Logical methods in NLP 2012

Preliminaries

Michael Moortgat

Abstract

Natural languages exhibit dependency patterns that are provably beyond the recognizing capacity of context free grammars. In recent research, a family of grammar formalisms has emerged that gracefully deals with such phenomema beyond context-free and at the same time keeps a pleasant (polynomial) parsing complexity.

We study some key formalisms in this so-called 'mildly context-sensitive' family, together with the cognitive interpretation of the kind of dependencies they express. We look at the dependency structures projected by grammatical derivations.

Background reading. Chapter 2 from Laura Kallmeyer, Parsing Beyond Context-Free Grammars. Springer, Cognitive Technologies, 2010. Chapters 3 to 6 from Marco Kuhlmann, Dependency Structures and Lexicalized Grammars. Springer.

More to explore. A standard reference for the general theory is Lewis \& Papadimitriou, Elements of the theory of computation.

1. Formal grammars

A grammar is a tuple (V, Σ, R, S) with

- V is an alphabet;
- Σ a subset of V, a finite set of terminal symbols;
- R a set of rules, a finite subset of $V^{*} \times V^{*}$
we write $\alpha \longrightarrow \beta$
with $\alpha, \beta \in V^{*}$ (strings over terminals/non-terminals)
- S an element of $V-\Sigma$, the start symbol

Putting restrictions on the form of the production rules leads to a hierarchy of formal grammars, each with their own expressivity and complexity properties.

Chomsky hierarchy

$R \subset C F \subset C S \subset R E$			
type	language	automaton	restrictions
3	regular	finite state automaton	$A \longrightarrow w ; A \longrightarrow w B$
2	context-free	push-down automaton	$A \longrightarrow \gamma$
1	context-sensitive	linear bounded automaton	$\alpha A \beta \longrightarrow \alpha \gamma \beta, \gamma \neq \epsilon$
0	recursively enumerable	Turing machine	$\alpha \longrightarrow \beta$

(notation: A, B for nonterminals, w for a string of terminals, α, β as before)

Adding fine-structure

R and $C F$ have shown to be extremely useful for capturing NL patterns.

- R : speech, phonology, morphology
- CF: the larger part of NL syntax
$C S$ is too expressive to be informative about the limitations of the language faculty.
\rightsquigarrow let's impose a finer granularity to chart the territory between $C F$ and $C S$.

Regular languages, finite state automata

We have characterized grammars for regular languages as a restricted form of CFG. There is a more natural, direct characterization.

Regular expressions Concatenation, choice, repetition

$$
E::=a|1| 0|E E| E+E \mid E^{*}
$$

Deterministic finite state automaton a 5-tuple $M=\left(K, \Sigma, \delta, q_{0}, F\right)$ with K a finite set of states, $q_{0} \in K$ the initial state,
$F \subseteq K$ the set of final states,
Σ an alphabet of input symbols,
δ, the transition function, is a function from $K \times \Sigma$ to K.
Non-deterministic: transition relation

Regular patterns: semantic automata

Consider examples of the form 'all poets dream', 'not all politicians can be trusted', in general: $Q A B$

To understand the Q words it suffices to compare

- blue: $A-B$
- red: $A \cap B$

Tree of numbers

A triangle with pairs (n, m), for growing numbers of A :

- $n:|A-B|$
- $m:|A \cap B|$

$$
\begin{array}{lc}
|A|=0 & (0,0) \\
|A|=1 & (1,0)(0,1) \\
|A|=2 & (2,0)(1,1)(0,2) \\
|A|=3 & (3,0)(2,1)(1,2)(0,3) \\
|A|=4 & (4,0)(3,1)(2,2)(1,3)(0,4) \\
|A|=5 & (5,0)(4,1)(3,2)(2,3)(1,4)(0,5)
\end{array}
$$

Tree of numbers

A triangle with pairs (n, m), for growing numbers of A :

