Logical methods in NLP 2012

Preliminaries

Michael Moortgat

Abstract

Natural languages exhibit dependency patterns that are provably beyond the recognizing capacity of context free grammars. In recent research, a family of grammar formalisms has emerged that gracefully deals with such phenomema beyond context-free and at the same time keeps a pleasant (polynomial) parsing complexity.

We study some key formalisms in this so-called 'mildly context-sensitive' family, together with the cognitive interpretation of the kind of dependencies they express. We look at the dependency structures projected by grammatical derivations.

Background reading. Chapter 2 from Laura Kallmeyer, Parsing Beyond Context-Free Grammars. Springer, Cognitive Technologies, 2010. Chapters 3 to 6 from Marco Kuhlmann, Dependency Structures and Lexicalized Grammars. Springer.

More to explore. A standard reference for the general theory is Lewis & Papadimitriou, Elements of the theory of computation.

1. Formal grammars

A grammar is a tuple (V, Σ, R, S) with

```
▶ V is an alphabet;
```

- \blacktriangleright Σ a subset of V, a finite set of terminal symbols;
- ▶ R a set of rules, a finite subset of $V^* \times V^*$

```
we write \alpha \longrightarrow \beta
```

with $\alpha, \beta \in V^*$ (strings over terminals/non-terminals)

 \blacktriangleright S an element of $V - \Sigma$, the start symbol

Putting restrictions on the form of the production rules leads to a hierarchy of formal grammars, each with their own expressivity and complexity properties.

Chomsky hierarchy

 $R \subset CF \subset CS \subset RE$

type	language	automaton	restrictions
3	regular	finite state automaton	$A \longrightarrow w; A \longrightarrow wB$
2	context-free	push-down automaton	$A \longrightarrow \gamma$
1	context-sensitive	linear bounded automaton	$lpha Aeta \longrightarrow lpha \gamma eta$, $\gamma eq \epsilon$
0	recursively enumerable	Turing machine	$\alpha \longrightarrow \beta$

(notation: A, B for nonterminals, w for a string of terminals, α, β as before)

Adding fine-structure

R and CF have shown to be extremely useful for capturing NL patterns.

- ► *R*: speech, phonology, morphology
- ► *CF*: the larger part of NL syntax

CS is too expressive to be informative about the limitations of the language faculty.

 \rightarrow let's impose a finer granularity to chart the territory between CF and CS.

Regular languages, finite state automata

We have characterized grammars for regular languages as a restricted form of CFG. There is a more natural, direct characterization.

Regular expressions Concatenation, choice, repetition $E ::= a \mid 1 \mid 0 \mid EE \mid E + E \mid E^*$

Deterministic finite state automaton a 5-tuple $M = (K, \Sigma, \delta, q_0, F)$ with

K a finite set of states,

 $q_0 \in K$ the initial state,

 $F \subseteq K$ the set of final states,

 Σ an alphabet of input symbols,

 δ , the **transition function**, is a function from $K \times \Sigma$ to K.

Non-deterministic: transition relation

Regular patterns: semantic automata

Consider examples of the form 'all poets dream', 'not all politicians can be trusted', in general: QAB

To understand the ${\boldsymbol{Q}}$ words it suffices to compare

```
▶ blue: A - B
```

▶ red: $A \cap B$

Tree of numbers

A triangle with pairs (n, m), for growing numbers of A:

$$\blacktriangleright n : |A - B|$$
$$\blacktriangleright m : |A \cap B|$$

A = 0	(0,0)
A = 1	$(1,0) \ (0,1)$
A = 2	$(2,0)\ (1,1)\ (0,2)$
A = 3	$(3,0)\ (2,1)\ (1,2)\ (0,3)$
A = 4	(4,0) $(3,1)$ $(2,2)$ $(1,3)$ $(0,4)$
A = 5	(5,0) $(4,1)$ $(3,2)$ $(2,3)$ $(1,4)$ $(0,5)$

Tree of numbers

A triangle with pairs (n, m), for growing numbers of A:

$$\blacktriangleright n : |A - B|$$
$$\blacktriangleright m : |A \cap B|$$

A = 0	(0,0)
A = 1	(1,0) $(0,1)$
A = 2	(2,0) $(1,1)$ $(0,2)$
A = 3	(3,0) $(2,1)$ $(1,2)$ $(0,3)$
A = 4	(4,0) $(3,1)$ $(2,2)$ $(1,3)$ $(0,4)$
A = 5	(5,0) $(4,1)$ $(3,2)$ $(2,3)$ $(1,4)$ $(0,5)$

. . .

