
MCFGs k-MCFG induces Dk

MCFGs and D
k

Two infinite hierarchies

Gijs Wijnholds & Michiel de Winter

LMNLP, 2012

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Outline

1 MCFGs
Grammar
Generative Capacity
Automaton
Lexicalization of MCFG

2

k-MCFG induces Dk

Derivation and String Algebras
Linearization and Dependency Semantics
Block-ordered trees

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Introduction

Multiple Context Free Grammars are like Context Free
Grammars, but they act on tuples of strings.

The max. number of tuples acted upon in such a grammar
provides a measure that invokes an infinite hierarchy in the
sense of generative capacity and computational complexity.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

Grammar

Definition

A Multiple Context Free Grammar is a 6-tuple (N,T ,F ,P ,S ,dim)
such that:

N is a finite set of non-terminal symbols, and dim assigns a
dimension to every non-terminal,

T is a finite set of terminal symbols,

F is a finite set of mcf-functions,

P is a finite set of production rules of the form
A

0

→ f [A
1

, ...,Ak] with k ≥ 0
f ∶ (T ∗)dim(A1

) × ... × (T ∗)dim(Ak) → (T ∗)dim(A0

) and f ∈ F .
S ∈ N is a distinguished start symbol such that dim(S) = 1.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

mcf-function

Definition

f is a mcf -function if:

f (�→x
1

, ...,�→xk) = ↵1

�
1

...↵n�n where ↵i ∈ T ∗ and �j a variable
from some xm.

Each variable xij from some vector xm occurs at most (or
exactly) once in the right hand side (linearity)

Definition

The dimension of a MCFG G is given by the maximal dimension of
the non-terminals, i.e. max(dim(N)). We call a MCFG of
dimension k a k-MCFG.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

Example & Notation: {anbncndn�n ≥ 1}
S → f

1

[A] A→ f

2

[A] A→ f

3

[]
f

1

[�X ,Y �] = �XY � f

2

[�X ,Y �] = �aXb, cYd� f

3

[] = �ab, cd�

Example run:

S → f

1

[A]→ f

1

[f
2

[A]]→ f

1

[f
2

[f
3

[]]]
= f

1

[f
2

[�ab, cd�]] = f
1

[�aabb, ccdd�] = �aabbccdd�.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

Example & Notation: {anbncndn�n ≥ 1}
S → f

1

[A] A→ f

2

[A] A→ f

3

[]
f

1

[�X ,Y �] = �XY � f

2

[�X ,Y �] = �aXb, cYd� f

3

[] = �ab, cd�
Example run:

S → f

1

[A]→ f

1

[f
2

[A]]→ f

1

[f
2

[f
3

[]]]
= f

1

[f
2

[�ab, cd�]] = f
1

[�aabb, ccdd�] = �aabbccdd�.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

sRCG notation

In equivalent notation:

S(XY )→ A(X ,Y )
A(aXb, cYd)→ A(X ,Y )

A(ab, cd)→ ✏

Example run:

S(aabbccdd)→ A(aabb, ccdd)→ A(ab, cd)→ ✏.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

sRCG notation

In equivalent notation:

S(XY )→ A(X ,Y )
A(aXb, cYd)→ A(X ,Y )

A(ab, cd)→ ✏

Example run:

S(aabbccdd)→ A(aabb, ccdd)→ A(ab, cd)→ ✏.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

String language

Definition

Let G = (N,T ,F ,P ,S) be a MCFG .

For every A ∈ N:
1 For every (A→ f []) ∈ P ∶ f [] ∈ yield(A),
2 For every (A→ f [A

1

, ...,Ak]) ∈ P(k ≥ 1) and all tuples
⌧
1

∈ yield(A
1

)...⌧k ∈ yield(Ak) ∶ f [⌧1, ..., ⌧k] ∈ yield(A).
3 Nothing else is in yield(A).

