
Tree Adjoining Grammars
Logical Methods in Natural Language Processing

Lecturer: M. Moortgat

Cecilia Chávez Aguilera

May 3, 2012

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 1 / 26

Preamble

Joshi’s Program

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975.
‘Tree Adjunct Grammars.’Journal of Computer and System Sciences,
10(2)

TAG’s have been a cornerstone in the road of Mildy-Context Sensitive
Languages
How much context sensitivity do we need to model natural
languages?
Polinomial Parsable

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 2 / 26

Preamble

Joshi’s Program

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975.
‘Tree Adjunct Grammars.’Journal of Computer and System Sciences,
10(2)
TAG’s have been a cornerstone in the road of Mildy-Context Sensitive
Languages

How much context sensitivity do we need to model natural
languages?
Polinomial Parsable

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 2 / 26

Preamble

Joshi’s Program

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975.
‘Tree Adjunct Grammars.’Journal of Computer and System Sciences,
10(2)
TAG’s have been a cornerstone in the road of Mildy-Context Sensitive
Languages
How much context sensitivity do we need to model natural
languages?

Polinomial Parsable

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 2 / 26

Preamble

Joshi’s Program

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975.
‘Tree Adjunct Grammars.’Journal of Computer and System Sciences,
10(2)
TAG’s have been a cornerstone in the road of Mildy-Context Sensitive
Languages
How much context sensitivity do we need to model natural
languages?
Polinomial Parsable

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 2 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where

I
N a set of non-terminal symbols.

I
T an alphabet of terminal symbols N [T = ;

I
S 2 N.

I
I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where
I

N a set of non-terminal symbols.

I
T an alphabet of terminal symbols N [T = ;

I
S 2 N.

I
I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where
I

N a set of non-terminal symbols.
I

T an alphabet of terminal symbols N [T = ;

I
S 2 N.

I
I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where
I

N a set of non-terminal symbols.
I

T an alphabet of terminal symbols N [T = ;
I

S 2 N.

I
I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where
I

N a set of non-terminal symbols.
I

T an alphabet of terminal symbols N [T = ;
I

S 2 N.
I

I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where
I

N a set of non-terminal symbols.
I

T an alphabet of terminal symbols N [T = ;
I

S 2 N.
I

I a finite set of trees called initial trees (usually denoted by ↵) and
I

A a finite set of trees called auxiliary trees (usually denoted by �).

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 3 / 26

Formalism

The set A [I is set of elementary trees of G from which we will
construct our derived trees.

A tree is Initial if its root node is labeled with S. Inner and frontier
nodes can be either terminal or non-terminal.
A tree is Auxiliar if it has a special node called its food node, marked
with * which has the same label than its root node.
The string language generated by G is defined to be the set

L(G) = {y(t)|t 2 T(G)}
where T(G) is the set of all derived trees of G, and y(t) is the unique
string associated with t , (the yield of t) obtained by concatenating all
terminal symbols labeling the frontier of t from left to right.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 4 / 26

Formalism

The set A [I is set of elementary trees of G from which we will
construct our derived trees.
A tree is Initial if its root node is labeled with S. Inner and frontier
nodes can be either terminal or non-terminal.

A tree is Auxiliar if it has a special node called its food node, marked
with * which has the same label than its root node.
The string language generated by G is defined to be the set

L(G) = {y(t)|t 2 T(G)}
where T(G) is the set of all derived trees of G, and y(t) is the unique
string associated with t , (the yield of t) obtained by concatenating all
terminal symbols labeling the frontier of t from left to right.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 4 / 26

Formalism

The set A [I is set of elementary trees of G from which we will
construct our derived trees.
A tree is Initial if its root node is labeled with S. Inner and frontier
nodes can be either terminal or non-terminal.
A tree is Auxiliar if it has a special node called its food node, marked
with * which has the same label than its root node.

The string language generated by G is defined to be the set
L(G) = {y(t)|t 2 T(G)}

where T(G) is the set of all derived trees of G, and y(t) is the unique
string associated with t , (the yield of t) obtained by concatenating all
terminal symbols labeling the frontier of t from left to right.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 4 / 26

Formalism

The set A [I is set of elementary trees of G from which we will
construct our derived trees.
A tree is Initial if its root node is labeled with S. Inner and frontier
nodes can be either terminal or non-terminal.
A tree is Auxiliar if it has a special node called its food node, marked
with * which has the same label than its root node.
The string language generated by G is defined to be the set

L(G) = {y(t)|t 2 T(G)}
where T(G) is the set of all derived trees of G, and y(t) is the unique
string associated with t , (the yield of t) obtained by concatenating all
terminal symbols labeling the frontier of t from left to right.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 4 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}

A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}
A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.