Example: all A B

. . .

Patterns: all, no, some, not all

Q words as semantic automata

A Q automaton runs on a string of 0's and 1's: 0 for elements in A - B, 1 for elements in $A \cap B$. Acceptance of a string means that QAB holds.

Example: all A B

Automata: all, no, some, not all

all

some

Beyond R

How do we know a language is not regular?

Pumpability We say a string w in language L is *k*-pumpable if there are strings u_0, \ldots, u_k and v_1, \ldots, v_k satisfying

 $w = u_0 v_1 u_1 v_2 u_2 \dots u_{k-1} v_k u_k$ $v_1 v_2 \dots v_k
eq \epsilon$

$$u_0 v_1^i u_1 v_2^i u_2 \dots u_{k-1} v_k^i u_k \in L$$
 for every $i \ge 0$

Theorem Let L be an infinite regular language. Then there are strings x, y, z such that $y \neq \epsilon$ and $xy^i z \in L$ for each $i \ge 0$ (i.e. 1-pumpability)

Example The language $L = \{a^n b^n \mid n \ge 0\}$ is not regular. (Compare a^*b^*)

Context-free grammars

A context-free grammar G is a 4-tuple (V, Σ, R, S) , where

V is an alphabet,

 Σ (the set of **terminals**) is a subset of V,

R (the set of rules) is a finite subset of $(V-\Sigma)\times V^*$, and

S (the start symbol) is an element of $V - \Sigma$.

The members of $V - \Sigma$ are called **nonterminals**.

Push-down automata

A push-down automaton is a 6-tuple $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$ with

 \boldsymbol{K} a finite set of states,

 $q_0 \in K$ the initial state,

 $F \subseteq K$ the set of final states,

 Σ an alphabet of input symbols,

 Γ an alphabet of stack symbols,

 $\Delta \subseteq (K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$ the transition relation.

Acceptance, non-determinism

We say that

$$((q, u, \beta), (q', \gamma)) \in \Delta$$

if the machine, in state q with β on top of the stack, can read u from the input tape, replace β by γ on top of the stack, and enter state q'.

When different such transitions are simultaneously applicable, we have a nondeterministic **pda**.

A pda accepts a string $w \in \Sigma^*$ iff from the configuration (q_0, w, ϵ) there is a sequence of transitions to a configuration $(q_f, \epsilon, \epsilon)$ $(q_f \in F)$ — a final state with end of input and empty stack.

PDA example: deterministic

Automaton M for $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Let $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$, with $K = \{q_0, q_1\}, \Sigma = \{a, b, c\}, \Gamma = \{a, b\}, F = \{q_1\}$, and Δ consists of the following transitions:

- 1. $((q_0, a, \epsilon), (q_0, a))$
- 2. $((q_0, b, \epsilon), (q_0, b))$
- **3**. $((q_0, c, \epsilon), (q_1, \epsilon))$
- 4. $((q_1, a, a), (q_1, \epsilon))$
- 5. $((q_1, b, b), (q_1, \epsilon))$

Sample run

Run of M on the string lionoil:

K	INPUT	STACK	Δ
q_0	lionoil	ϵ	PUSH
q_0	ionoil	l	PUSH
q_0	onoil	il	PUSH
q_0	noil	oil	
q_1	oil	oil	POP
q_1	il	il	POP
q_1	l	l	POP
q_1	ϵ	ϵ	

Corresponding CFG

Context-free grammar G with $L(G)=\{wcw^R\mid w\in\{a,b\}^*\}.$ Let $G=(V,\Sigma,R,S)$ with

$$V = \{S, a, b, c\}$$

$$\Sigma = \{a, b, c\}$$

$$R = \{S \longrightarrow aSa,$$

$$S \longrightarrow bSb,$$

$$S \longrightarrow c \}$$

PDA: non-deterministic

Automaton M for $L = \{ww^R \mid w \in \{a, b\}^*\}$. Let $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$, with $K = \{q_0, q_1\}, \Sigma = \Gamma = \{a, b\}, F = \{q_1\}$, and Δ consists of the following transitions:

- **1**. $((q_0, a, \epsilon), (q_0, a))$
- 2. $((q_0, b, \epsilon), (q_0, b))$
- **3**. $((q_0, \epsilon, \epsilon), (q_1, \epsilon))$
- 4. $((q_1, a, a), (q_1, \epsilon))$
- 5. $((q_1, b, b), (q_1, \epsilon))$

Compare transition (3) with the earlier deterministic example. In state q_0 , the machine can make a choice: push the next input symbol on the stack, or jump to q_1 without consuming any input.

