar is straightforward. Below the lexicon with
type assignments in one-to-one correspondence with the rules of G′. Notice that the

7

lexicon is a relation associating vocabulary items with one or more types.

a :: S/A | (S/S)/A | (S/A)/S | ((S/S)/A)/S
b :: S/B | (S/S)/B | (S/B)/S | ((S/S)/B)/S
a :: A

b :: B

(3)

2. The natural deduction below has the lexical type assignments at the leaf nodes; for
the judgements Γ ` A at the internal nodes, type information is dropped on the lhs of
the turnstyle. The final step of the derivation has the required bracketing to show that
abbaaa is a well-formed expression of type S.

a
((S/S)/A)/S

b
S/B

b
B

b · b ` S
[/E]

a · (b · b) ` (S/S)/A
[/E] a

A

(a · (b · b)) · a ` S/S
[/E]

a
S/A

a
A

a · a ` S [/E]

((a · (b · b)) · a) · (a · a) ` S
[/E]

(4)

3. The proof net satisfies all criteria for NL: acyclicity/connectedness, planarity, balance.
Notice that the cotensor structure at the bottom of the net corresponds to the bracketing
of the endsequent in the natural deduction proof: ((a + (b + b)) + a) + (a + a).

8

+

+

A×

A⊥S

+

A+

+

B×

B⊥S

×

S⊥×

A⊥×

S⊥S

S⊥
(5)

4. To compute the proof term with the net traversal algorithm, we drop the lower coten-
sor structure, keeping a flat sequence of assumptions. Labeling these from left to right
with free variables (‘constants’) x0, . . . , x5, we compute the following pure application

9

term:

((x0 (x1 x2)) x3) (x4 x5)

×

S⊥×

A⊥×

S⊥S

×

B⊥S

B A ×

A⊥S

A S⊥
(6)

5. We now turn to the ACG picture of the relation between the proof term of a derivation
at the ‘abstract syntax’ level and its string image obtained by a compositional mapping.
We build up the proof term this time from abstract constants—you find them in the
left column of the table below, together with their type for the abstract source calculus.
Notice that type assignment is now a function associating an abstract constant with its
single type.

10

a0 A σ λi.(a i)
a1 S/A σ(σ λxλi.(a (x i))
a2 (S/S)/A σ(σ(σ λxλyλi.(a (x (y i)))
a3 (S/A)/S σ(σ(σ λxλyλi.(a (x (y i)))
a4 ((S/S)/A)/S σ(σ(σ(σ λxλyλzλi.(a (x (y (z i))))

(7)

A compositional mapping h sends the source types and derivations/proof terms to target
types/derivations for a string interpretation. We abbreviate the string type ∗ (∗ as
σ. In the third and fourth columns of the table you find the image of the abstract
syntax types and of the abstract constan under the mapping h. The interpretation of
the constants is built from target constants a and a of type σ. (For the second pair of
brackets, replace a, A, a by b, B, b.)

Below the abstract proof term for derivation (4), and its image under the mapping h.

t = ((a4 (b1 b0)) a0) (a1 a0)

h(t) = λi.(a (b (b (a (a (a i))))))
(8)

C

1. and 2. We extend the lexicon with higher-order entries for displaced closing brackets.
In the formula tree for a judgement Γ ` S, ax,bx will appear to the right and above
the position where the hypotheses ♦�A,♦�B are canonically needed, i.e. consumed as
regular A,B. For the string image under h, the correct translations for ax,bx are the

11

(†) variants. The parameter q here is a function from strings to strings. It is provided
with the empty string (the term λi.i) for the ♦�− hypothesis, and then concatenated
with the string constants for the displaced closing brackets. (We’ll comment on the (‡)
variant in a moment.)

ax (S/♦�A)\S (σ(σ)(σ λqλi.((q λj.j) (a i)) (†)
λq.(q a) (‡)

bx (S/♦�B)\S (σ(σ)(σ λqλi.((q λj.j) (b i)) (†)
λq.(q b) (‡)

(9)

3. The derivation in (10) obtains the string ababaa as a deformation of the context-
free pattern abaaba. The displacement constant ax is used for the final closing bracket
element. The ♦�A hypothesis finds its place as a right sister of a1 by means of the
P1/P2 postulates.

12

[` ♦2a]1

a3

(s/a)/s

b3

(s/b)/s

a1

s/a

[` 2a]2

〈 〉 ` a [2E]

a1 · 〈 〉 ` s
[/E]

b3 · (a1 · 〈 〉) ` s/b
[/E]

b0

b

(b3 · (a1 · 〈 〉)) · b0 ` s
[/E]

a3 · ((b3 · (a1 · 〈 〉)) · b0) ` s/a
[/E] a0

a

(a3 · ((b3 · (a1 · 〈 〉)) · b0)) · a0 ` s
[/E]

(a3 · (((b3 · a1) · 〈 〉) · b0)) · a0 ` s
[P1]

(a3 · (((b3 · a1) · b0) · 〈 〉)) · a0 ` s
[P2]

((a3 · ((b3 · a1) · b0)) · 〈 〉) · a0 ` s
[P1]

((a3 · ((b3 · a1) · b0)) · a0) · 〈 〉 ` s
[P2]

((a3 · ((b3 · a1) · b0)) · a0) · ` s [♦E]2

(a3 · ((b3 · a1) · b0)) · a0 ` s/♦2a
[/I]1

ax

(s/♦2a)\s
((a3 · ((b3 · a1) · b0)) · a0) · ax ` s

[\E]

(10)

Drawing an LP proof net (i.e. relaxing the planarity constraint) gives a more uncluttered
picture of the dependencies. We ignore the structural control operators ♦,� in this net.
(This will change when we reach Part 3 of the course.)

13

×

S⊥×

A⊥S

×

S⊥×

B⊥S

×

A⊥S

B A ×

S+

S⊥A

S⊥
(11)

4. The proof term t for derivation (10), or for the proof net (11), is given in (12) below,
together with the image under h, for the (†) and (‡) versions of the translation of the
constants. The (†) translation correctly yields the desired string image ababaa. The
(‡) translation substitutes the closing a bracket for the λ-bound variable for the ♦�A
hypothesis, and thus produces the canonical context-free pattern underlying the string
ababaa . . . !

t = (ax λy2.((a3 ((b3 (a1 y2)) b0)) a0))

(†) h(t) = λi.(a (b (a (b (a (a i))))))

(‡) h(t) = λi.(a (b (a (a (b (a i))))))

(12)

Discussion

Here are some questions we have to address:

14

Q1. Does the NL♦ grammar of (3)+(9) recognize all and only parenthesis shuffle pat-
terns from L2s? Positive answer for the ‘only’ part is easy. What about the ‘all’
part? Looking at the sample of 30 length-6 patterns, 24 of them are obtained with
the aid of a single displacement type. For the others, more that one displacement
type is needed.

Q2. If the language of the NL♦ grammar of (3)+(9) is a proper subset of L2s, then
how can we characterize this subset exactly? Is well-nestedness the discriminating
feature?

. . .

15

	
	
	
	
	
	
	