- $n:|A-B|$
- $m:|A \cap B|$

$$
\begin{array}{lc}
|A|=0 & (0,0) \tag{0,0}\\
|A|=1 & (1,0)(0,1) \\
|A|=2 & (2,0)(1,1)(0,2) \\
|A|=3 & (3,0)(2,1)(1,2)(0,3) \\
|A|=4 & (4,0)(3,1)(2,2)(1,3)(0,4) \\
|A|=5 & (5,0)(4,1)(3,2)(2,3)(1,4)(0,5)
\end{array}
$$

Example: all A B

Patterns: all, no, some, not all

Q words as semantic automata

A Q automaton runs on a string of 0 's and 1's: 0 for elements in $A-B, 1$ for elements in $A \cap B$. Acceptance of a string means that $Q A B$ holds.

Example: all A B

Automata: all, no, some, not all

all

some

no

not all

Beyond R

How do we know a language is not regular?

Pumpability We say a string w in language L is k-pumpable if there are strings u_{0}, \ldots, u_{k} and v_{1}, \ldots, v_{k} satisfying

$$
\begin{gathered}
w=u_{0} v_{1} u_{1} v_{2} u_{2} \ldots u_{k-1} v_{k} u_{k} \\
v_{1} v_{2} \ldots v_{k} \neq \epsilon \\
u_{0} v_{1}^{i} u_{1} v_{2}^{i} u_{2} \ldots u_{k-1} v_{k}^{i} u_{k} \in L \quad \text { for every } i \geq 0
\end{gathered}
$$

Theorem Let L be an infinite regular language. Then there are strings x, y, z such that $y \neq \epsilon$ and $x y^{i} z \in L$ for each $i \geq 0$ (i.e. 1-pumpability)

Example The language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular. (Compare $a^{*} b^{*}$)

Context-free grammars

A context-free grammar G is a 4-tuple (V, Σ, R, S), where
V is an alphabet,
Σ (the set of terminals) is a subset of V,
R (the set of rules) is a finite subset of $(V-\Sigma) \times V^{*}$, and
S (the start symbol) is an element of $V-\Sigma$.

The members of $V-\Sigma$ are called nonterminals.

Push-down automata

A push-down automaton is a 6 -tuple $M=\left(K, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ with
K a finite set of states,
$q_{0} \in K$ the initial state,
$F \subseteq K$ the set of final states,
Σ an alphabet of input symbols,
Γ an alphabet of stack symbols,
$\Delta \subseteq\left(K \times \Sigma^{*} \times \Gamma^{*}\right) \times\left(K \times \Gamma^{*}\right)$ the transition relation.

Acceptance, non-determinism

We say that

$$
\left((q, u, \beta),\left(q^{\prime}, \gamma\right)\right) \in \Delta
$$

if the machine, in state q with β on top of the stack, can read u from the input tape, replace β by γ on top of the stack, and enter state q^{\prime}.
When different such transitions are simultaneously applicable, we have a nondeterministic pda.
A pda accepts a string $w \in \Sigma^{*}$ iff from the configuration $\left(q_{0}, w, \epsilon\right)$ there is a sequence of transitions to a configuration $\left(q_{f}, \epsilon, \epsilon\right)\left(q_{f} \in F\right)$ - a final state with end of input and empty stack.

PDA example: deterministic

Automaton M for $L=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}$. Let $M=\left(K, \Sigma, \Gamma, \Delta, q_{0}, F\right)$, with $K=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b, c\}, \Gamma=\{a, b\}, F=\left\{q_{1}\right\}$, and Δ consists of the following transitions:

1. $\left(\left(q_{0}, a, \epsilon\right),\left(q_{0}, a\right)\right)$
2. $\left(\left(q_{0}, b, \epsilon\right),\left(q_{0}, b\right)\right)$
3. $\left(\left(q_{0}, c, \epsilon\right),\left(q_{1}, \epsilon\right)\right)$
4. $\left(\left(q_{1}, a, a\right),\left(q_{1}, \epsilon\right)\right)$
5. $\left(\left(q_{1}, b, b\right),\left(q_{1}, \epsilon\right)\right)$

Sample run

Run of M on the string lionoil:

