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Preamble

Joshi’s Program

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975.
‘Tree Adjunct Grammars.’Journal of Computer and System Sciences,
10(2)

TAG’s have been a cornerstone in the road of Mildy-Context Sensitive
Languages
How much context sensitivity do we need to model natural
languages?
Polinomial Parsable
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Formalism

Formalism

A TAG is a tuple G = hN,T ,S, I,A , i where

I
N a set of non-terminal symbols.

I
T an alphabet of terminal symbols N [ T = ;

I
S 2 N.

I
I a finite set of trees called initial trees (usually denoted by ↵) and

I
A a finite set of trees called auxiliary trees (usually denoted by �).
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Formalism

The set A [ I is set of elementary trees of G from which we will
construct our derived trees.

A tree is Initial if its root node is labeled with S. Inner and frontier
nodes can be either terminal or non-terminal.
A tree is Auxiliar if it has a special node called its food node, marked
with * which has the same label than its root node.
The string language generated by G is defined to be the set

L(G) = {y(t)|t 2 T(G)}
where T(G) is the set of all derived trees of G, and y(t) is the unique
string associated with t , (the yield of t) obtained by concatenating all
terminal symbols labeling the frontier of t from left to right.
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Formalism Combination operations

The combination operations for our grammar are Substitution and
Adjunction

Substitution Let � = hV ,E, ri be a syntactic tree, ↵ = hV 0,E0, r 0i an
initial tree, and v 2 V . Denote by ↵ [v , �], the result of substituting �
into ↵ at node v, defined as follows:

I If v is no leaf or l(v) , l(r), then ↵ [v , �] is undefined.
I Otherwise, ↵ [v , �] := hV 00,E00, r 00i with V

00 = V [ V

0\{v},
E

00 = {E\{hv1, v2i|v2 = v}} [ E

0 [ {hv1, ri|hv1, vi 2 E}

A leaf that has a non-terminal label is called a substitution node.
This operation can be iterated as long as there is a substition node.
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Formalism Combination operations

Substitution

In a picture
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Formalism Combination operations

Example

↵

S

VP

NPV

likes

NP

↵1

NP

John ↵2

NP

Lyn
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Formalism Combination operations

Substituting
Derived tree

↵ [NP,↵1]; ↵ [NP,↵2]

S

NP

VP

NP

Lyn

V

likes

John
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Formalism Combination operations

Adjunction

Let ↵ = hV ,E, ri be an initial tree, � = hV 0,E0, r 0, ⇤i, an auxiliary tree,
v 2 V a node in ↵ such that l(v) = N0 some non-terminal symbol.

I Denote by ↵/v the subtree of ↵ rooted at v,
I Denote by ↵ � v the tree hV�,E�, r�i where:

F
V

� = V\{v 2 V |v 2 bvc}
F

E

� = E\{hv1, v2i|v1 = v}
F

r

� = r

Then, denote by �(↵)
v

the adjunction of � into ↵ at node v defined in
the following way:

I If l(v) , l(r 0), then this operation is undefined
I Otherwise, do ↵ � v [v , �], and call � the resulting tree, then, do
� [⇤,↵/v]

This operation can always be iterated
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Formalism Combination operations

Adjunction
In a picture
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Formalism Combination operations

Example
Copy Language

↵

S

✏ �1

S

NA

S

a*S
NA

a

�2

S

NA

S

b*S
NA

b
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Formalism Combination operations

Adjunction
Derived tree

�1(↵)S

S

NA

S

a*S
NA

✏

a
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Formalism Combination operations

Adjunction
Derived tree

�2(�1(↵)S

)
S

S

NA

S

NA

S

b*S
NA

a*S
NA

✏

b

a
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Properties

Tree Substitution Grammars (TSG)

I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation

I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?
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Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 14 / 26



Properties

Tree Substitution Grammars (TSG)
I CFG can be seen as a special case of TSG
I TSG’s are not enough to strongly lexicalize CFG