Semantic automata: beyond regular

Van Benthem's THEOREM: the 1st order definable Q words are precisely the quantifying expressions recognized by permutation-invariant acyclic finite automata.

But \ldots there are Q words that require stronger computational resources.

Example: most A B here we need a stack memory.

INPUT	STACK
$0\ 0\ 1\ 0\ 1\ 1\ 1$	
$0\ 1\ 0\ 1\ 1\ 1$	0
$1 \ 0 \ 1 \ 1 \ 1$	0 0
$0\ 1\ 1\ 1$	0
$1 \ 1 \ 1$	0 0
11	0
1	

Abstract example: $0^n 1^n$

Compare after reading a 1, a finite automaton would have forgotten how many 0's it has seen.

Beyond CFG

CF pumping theorem Let G be a context-free grammar generating an infinite language. Then there is a constant k, depending on G, so that for every string w in L(G) with $|w| \ge k$ it holds that $w = xv_1yv_2z$ with

- ▶ $|v_1v_2| \ge 1$
- $\blacktriangleright |v_1 y v_2| \le k$

$$\blacktriangleright \ w = x v_1^i y v_2^i z \in L(G)$$
, for every $i \geq 0$

This is 2-pumpability.

Example $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free.

Example Patterns of the w^2 type in Dutch/Swiss German (Huijbregts, Shieber):

... dat Jan Marie de kinderen zag leren zwemmen

Mild context-sensitivity

Challenge An emergent thesis underlining the cognitive relevance of the above: 'Human cognitive capacities are constrained by polynomial time computability' (Frixione, Minds and Machines; Szymanyk, etc). The challenge then becomes: Can we step beyond CF without losing the attractive computational properties?

Joshi's program A set of languages \mathcal{L} is mildly context-sensitive iff

- \blacktriangleright *L* contains all CFL
- ▶ *L* recognizes a bounded amount of cross-serial dependencies:

there is $n \ge 2$ such that $\{w^k \mid w \in \Sigma^*\} \in \mathcal{L}$ for all $k \le n$

- **>** The languages in \mathcal{L} are polynomially parsable
- \blacktriangleright The languages in $\mathcal L$ have the constant growth property

Constant growth holds for semilinear languages.

Semilinearity

Parikh mapping Let $X = \{a_1, \ldots, a_n\}$ be an alphabet with some fixed order on the elements. The Parikh mapping $p : X^* \longrightarrow \mathbb{N}^n$ is defined as follows:

▶ for all $w \in X^*$, $p(w) \doteq \langle |w|_{a_1}, \dots, |w|_{a_n} \rangle$

where $|w|_{a_i}$ is the number of occurrences of a_i in w

▶ for all $L \subseteq X^*$, $p(L) \doteq \{p(w) \mid w \in L\}$ is the Parikh image of L

Letter equivalence Two words are l.e. if they contain an equal number of occurrences of each terminal symbol; two languages are l.e. if every string in one is l.e. to a string in the other and v.v.

Semilinearity A language is semilinear iff l.e. to a regular language.

Parikh's theorem All context-free languages are semilinear.

Closure properties

The following are useful tools to abstract away from irrelevant details of the 'linguistic phenomena'.

String homomorphism For two alphabets Σ_1, Σ_2 , a function $f : \Sigma_1^* \longrightarrow \Sigma_2^*$ iff for all $v, w \in \Sigma_1^*$: f(vw) = f(v)f(w).

Note that h is determined by its values on single alphabet symbols. Note also that h is allowed to erase material: for nonempty w, h(w) may be empty.

Closure under homomorphisms given Σ_1, Σ_2 , for every context-free language L_1 over Σ_1 and every homomorphism $f : \Sigma_1^* \longrightarrow \Sigma_2^*$, $h(L_1) = \{h(w) \mid w \in L_1\}$ is a context-free language.

Closure under intersection with regular languages for every context-free language L and every regular language R, $L \cap R$ is a context-free language.

The landscape beyond context-free

Below, from Kallmeyer's book, the hierarchy of mildly context-sensitive formalisms and some characteristic patterns.

2. Dependency structures

Marco Kuhlmann, Dependency Structures and Lexicalized Grammars.

Aim to systematically relate expressivity/complexity of grammar formalisms to structural properties of the dependency graphs induced by the derivations of these formalisms.