I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}
A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}

A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}
A leaf that has a non-terminal label is called a substitution node.

This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [E

0 [{hv1, ri|hv1, vi 2 E}
A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 5 / 26

Formalism Combination operations

Substitution

In a picture

�
�

�
�

@
@

@
@

u

6

�
�

�
�

@
@

@
@

�
�
�
�

@
@

@
@

u

�
�
��

@
@

@@

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 6 / 26

Formalism Combination operations

Example

↵

S

VP

NPV

likes

NP

↵1

NP

John ↵2

NP

Lyn

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 7 / 26

Formalism Combination operations

Substituting
Derived tree

↵ [NP,↵1]; ↵ [NP,↵2]

S

NP

VP

NP

Lyn

V

likes

John

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 8 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,

I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}

F
E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}

F
r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined

I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 9 / 26

Formalism Combination operations

Adjunction
In a picture

�
�
�
�
�
�
�
�

A
A

A
A
A

A
A
A

!2!1 !3

X

↵ =

S

�
�

A
A

�
�
�
�
�
�

A
A
A

A
A
A

⌫1
X

⌫2

X

� =

�(↵)
X --

�
�
�
�
�
�
�
�

A
A
A
A

A
A
A

A

�
�
�
�
�
�

A
A

A
A
A

A

�
�

A
A

!2

⌫1 ⌫2

!1 !3

X

X

S

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 10 / 26

Formalism Combination operations

Example
Copy Language

↵

S

✏ �1

S

NA

S

a*S
NA

a

�2

S

NA

S

b*S
NA

b

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 11 / 26

Formalism Combination operations

Adjunction
Derived tree

�1(↵)S

S

NA

S

a*S
NA

✏

a

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 12 / 26

Formalism Combination operations

Adjunction
Derived tree

�2(�1(↵)S

)
S

S

NA

S

NA

S

b*S
NA

a*S
NA

✏

b

a

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 13 / 26

Properties

Tree Substitution Grammars (TSG)

I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation

I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG

I TSG’s are not enough to strongly lexicalize CFG
TAG’S can be restricted to only the Adjunction operation

I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation

I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation

I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.

I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,
Selected Adjunction.

I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.

I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed

Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:

L \ L

0

L [L

0

L

⇤

L · L 0
L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:
L \ L

0

L [L

0

L

⇤

L · L 0
L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:
L \ L

0

L [L

0

L

⇤

L · L 0
L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:
L \ L

0

L [L

0

L

⇤

L · L 0
L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:
L \ L

0

L [L

0

L

⇤

L · L 0

L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:
L \ L

0

L [L

0

L

⇤

L · L 0
L \ R with R a regular language

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 15 / 26

Properties

Extended domain of locality. A domain over which various
dependencies (syntactic and semantic) can be specified. Joshi, A. K.
‘Domains of Locality’, Data and Knowledge Engineering Vol. 50 Issue
3 2004

Altough here and there it has been stated that TAG’s are closed under
strong lexicalization, recently, it has been shown that TAG’s are NOT
closed under strong lexicalization:
Kuhlman and Satta ‘Tree-Adjoining Grammars are not closed under
strong lexicalization’Computational Linguistics 2012

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 16 / 26

Properties

Extended domain of locality. A domain over which various
dependencies (syntactic and semantic) can be specified. Joshi, A. K.
‘Domains of Locality’, Data and Knowledge Engineering Vol. 50 Issue
3 2004
Altough here and there it has been stated that TAG’s are closed under
strong lexicalization, recently, it has been shown that TAG’s are NOT
closed under strong lexicalization:
Kuhlman and Satta ‘Tree-Adjoining Grammars are not closed under
strong lexicalization’Computational Linguistics 2012

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 16 / 26

Dependency Structures

The class of dependency structures induced by this formalism is the
class of well-nested structures with block degree at most two.
D(TAG) = D2 \Dwn

Traversal Strategy: Block-Order-Collect
Derivation Trees are terms over the signature of elementary trees.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 17 / 26

Dependency Structures

The class of dependency structures induced by this formalism is the
class of well-nested structures with block degree at most two.
D(TAG) = D2 \Dwn

Traversal Strategy: Block-Order-Collect

Derivation Trees are terms over the signature of elementary trees.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 17 / 26

Dependency Structures

The class of dependency structures induced by this formalism is the
class of well-nested structures with block degree at most two.
D(TAG) = D2 \Dwn

Traversal Strategy: Block-Order-Collect
Derivation Trees are terms over the signature of elementary trees.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 17 / 26

Dependency Structures

{an

b

n

c

n

d

n|n 2 N}
Running Example

↵1

S

DS

CB

a

↵2

B

b ↵3

C

c ↵4

D

d �

S

DS

C*B

a

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 18 / 26

Dependency Structures

Derived Tree
aaabbbccc

S

D

d

S

D

d

S

D

d

S

C

c

S*

C

c

S*

C

c

B

b

B

b

B

b

a

a

a

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 19 / 26

Dependency Structures

Linearization

For the linearization of the elementaries trees in the grammar we
should keep in mind the way we will produce a string by means fo that
tree.