K	INPUT	STACK	Δ
q_{0}	lionoil	ϵ	PUSH
q_{0}	ionoil	l	PUSH
q_{0}	onoil	$i l$	PUSH
q_{0}	noil	oil	
q_{1}	oil	oil	POP
q_{1}	$i l$	$i l$	POP
q_{1}	l	l	POP
q_{1}	ϵ	ϵ	

Corresponding CFG

Context-free grammar G with $L(G)=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}$. Let $G=$ (V, Σ, R, S) with

$$
\left.\begin{array}{rl}
V= & \{S, a, b, c\} \\
\Sigma= & \{a, b, c\} \\
R= & \{S \longrightarrow a S a \\
& S \longrightarrow b S b \\
& S \longrightarrow c
\end{array}\right\}
$$

PDA: non-deterministic

Automaton M for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$. Let $M=\left(K, \Sigma, \Gamma, \Delta, q_{0}, F\right)$, with $K=\left\{q_{0}, q_{1}\right\}, \Sigma=\Gamma=\{a, b\}, F=\left\{q_{1}\right\}$, and Δ consists of the following transitions:

1. $\left(\left(q_{0}, a, \epsilon\right),\left(q_{0}, a\right)\right)$
2. $\left(\left(q_{0}, b, \epsilon\right),\left(q_{0}, b\right)\right)$
3. $\left(\left(q_{0}, \epsilon, \epsilon\right),\left(q_{1}, \epsilon\right)\right)$
4. $\left(\left(q_{1}, a, a\right),\left(q_{1}, \epsilon\right)\right)$
5. $\left(\left(q_{1}, b, b\right),\left(q_{1}, \epsilon\right)\right)$

Compare transition (3) with the earlier deterministic example. In state q_{0}, the machine can make a choice: push the next input symbol on the stack, or jump to q_{1} without consuming any input.

Semantic automata: beyond regular

Van Benthem's THEOREM: the 1st order definable Q words are precisely the quantifying expressions recognized by permutation-invariant acyclic finite automata.

But ... there are Q words that require stronger computational resources.

Example: most A B here we need a stack memory.

input	STACK
0010111	
010111	0
10111	00
0111	0
111	00
11	0
1	

Abstract example: $0^{n} 1^{n}$

Compare after reading a 1, a finite automaton would have forgotten how many 0 's it has seen.

Beyond CFG

CF pumping theorem Let G be a context-free grammar generating an infinite language. Then there is a constant k, depending on G, so that for every string w in $L(G)$ with $|w| \geq k$ it holds that $w=x v_{1} y v_{2} z$ with

- $\left|v_{1} v_{2}\right| \geq 1$
- $\left|v_{1} y v_{2}\right| \leq k$
- $w=x v_{1}^{i} y v_{2}^{i} z \in L(G)$, for every $i \geq 0$

This is 2-pumpability.

Example $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.

Example Patterns of the w^{2} type in Dutch/Swiss German (Huijbregts, Shieber):

Mild context-sensitivity

Challenge An emergent thesis underlining the cognitive relevance of the above: 'Human cognitive capacities are constrained by polynomial time computability' (Frixione, Minds and Machines; Szymanyk, etc). The challenge then becomes: Can we step beyond CF without losing the attractive computational properties?

Joshi's program A set of languages \mathcal{L} is mildly context-sensitive iff

- \mathcal{L} contains all CFL
- \mathcal{L} recognizes a bounded amount of cross-serial dependencies:
there is $n \geq 2$ such that $\left\{w^{k} \mid w \in \Sigma^{*}\right\} \in \mathcal{L}$ for all $k \leq n$
- The languages in \mathcal{L} are polynomially parsable
- The languages in \mathcal{L} have the constant growth property

Constant growth holds for semilinear languages.