Dependency structures trees with a total order on their nodes. Two relations:

- ▶ governance: $u \leq v$, u governs v, v depends on u
- ▶ precedence: $u \leq v$

Visualization

Dependency structures and grammars

Classes

- \blacktriangleright \mathcal{D}_1 projective dependency structures: all yields form an interval
- ▶ D_k dependency structures of bounded degree: measures number of detached parts
- \blacktriangleright \mathcal{D}_{wn} well-nested dependency structures: non-crossing partitions

Below the classes of dependency structures induced by the derivations of a number of grammar formalisms.

formalism	class
Context-free Grammar	\mathcal{D}_1
Linear Context-free Rewriting Systems $ ext{LCFRS}(k)$, also $ ext{MCFG}(k)$	\mathcal{D}_k
Coupled Context-free Grammars $ ext{CCFG}(k)$	$\mathcal{D}_k\cap\mathcal{D}_{wn}$
Tree Adjoining Grammars TAG	$\mathcal{D}_2\cap\mathcal{D}_{wn}$

\mathcal{D}_1 projective dependency structures

K establishes a bijection between D_1 and the set of all treelet-ordered trees (each node annotated with a total order on that node and its children).


```
TREELET-ORDER-COLLECT(u)

1 L \leftarrow \text{NIL}

2 foreach v in order[u]

3 do if v = u

4 then L \leftarrow L \cdot [u]

5 else L \leftarrow L \cdot \text{TREELET-ORDER-COLLECT}(v)

6 return L
```

\mathcal{D}_1 and context-free derivations

A grammar is lexicalized if each rule introduces exactly one terminal (called the anchor of that rule). Example (for $a^n b^n$)

$$S \longrightarrow a \ S \ B \mid a \ B \quad ; \quad B \longrightarrow b$$

Induced dependency structures Let G be a lexicalized CFG and $t \in \operatorname{Term}_{\Sigma(G)}$ a derivation tree. The dependency structure induced by t is the structure $D = (\operatorname{nodes}(t), \trianglelefteq, \preceq)$ where

- $\blacktriangleright u \trianglelefteq v$ iff u dominates v in t
- ▶ $u \leq v$ iff u precedes v in [t] (the evaluation of t in the linearization semantics for G)

Correspondence $\mathcal{D}(CFG) = \mathcal{D}_1$. Derivations of lexicalized CFGs induce projective dependency structures.

\mathcal{D}_1 enumerative combinatorics

The number of projective dependency structures over n nodes is counted by integer sequence https://oeis.org/A006013:

 $1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, \ldots$

with generating formula

$$\binom{3n+1}{n}/(n+1)$$

where $\binom{n}{k}$ (the binomial coefficient) has initial values $\binom{n}{0} = 1$ for all $n \in \mathbb{N}$ and $\binom{0}{k} = 0$ for integers k > 0; the recursive case for n, k > 0 is

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Working session We try to gain a clearer understanding of the combinatorics by recasting D_1 in terms of binary trees.

- step 1: encoding general trees as bintrees
- ▶ step 2: read off projective linearization from bintrees

From general to binary trees

First child-next sibling binary trees We write n'_i for the node of the binary tree *b* corresponding to node n_i of the general tree *t*. The root of *t* is mapped to the root of *b*; then

- ▶ if n_l is the leftmost child of n_k in t, n'_l is the left child of n'_k in b
- ▶ if n_s is the next sibling of n_k in t, n'_s is the right child of n'_k in b

Example writing \Box for empty daughters in the binary representation

Binary trees: semantics

 \boldsymbol{n} node binary trees have nice interpretations, including

- \blacktriangleright Dyck words: well-nested strings of n pairs of parentheses
- Monotonic paths on $n \times n$ grid

Binary trees: enumerative combinatorics

The sequence of Catalan numbers C_n counts the number of *n*-node binary trees:

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1}$$

This is integer sequence http://oeis.org/A000108:

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \ldots$

The recurrence below calculates C_{n+1} in terms of C_n :

$$C_0 = 1$$
 ; $C_{n+1} = \sum_{i=0}^n C_i C_{n-i}$

Challenge Find a recurrence relation for the number of n-node projective dependency structures based on $C_n \ldots$

Binary trees: projective dependency semantics

Relational pseudocode reading off projective dependency structures from an n-node binary tree:

lin Tree ListIn ListOut

with initialization ListIn: 0...(n-1), ListOut: []