TAG’S can be restricted to only the Adjunction operation
I Substitution can be simulated by adjunction.
I Restrictions over adjunction. No Adjunction. Obligatory Adjunction,

Selected Adjunction.
I TAG’s do Strongly lexicalize CFG

Parsable in O(n6) over the length of the string to be parsed
Constant growth property ?
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Properties

Properties

Let L, and L’ be tree adjoining languages, then the following are TAL
as well:

L \ L

0

L [ L

0

L

⇤

L · L 0
L \ R with R a regular language
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Properties

Extended domain of locality. A domain over which various
dependencies (syntactic and semantic) can be specified. Joshi, A. K.
‘Domains of Locality’, Data and Knowledge Engineering Vol. 50 Issue
3 2004

Altough here and there it has been stated that TAG’s are closed under
strong lexicalization, recently, it has been shown that TAG’s are NOT
closed under strong lexicalization:
Kuhlman and Satta ‘Tree-Adjoining Grammars are not closed under
strong lexicalization’Computational Linguistics 2012
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Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 16 / 26



Dependency Structures

The class of dependency structures induced by this formalism is the
class of well-nested structures with block degree at most two.
D(TAG) = D2 \Dwn

Traversal Strategy: Block-Order-Collect
Derivation Trees are terms over the signature of elementary trees.
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Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 17 / 26



Dependency Structures

The class of dependency structures induced by this formalism is the
class of well-nested structures with block degree at most two.
D(TAG) = D2 \Dwn

Traversal Strategy: Block-Order-Collect
Derivation Trees are terms over the signature of elementary trees.

Cecilia Chávez Aguilera () Tree Adjoining Grammars LMNLP 17 / 26



Dependency Structures

{an

b

n

c

n

d

n|n 2 N}
Running Example

↵1

S

DS

CB

a

↵2

B

b ↵3

C

c ↵4

D

d �

S

DS

C*B

a
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Dependency Structures

Derived Tree
aaabbbccc

S

D

d

S

D

d

S

D

d

S

C

c

S*

C

c

S*

C

c

B

b

B

b

B

b

a

a

a
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Dependency Structures

Linearization

For the linearization of the elementaries trees in the grammar we
should keep in mind the way we will produce a string by means fo that
tree.

↵1

S

DS

CB

a

aS1BCS2D
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Dependency Structures

Term

↵1

↵4↵3↵2�

↵4↵3↵2�

↵4↵3↵2
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Dependency Structures

Recall that an order anotation ! is well-nested if it does not contain a
string of the form ijij as a scattered substring, for i , j 2 N Denote by
⌦

wn

the set of all well-nested order anotations.

The set of order anotations for the terms of this formalism is
well-nested.
Theorem 5.2.1 A dependency structure D is well-nested if and only if
term(D) 2 T⌦

wn
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Dependency Structures

//

��

--

**

//

⇡⇡

++ --

//

--""

a a a b b b c c c d d d
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Dependency Structures

Linearization

//

��

--

++

//

⇡⇡

++ --

//

--$$

e 1 11 112 113 114 12 13 14 2 3 4
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Dependency Structures

Block Degree

Recall the coarsest congruence relation over a set that we are using:
Lemma 4.1.1 Let C = (A ;) be a chain. S ✓ A . Define ⌘

S

as
follows: a ⌘

S

b iff 8c 2 [a, b], c 2 S

To visualize the segmentation of D, consider the the congruence
relation of buc/ ⌘buc
Note that b11c/ ⌘b11c consists of two blocks, and any other node has
block degree one.
Thus the block degree of our dependency structure is two.
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Dependency Structures

//

��

--

++

//

⇡⇡

++ --

//

--$$

e 1 11 112 113 114 12 13 14 2 3 4

Figure 1: Blocks of node 11

1
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Dependency Structures

Thanks
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