Semilinearity

Parikh mapping Let $X=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet with some fixed order on the elements. The Parikh mapping $p: X^{*} \longrightarrow \mathbb{N}^{n}$ is defined as follows:

- for all $\left.w \in X^{*},\left.p(w) \doteq\langle | w\right|_{a_{1}}, \ldots,|w|_{a_{n}}\right\rangle$
where $|w|_{a_{i}}$ is the number of occurrences of a_{i} in w
- for all $L \subseteq X^{*}, p(L) \doteq\{p(w) \mid w \in L\}$ is the Parikh image of L

Letter equivalence Two words are I.e. if they contain an equal number of occurrences of each terminal symbol; two languages are l.e. if every string in one is l.e. to a string in the other and v.v.

Semilinearity A language is semilinear iff I.e. to a regular language.

Parikh's theorem All context-free languages are semilinear.

Closure properties

The following are useful tools to abstract away from irrelevant details of the 'linguistic phenomena'.

String homomorphism For two alphabets Σ_{1}, Σ_{2}, a function $f: \Sigma_{1}^{*} \longrightarrow \Sigma_{2}^{*}$ iff for all $v, w \in \Sigma_{1}^{*}: f(v w)=f(v) f(w)$.
Note that h is determined by its values on single alphabet symbols. Note also that h is allowed to erase material: for nonempty $w, h(w)$ may be empty.

Closure under homomorphisms given Σ_{1}, Σ_{2}, for every context-free language L_{1} over Σ_{1} and every homomorphism $f: \Sigma_{1}^{*} \longrightarrow \Sigma_{2}^{*}, h\left(L_{1}\right)=\left\{h(w) \mid w \in L_{1}\right\}$ is a context-free language.

Closure under intersection with regular languages for every context-free language L and every regular language $R, L \cap R$ is a context-free language.

The landscape beyond context-free

Below, from Kallmeyer's book, the hierarchy of mildly context-sensitive formalisms and some characteristic patterns.

2. Dependency structures

Marco Kuhlmann, Dependency Structures and Lexicalized Grammars.
Aim to systematically relate expressivity/complexity of grammar formalisms to structural properties of the dependency graphs induced by the derivations of these formalisms.

Dependency structures trees with a total order on their nodes. Two relations:

- governance: $u \unlhd v, u$ governs v, v depends on u
- precedence: $u \preceq v$

Visualization

(a) D_{1}

(b) D_{2}

(c) D_{3}

(d) D_{4}

(e) D_{5}

Dependency structures and grammars

Classes

- \mathcal{D}_{1} projective dependency structures: all yields form an interval
- \mathcal{D}_{k} dependency structures of bounded degree: measures number of detached parts
- $\mathcal{D}_{w n}$ well-nested dependency structures: non-crossing partitions

Below the classes of dependency structures induced by the derivations of a number of grammar formalisms.
formalism class
Context-free Grammar \mathcal{D}_{1}
Linear Context-free Rewriting Systems $\operatorname{LCFRS}(k)$, also $\operatorname{MCFG}(k)$ \mathcal{D}_{k}
Coupled Context-free Grammars $\operatorname{CCFG}(k)$ $\mathcal{D}_{k} \cap \mathcal{D}_{w n}$
Tree Adjoining Grammars TAG $\mathcal{D}_{2} \cap \mathcal{D}_{w n}$

$\mathcal{D}_{1} \quad$ projective dependency structures

K establishes a bijection between \mathcal{D}_{1} and the set of all treelet-ordered trees (each node annotated with a total order on that node and its children).

\mathcal{D}_{1} and context-free derivations

A grammar is lexicalized if each rule introduces exactly one terminal (called the anchor of that rule). Example (for $a^{n} b^{n}$)

$$
S \longrightarrow a S B \mid a B \quad ; \quad B \longrightarrow b
$$

Induced dependency structures Let G be a lexicalized CFG and $t \in \operatorname{Term}_{\Sigma(G)}$ a derivation tree. The dependency structure induced by t is the structure $D=(\operatorname{nodes}(t), \unlhd, \preceq)$ where

- $u \unlhd v$ iff u dominates v in t
- $u \preceq v$ iff u precedes v in $\llbracket t \rrbracket$ (the evaluation of t in the linearization semantics for G)

Correspondence $\mathcal{D}(C F G)=\mathcal{D}_{1}$. Derivations of lexicalized CFGs induce projective dependency structures.