↵1

S

DS

CB

a

aS1BCS2D

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 20 / 26

Dependency Structures

Linearization

For the linearization of the elementaries trees in the grammar we
should keep in mind the way we will produce a string by means fo that
tree.

↵1

S

DS

CB

a

aS1BCS2D

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 20 / 26

Dependency Structures

Term

↵1

↵4↵3↵2�

↵4↵3↵2�

↵4↵3↵2

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 21 / 26

Dependency Structures

Recall that an order anotation ! is well-nested if it does not contain a
string of the form ijij as a scattered substring, for i , j 2 N Denote by
⌦

wn

the set of all well-nested order anotations.

The set of order anotations for the terms of this formalism is
well-nested.
Theorem 5.2.1 A dependency structure D is well-nested if and only if
term(D) 2 T⌦

wn

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 22 / 26

Dependency Structures

Recall that an order anotation ! is well-nested if it does not contain a
string of the form ijij as a scattered substring, for i , j 2 N Denote by
⌦

wn

the set of all well-nested order anotations.
The set of order anotations for the terms of this formalism is
well-nested.

Theorem 5.2.1 A dependency structure D is well-nested if and only if
term(D) 2 T⌦

wn

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 22 / 26

Dependency Structures

Recall that an order anotation ! is well-nested if it does not contain a
string of the form ijij as a scattered substring, for i , j 2 N Denote by
⌦

wn

the set of all well-nested order anotations.
The set of order anotations for the terms of this formalism is
well-nested.
Theorem 5.2.1 A dependency structure D is well-nested if and only if
term(D) 2 T⌦

wn

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 22 / 26

Dependency Structures

//

��

--

**

//

⇡⇡

++ --

//

--""

a a a b b b c c c d d d

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 23 / 26

Dependency Structures

Linearization

//

��

--

++

//

⇡⇡

++ --

//

--$$

e 1 11 112 113 114 12 13 14 2 3 4

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 24 / 26

Dependency Structures

Block Degree

Recall the coarsest congruence relation over a set that we are using:
Lemma 4.1.1 Let C = (A ;) be a chain. S ✓ A . Define ⌘

S

as
follows: a ⌘

S

b iff 8c 2 [a, b], c 2 S

To visualize the segmentation of D, consider the the congruence
relation of buc/ ⌘buc
Note that b11c/ ⌘b11c consists of two blocks, and any other node has
block degree one.
Thus the block degree of our dependency structure is two.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 25 / 26

Dependency Structures

Block Degree

Recall the coarsest congruence relation over a set that we are using:
Lemma 4.1.1 Let C = (A ;) be a chain. S ✓ A . Define ⌘

S

as
follows: a ⌘

S

b iff 8c 2 [a, b], c 2 S

To visualize the segmentation of D, consider the the congruence
relation of buc/ ⌘buc

Note that b11c/ ⌘b11c consists of two blocks, and any other node has
block degree one.
Thus the block degree of our dependency structure is two.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 25 / 26

Dependency Structures

Block Degree

Recall the coarsest congruence relation over a set that we are using:
Lemma 4.1.1 Let C = (A ;) be a chain. S ✓ A . Define ⌘

S

as
follows: a ⌘

S

b iff 8c 2 [a, b], c 2 S

To visualize the segmentation of D, consider the the congruence
relation of buc/ ⌘buc
Note that b11c/ ⌘b11c consists of two blocks, and any other node has
block degree one.

Thus the block degree of our dependency structure is two.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 25 / 26

Dependency Structures

Block Degree

Recall the coarsest congruence relation over a set that we are using:
Lemma 4.1.1 Let C = (A ;) be a chain. S ✓ A . Define ⌘

S

as
follows: a ⌘

S

b iff 8c 2 [a, b], c 2 S

To visualize the segmentation of D, consider the the congruence
relation of buc/ ⌘buc
Note that b11c/ ⌘b11c consists of two blocks, and any other node has
block degree one.
Thus the block degree of our dependency structure is two.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 25 / 26

Dependency Structures

//

��

--

++

//

⇡⇡

++ --

//

--$$

e 1 11 112 113 114 12 13 14 2 3 4

Figure 1: Blocks of node 11

1

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 26 / 26

Dependency Structures

Thanks

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 27 / 26

	Preamble
	Formalism
	Combination operations

	Properties
	Dependency Structures