- ▶ lin $t_a \ \vec{u} \ (r : \vec{v}) \leftarrow \text{convex} \ \vec{u}$, select $r \ \vec{u} \ \vec{u}'$, lin $t_1 \ \vec{u}' \ \vec{v}$
- $\blacktriangleright \ \text{lin} \ t_b \ (r: \vec{u}) \ (r: \vec{v}) \leftarrow \text{lin} \ t_1 \ \vec{u} \ \vec{v}$
- ▶ lin $t_c \vec{u}' \vec{u}'' (r : \vec{v} \vec{v}') \leftarrow \text{convex } \vec{u}'$, select $r \vec{u}' \vec{u}'''$, lin $t_1 \vec{u}''' \vec{v}$, lin $t_2 \vec{u}'' \vec{v}'$

 \blacktriangleright lin $t_d r r$

Beyond \mathcal{D}_1

Projectivity and beyond:

- > projectivity: every subtree spans an interval
- **>** gap-degree k: every subtree has at most k gaps (=block degree k + 1)
- well-nestedness: disjoint edges must not overlap

Block/gap degree

The block-degree of $S \subseteq A$ wrt a chain $(A; \preceq)$ is the cardinality of S / \equiv_S . \equiv_S coarsest congruence relation on $S: a \equiv_S b$ iff for all $c \in [a, b], c \in S$. Gap degree: block degree minus 1.

Traversal of block-ordered trees

```
BLOCK-ORDER-COLLECT(u)

1 L \leftarrow \text{NIL}; \ calls[u] \leftarrow calls[u] + 1

2 foreach v in order[u][calls[u]]

3 do if v = u

4 then L \leftarrow L \cdot [u]

5 else L \leftarrow L \cdot \text{BLOCK-ORDER-COLLECT}(v)

6 return L
```

Illustration (Correct annotation for node 5 to $\langle 5 \rangle \dots$)

Segmented dependency structures

Definition 4.2.1 Let $D = (V; \trianglelefteq, \preceq)$ be a dependency structure, and let \equiv be a congruence relation on D. The *segmentation* of D by \equiv is the structure $D' := (V; \trianglelefteq, \preceq, R)$, where R is a new ternary relation on V defined as follows:

 $(u, v_1, v_2) \in R \iff v_1 \equiv v_2 \land \forall w \in [v_1, v_2]. w \in \lfloor u \rfloor.$

The elements of the set $V \equiv$ are called the segments of D'.

Linearization

For u a node in a segmented dependency structure D, the set of blocks of u is the set $\lfloor u \rfloor / \equiv_u$.

Definition 4.2.3 Let T be a tree, and let $k \in \mathbb{N}$. A *linearization* of T with k components is a k-tuple $L = \langle \vec{u_i} \mid i \in [k] \rangle$ such that $\vec{u} := \vec{u_1} \cdots \vec{u_k}$ is a list of the nodes of T in which each node occurs exactly once. The segmented dependency structure *induced* by a linearization L of T is the structure in which the governance relation is isomorphic to T, the precedence relation is isomorphic to \vec{u} , and the segments are isomorphic to the tuple components of L.

Correspondence (compare: treelet-ordered trees and projective *D*)

- ▶ for every segmented D there is exactly one block-ordered tree T such that D = dep(T).
- ▶ if T is a block-ordered tree in which each node is annotated with at most k lists, then dep(T) is a segmented dependency structure with block degree at most k

Dependency structure algebras

tbd

Well-nestedness

D is well-nested if for all edges $v_1 \rightarrow v_2$, $w_1 \rightarrow w_2$ in D it holds that

if $v_1 \rightarrow v_2$, $w_1 \rightarrow w_2$ overlap, then $v_1 \trianglelefteq w_1$ or $w_1 \trianglelefteq v_1$

 \blacktriangleright D_1 ill-nested: edges $1 \rightarrow 3$ and $4 \rightarrow 2$ disjoint, overlapping;

▶ D_2 well-nested: edges $0 \rightarrow 4$ and $2 \rightarrow 5$ overlap, but $0 \leq 2$

Well-nestedness and non-crossing partitions

A dependency structure D is well-nested iff for every node u of D, the set of constituents of u is non-crossing wrt the chain $(\lfloor u \rfloor; \preceq_{\lfloor u \rfloor})$

A partition Π on a chain $(A; \preceq)$ is non-crossing if whenever there exist $a_1 \prec b_1 \prec a_2 \prec b_2$ in A such that a_1, a_2 belong to the same class of Π and b_1, b_2 belong to the same class of Π , then these two classes coincide.

The set of constituents of a node u in D is $\{\{u\} \cup \{\lfloor v \rfloor \mid u \to v\}\}$.

Non-crossing partitions

Partitions induced by the constituents of node 0 in D_1 and D_2

 $\{\{0\},\{1,3,5\},\{2,4\}\} \ \ \{\{0\},\{1,2,5\},\{3,4\}\}$