\mathcal{D}_{1} enumerative combinatorics

The number of projective dependency structures over n nodes is counted by integer sequence https://oeis.org/A006013:

$$
1,2,7,30,143,728,3876,21318,120175,690690,4032015,23841480, \ldots
$$

with generating formula

$$
\binom{3 n+1}{n} /(n+1)
$$

where $\binom{n}{k}$ (the binomial coefficient) has initial values $\binom{n}{0}=1$ for all $n \in \mathbb{N}$ and $\binom{0}{k}=0$ for integers $k>0$; the recursive case for $n, k>0$ is

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Working session We try to gain a clearer understanding of the combinatorics by recasting \mathcal{D}_{1} in terms of binary trees.

- step 1: encoding general trees as bintrees
- step 2: read off projective linearization from bintrees

From general to binary trees

First child-next sibling binary trees We write n_{i}^{\prime} for the node of the binary tree b corresponding to node n_{i} of the general tree t. The root of t is mapped to the root of b; then

- if n_{l} is the leftmost child of n_{k} in t, n_{l}^{\prime} is the left child of n_{k}^{\prime} in b
- if n_{s} is the next sibling of n_{k} in t, n_{s}^{\prime} is the right child of n_{k}^{\prime} in b

Example writing \square for empty daughters in the binary representation

Binary trees: semantics

n node binary trees have nice interpretations, including

- Dyck words: well-nested strings of n pairs of parentheses
- Monotonic paths on $n \times n$ grid

Binary trees: enumerative combinatorics

The sequence of Catalan numbers C_{n} counts the number of n-node binary trees:

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n+1}
$$

This is integer sequence http://oeis.org/A000108:

$$
1,1,2,5,14,42,132,429,1430,4862,16796,58786, \ldots
$$

The recurrence below calculates C_{n+1} in terms of C_{n} :

$$
C_{0}=1 \quad ; \quad C_{n+1} \quad=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

Challenge Find a recurrence relation for the number of n-node projective dependency structures based on $C_{n} \ldots$

Binary trees: projective dependency semantics

Relational pseudocode reading off projective dependency structures from an n-node binary tree:
lin Tree ListIn ListOut
with initialization ListIn: 0... $(n-1)$, ListOut: []

- $\operatorname{lin} t_{a} \vec{u}(r: \vec{v}) \leftarrow$ convex \vec{u}, select $r \vec{u} \vec{u}^{\prime}$, $\operatorname{lin} t_{1} \vec{u}^{\prime} \vec{v}$
- $\operatorname{lin} t_{b}(r: \vec{u})(r: \vec{v}) \leftarrow \operatorname{lin} t_{1} \vec{u} \vec{v}$
$-\operatorname{lin} t_{c} \vec{u}^{\prime} \vec{u}^{\prime \prime}\left(r: \vec{v} \vec{v}^{\prime}\right) \leftarrow$ convex \vec{u}^{\prime}, select $r \vec{u}^{\prime} \vec{u}^{\prime \prime \prime}$, lin $t_{1} \vec{u}^{\prime \prime \prime} \vec{v}$, lin t_{2} $\vec{u}^{\prime \prime} \vec{v}^{\prime}$
- $\operatorname{lin} t_{d} r r$

Beyond \mathcal{D}_{1}

Projectivity and beyond:

- projectivity: every subtree spans an interval
\rightarrow gap-degree k : every subtree has at most k gaps (=block degree $k+1$)
- well-nestedness: disjoint edges must not overlap

Block/gap degree

(a) D_{1}, block-degree 2

(b) D_{2}, block-degree 3

The block-degree of $S \subseteq A$ wrt a chain $(A ; \preceq)$ is the cardinality of S / \equiv_{S}. \equiv_{S} coarsest congruence relation on $S: a \equiv_{S} b$ iff for all $c \in[a, b], c \in S$. Gap degree: block degree minus 1 .