The string language of G is L(G) = {w ��w� ∈ yield(S)}.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Grammar

Closure Properties

Theorem

For every k, the class of k-MCFLs is closed under:

substitution

homomorphism and inverse homomorphism

union,concatenation and Kleene closure

intersection with a regular language

So the class of k-MCFLs forms a substitution closed full Abstract

Family of Languages.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

Mild Context Sensitivity

Every MCFL is semilinear,

The (fixed) recognition problem for k-MCFG s is polynomial,

countk = {an
1

...ank �n ≥ 0} ∈ (k − 1)-MCFL for k odd,(k − 2)-MCFL o.w.

crossk = {an
1

b

m
1

..., ankb
m
k �l , k ≥ 0} ∈ k-MCFL,

copyk = {wk �w ∈ ⌃∗} ∈ k-MCFL.

So, mild context-sensitivity?

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

Mild Context Sensitivity

Every MCFL is semilinear,

The (fixed) recognition problem for k-MCFG s is polynomial,

countk = {an
1

...ank �n ≥ 0} ∈ (k − 1)-MCFL for k odd,(k − 2)-MCFL o.w.

crossk = {an
1

b

m
1

..., ankb
m
k �l , k ≥ 0} ∈ k-MCFL,

copyk = {wk �w ∈ ⌃∗} ∈ k-MCFL.

So, mild context-sensitivity?

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

MIX is a MCFL

MIXk = {w ∈ {a1, ..., ak}��a1�w = ... = �ak �w}. MIX

3

∈ 2-MCFL

(Salvati 2011). General case: can show with shu✏e closure
that MIXk ∈ k-MCFL.

This is bad, we do not want completely free word order.

(Kanazawa, 2009,2010) discusses well-nested MCFG , which
also is capable of describing countk , crossk , copyk . It is not
known (but suspected) that MIX is not a well-nested MCFL.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

MIX is a MCFL

MIXk = {w ∈ {a1, ..., ak}��a1�w = ... = �ak �w}. MIX

3

∈ 2-MCFL

(Salvati 2011). General case: can show with shu✏e closure
that MIXk ∈ k-MCFL.

This is bad, we do not want completely free word order.

(Kanazawa, 2009,2010) discusses well-nested MCFG , which
also is capable of describing countk , crossk , copyk . It is not
known (but suspected) that MIX is not a well-nested MCFL.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

The pumping lemma for k-MCFLs is weak in the sense that it
is existential:

Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a

2k-pumpable string w ∈ L.
In contrast, the pumping lemma for well-nested MCFL is
universal:

Theorem

(Kanazawa,2010) For any MCFLwn L, all but finitely many strings

w ∈ L are 2k-pumpable.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

The pumping lemma for k-MCFLs is weak in the sense that it
is existential:

Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a

2k-pumpable string w ∈ L.

In contrast, the pumping lemma for well-nested MCFL is
universal:

Theorem

(Kanazawa,2010) For any MCFLwn L, all but finitely many strings

w ∈ L are 2k-pumpable.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Generative Capacity

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

The pumping lemma for k-MCFLs is weak in the sense that it
is existential:

Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a

2k-pumpable string w ∈ L.
In contrast, the pumping lemma for well-nested MCFL is
universal:

Theorem

(Kanazawa,2010) For any MCFLwn L, all but finitely many strings

w ∈ L are 2k-pumpable.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Automaton

MCFL=OUT(DTWT) (D.J.Weir)

The class of string languages that can be described by MCFG s are
also characterized by Deterministic Tree Walking Transducers:

Definition

A DTWT is a 6-tuple (Q,G ,�, �,q
0

,F ) where:
Q is a finite set of states,

G = (N,T ,S ,R) is a CFG without ✏-rules,

� is a finite set of output symbols,

� ∶ Q × (N ∪T )→ Q × {stay ,up} ∪ {d(k)�k ≥ 1} ×�∗ is the
transition function,

q

0

is the initial state,

F ⊆ Q is the set of final states.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Automaton

A DTWT for {anbncndn�n ≥ 1}
Consider M = ({q

0

,q
1

,q
2

,q
3

},G ,{a,b, c ,d}, �,q
0

,{q
3

}) where
G = ({S ,A},{e},S ,{S → A,A→ A,A→ e}) and:
�(q

0

,S) = (q
0

,d(1), ✏) �(q
2

,A) = (q
2

,d(1), c)
�(q

0

,A) = (q
0

,d(1), a) �(q
2

, e) = (q
3

,up, ✏)
�(q

0

, e) = (q
1

,up, ✏) �(q
3

,S) = (q
3

,up, ✏)
�(q

1

,S) = (q
2

,d(1), ✏) �(q
3

,A) = (q
3

,up,d)
�(q

1

,A) = (q
1

,up,b)

Exercise: Draw the derivation tree + traversal for aabbccdd .

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Automaton

A DTWT for {anbncndn�n ≥ 1}
Consider M = ({q

0

,q
1

,q
2

,q
3

},G ,{a,b, c ,d}, �,q
0

,{q
3

}) where
G = ({S ,A},{e},S ,{S → A,A→ A,A→ e}) and:
�(q

0

,S) = (q
0

,d(1), ✏) �(q
2

,A) = (q
2

,d(1), c)
�(q

0

,A) = (q
0

,d(1), a) �(q
2

, e) = (q
3

,up, ✏)
�(q

0

, e) = (q
1

,up, ✏) �(q
3

,S) = (q
3

,up, ✏)
�(q

1

,S) = (q
2

,d(1), ✏) �(q
3

,A) = (q
3

,up,d)
�(q

1

,A) = (q
1

,up,b)
Exercise: Draw the derivation tree + traversal for aabbccdd .

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Introduction

Lexicalization is important for our purposes because dependency
structures correspond precisely to lexicalised grammars.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Substitution

Given some rule A

0

(�→↵
0

)→ A

1

(�→↵
1

)...An(�→↵n), we substitute Ak by

considering all rules Ak(�→�0)→ � and replacing the variables of �→↵k

in ↵
0

by their corresponding chunks in �
0

, and replacing Ak(�→↵k)
by �:

A(X ,YZ)→ B(X ,Y )D(Z)
B(aX ,bY )→ C(X ,Y )⇓

A(aX ,bYZ)→ C(X ,Y )D(Z)
This preserves string language and does not a↵ect dimension.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Elimination of left-recursion

Given left-recursive rules A
0

(�→↵
0

)→ A

0

(�→�
1

)...An(�→↵n) and other

rules A
0

(�→�
0

)→ �, we eliminate left-recursion by choosing a fresh
non-terminal B with dim(B) = dim(A

0

) and for each of the
left-recursive rules:

1 Add the rules B(�→↵
0

)→ A

1

(�→↵
1

)...An(�→↵n)B(�→�1) and
B

0

(�→↵′
0

)→ A

1

(�→↵
1

)...An(�→↵n)
where ↵′

0

= ↵
0

�↵
1

.

2 Add the rule A

0

(�′
0

)→ �B(�
1

) where �′
0

= �
0

+ +�
1

(variables
inserted).

3 Remove the left-recursive rule.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Example

A(XY ,Z)→ A(X ,Z)C(Y )
A(X ,Y )→ D(X ,Y )

A(X ,YZ)→ E(X ,Y ,Z)⇓
B

′(X , ✏)→ C(X )
B

′(XY ,Z)→ C(Y )B ′(X ,Z)
A(XT

1

,T
2

Y )→ D(X ,Y )B ′(T
1

,T
2

)
A(XT

1

,T
2

YZ)→ E(X ,Y ,Z)B ′(T
1

,T
2

)
A(X ,Y )→ D(X ,Y )

A(X ,YZ)→ E(X ,Y ,Z)
Preserves string language and dimension.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Algorithm

On a MCFG G with ✏ ∉ L(G), we lexicalize it by the following
algorithm:

1 Order the clauses, say {A
1

, ...,An},
2 Ensure (with substitution) that if

Aj(↵1

, ...,↵m)→ Ak(X1

, ...,Xn)�, j ≤ k ,
3 Eliminate left-recursive clauses Ak → Ak�, thereby introducing

new clauses Bk ,
4 Lexicalize the clauses, starting with An−1 and ending with A

1

,
5 Lexicalize the Bk clauses,
6 Add a new start clause S

′(X )→ S(X ).
The construction only uses substitution and elimination of
left-recursive rules, and hence preserves both string language and
dimension.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Example

S(XYZ)→ A(X ,Z)B(Y )
A(X ,YZ)→ A(X ,Y )C(Z)
A(X ,Y )→ D(X )E(Y )
B(b)→ ✏
C(c)→ ✏
D(d)→ ✏
E(e)→ ✏

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Result

S

′(X )→ S(X )
S(dYeU)→ C(U)B(Y )
S(dXYeZ)→ B

′(X ,Z)B(Y )
A(dX , eY )→ B

′(X ,Y )
A(d , e)→ ✏
B

′(X ,Yc)→ B

′(X ,Y )
B

′(✏, c)→ ✏
B(b)→ ✏
C(c)→ ✏
D(d)→ ✏
E(e)→ ✏

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Lexicalization of MCFG

Some questions

1 A DTWT takes a CFG G and produces a MCFL L using the
derivation trees of G . Is there a relation with dependency
structures? Not trivial, because DTWT just produce string
languages, unknown whether the derivation trees of MCFG s
have a connection with configurations of a DTWT .