Traversal of block-ordered trees

```
Block-Order-Collect ( \(u\) )
\(1 \quad L \leftarrow\) NLL; calls \([u] \leftarrow\) calls \([u]+1\)
2 foreach \(v\) in order \([u][\) calls \([u]]\)
\(3 \quad\) do if \(v=u\)
\(4 \quad\) then \(L \leftarrow L \cdot[u]\)
5 else \(L \leftarrow L \cdot\) Block-Order-Collect \((v)\)
6 return \(L\)
```

Illustration (Correct annotation for node 5 to $\langle 5\rangle \ldots$)

(a) tree

(b) D_{3} (block-order traversal)

Segmented dependency structures

(a) $D_{4} \cong D_{3}$

(b) $D_{4} / 2$

(c) $D_{4} / 3$

(d) $D_{4} / 4$

Definition 4.2.1 Let $D=(V ; \unlhd, \preceq)$ be a dependency structure, and let \equiv be a congruence relation on D. The segmentation of D by \equiv is the structure $D^{\prime}:=(V ; \unlhd, \preceq, R)$, where R is a new ternary relation on V defined as follows:

$$
\left(u, v_{1}, v_{2}\right) \in R \quad \Longleftrightarrow v_{1} \equiv v_{2} \wedge \forall w \in\left[v_{1}, v_{2}\right] . w \in\lfloor u\rfloor .
$$

The elements of the set V / \equiv are called the segments of D^{\prime}.

Linearization

For u a node in a segmented dependency structure D, the set of blocks of u is the set $\lfloor u\rfloor / \equiv{ }_{u}$.

Definition 4.2.3 Let T be a tree, and let $k \in \mathbb{N}$. A linearization of T with k components is a k-tuple $L=\left\langle\vec{u}_{i} \mid i \in[k]\right\rangle$ such that $\vec{u}:=\vec{u}_{1} \cdots \vec{u}_{k}$ is a list of the nodes of T in which each node occurs exactly once. The segmented dependency structure induced by a linearization L of T is the structure in which the governance relation is isomorphic to T, the precedence relation is isomorphic to \vec{u}, and the segments are isomorphic to the tuple components of L.

Correspondence (compare: treelet-ordered trees and projective D)

- for every segmented D there is exactly one block-ordered tree T such that $D=\operatorname{dep}(T)$.
- if T is a block-ordered tree in which each node is annotated with at most k lists, then $\operatorname{dep}(T)$ is a segmented dependency structure with block degree at most k

Dependency structure algebras

tbd

Well-nestedness

D is well-nested if for all edges $v_{1} \rightarrow v_{2}, w_{1} \rightarrow w_{2}$ in D it holds that

$$
\text { if } v_{1} \rightarrow v_{2}, w_{1} \rightarrow w_{2} \text { overlap, then } v_{1} \unlhd w_{1} \text { or } w_{1} \unlhd v_{1}
$$

Illustration

- D_{1} ill-nested: edges $1 \rightarrow 3$ and $4 \rightarrow 2$ disjoint, overlapping;
- D_{2} well-nested: edges $0 \rightarrow 4$ and $2 \rightarrow 5$ overlap, but $0 \unlhd 2$

Well-nestedness and non-crossing partitions

A dependency structure D is well-nested iff for every node u of D, the set of constituents of u is non-crossing wrt the chain $(\lfloor u\rfloor ; \preceq\lfloor u\rfloor)$
A partition Π on a chain $(A ; \preceq)$ is non-crossing if whenever there exist $a_{1} \prec$ $b_{1} \prec a_{2} \prec b_{2}$ in A such that a_{1}, a_{2} belong to the same class of Π and b_{1}, b_{2} belong to the same class of Π, then these two classes coincide.
The set of constituents of a node u in D is $\{\{u\} \cup\{\lfloor v\rfloor \mid u \rightarrow v\}\}$.

Illustration Compare the constituents of node 0 in D_{1} and D_{2}

D_{1}

D_{2}

$$
\{\{0\},\{1,3,5\},\{2,4\}\} \quad\{\{0\},\{1,2,5\},\{3,4\}\}
$$

Non-crossing partitions

Partitions induced by the constituents of node 0 in D_{1} and D_{2}