2

MIXk is a shu✏e language (see Bergland et al. 2011,Salvati
2011). Suspicion: SL ⊂MCFL, SL �MCFL.
SL ∧ RL (shu✏e languages intersected with regular languages)
contain countk , crossk ,MIXk but not copyk . Is there a relation
with MCFL −MCFLwn and LG?

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Introduction

MCFG s induce exactly the dependency structures of bounded
degree. More specifically, the dimension k of some MCFG G

corresponds to the maximal block degree of the induced
dependency structure.

In the case of CFG , the induction was quite simple: given a
derivation tree t, the induced dependency structure is simply
an ordering of the nodes v in t with respect to the string
position of the anchor produced by v .

Here, we will show how to construct a derivation algebra
T

⌃(G) for a MCFG G , and define linearization and
dependency semantics.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Derivation Algebra

Definition

Let G = (N,T ,F ,P ,S ,dim) be an MCFG . Define ⌃(G) to be the
N-sorted set given by P , where

Type

⌃(G)(A→ f [A
1

, ...,Am]) = A1

× ... ×Am → A.

The derivation algebra of G is defined as the term algebra T

⌃(G)
over ⌃(G).

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Example

Consider the grammar

S → f

1

[A] f

1

[�X �] = �Xb�
S → f

2

[A,B] f

2

[�X �, �YZ �] = �XYbZ �
A→ f

3

[] f

3

[] = �a�
B → f

4

[A,B] f

4

[�X �, �YZ �] = �XY ,bZ �
B → f

5

[A] f

5

[�X �] = �X ,b�.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Example

Then ⌃(G) = {
(S → f

1

[A]) ∶ A→ S(S → f

2

[A,B]) ∶ A ×B → S(A→ f

3

[]) ∶ A(B → f

4

[A,B]) ∶ A ×B → B(B → f

5

[A]) ∶ A→ B}.

And
S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]
is the tree representation of some
term in T

⌃(G).

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Example

Then ⌃(G) = {
(S → f

1

[A]) ∶ A→ S(S → f

2

[A,B]) ∶ A ×B → S(A→ f

3

[]) ∶ A(B → f

4

[A,B]) ∶ A ×B → B(B → f

5

[A]) ∶ A→ B}.

And
S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]
is the tree representation of some
term in T

⌃(G).

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

String Algebra

Kuhlmann’s way of defining the string language of an MCFG :

Definition

Let G = (N,T ,F ,P ,S ,dim) be an MCFG . The string algebra for
G is the ⌃(G)-algebra ⇥ with:

dom(⇥)A = (T ∗)dim(A) for all A ∈ N.

For each production rule p = A→ f [A
1

, ...,Am] with
f ∶∶ k

1

× ... × km → k and body �→� :
fp(�→↵1

, ...,�→↵m) =�→� [xij�↵ij] for xij the corresponding variable
for ↵ij in

�→↵i .

The string language of G is
L(G) ∶= {�→a �∃t ∈ T

⌃(G),S ⋅ ∶ ��→a � ∈ �t�⇥}
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]
f

2

[f
3

[], f
4

[f
3

[], f
5

[f
3

[]]]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
�a�

f

2

[f
3

[], f
4

[f
3

[], f
5

[�a�]]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] �a,b�

f

2

[f
3

[], f
4

[f
3

[], �a,b�]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
�a� �a,b�

f

2

[f
3

[], f
4

[�a�, �a,b�]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] �aa,bb�

f

2

[f
3

[], �aa,bb�]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

S → f

2

[A,B]
�a� �aa,bb�

f

2

[�a�, �aa,bb�]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Derivation and String Algebras

Reading o↵ a string

Consider the running example:

�aaabbb�

�aaabbb�
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearization Semantics

Kuhlmann first gets rid so-called non-essential concatenation
functions, i.e.:

✏-rules. Example: A(b, ✏)→ ✏.
Ill-ordered rules. Example: A(XY )→ B(Y )C(X ).

Kuhlmann does this by relabelling ⇒ there are also normal
form algorithms for this (Kallmeyer, 7.2)

Lemma

(Kuhlmann, lemma 6.2.1) For each lexicalized MCFG G, there is

an equivalent lexicalized MCFG G’ such that the derivation trees of

G and G

′
are isomorphic modulo relabelling, the string semantics

are equal, and G’ does not contain useless, ill-ordered, or ✏-rules.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Definition

Let G = (N,T ,F ,P ,S ,dim) be an MCFG . The linearization
algebra for G is the ⌃(G)-algebra ⇥ with:

dom(⇥)A = ((N∗)+)dim(A) for all A ∈ N.

For each production rule p = A→ f [A
1

, ...,Am] with
f ∶∶ k

1

× ... × km → k ,anchor a and body �→� :
fp(�→↵1

, ...,�→↵m) =�→� [a�✏][xij�pfxi(↵ij)] for Xij the
corresponding variable for ↵ij in

�→↵i and pfxi is the string
homomorphism defined by pfxi(u) = i ○ u.
The linearization language of G is
⇤(G) ∶= {�→u �∃t ∈ T

⌃(G),S ∶ ��→u � ∈ �t�⇥}.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]
f

2

[f
3

[], f
4

[f
3

[], f
5

[f
3

[]]]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
�✏�

f

2

[f
3

[], f
4

[f
3

[], f
5

[�✏�]]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] �1, ✏�

f

2

[f
3

[], f
4

[f
3

[], �1, ✏�]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
�✏� �1, ✏�

f

2

[f
3

[], f
4

[�✏�, �1, ✏�]]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
A→ f

3

[] �1 ⋅ 21, ✏ ⋅ 2�

f

2

[f
3

[], �1 ⋅ 21, ✏ ⋅ 2�]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

S → f

2

[A,B]
�✏� �1 ⋅ 21, ✏ ⋅ 2�

f

2

[�✏�, �1 ⋅ 21, ✏ ⋅ 2�]
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

�1 ⋅ 21 ⋅ 221 ⋅ ✏ ⋅ 2 ⋅ 22�

�1 ⋅ 21 ⋅ 221 ⋅ ✏ ⋅ 2 ⋅ 22�
Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Dependency Semantics

Definition

Induced dependency structures Let G be an MCFG and let
t ∈ T

⌃(G). The dependency structure induced by t is the
segmented structure D ∶= (nod(t),�,�,≡) with:

u � v i↵ u dominates v in t,

u � v i↵ u precedes v in �t�L,
u ≡ v i↵ u and v appear in the same component of �t�L.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Computing a dependency structure

Running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]

Dependency structure:

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Linearization and Dependency Semantics

Computing a dependency structure

Running example:

S → f

2

[A,B]
A→ f

3

[] B → f

4

[A,B]
A→ f

3

[] B → f

5

[A]
A→ f

3

[]

Dependency structure:

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Block-ordered trees

Block-order collect (again)

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Block-ordered trees

Relation to block-ordered trees

In the case of block-ordered trees, we go over a node i times,
considering every j-th element of the i-th tuple. This is similar
to the semantics for the j-th variable of the i-th component in
an mcf -function. Hence, we obtain the following result:

Theorem

Kuhlmann, 6.2.1 ∀k ∈ N ∶ D(k-MCFG) = Dk .

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk



MCFGs k-MCFG induces Dk

Block-ordered trees

Exercises

Give the derivation tree + corresponding dependency
structure for aabbccdd using the (lexicalized version of the)
grammar given for {anbncndn}.
Draw all possible dependency structures in D

3

with 4 nodes.

Gijs Wijnholds & Michiel de Winter

MCFGs and Dk


	MCFGs
	Grammar
	Generative Capacity
	Automaton
	Lexicalization of MCFG

	k-MCFG induces Dk
	Derivation and String Algebras
	Linearization and Dependency Semantics
	Block-ordered trees


