MCFGs and D_k Two infinite hierarchies

Gijs Wijnholds & Michiel de Winter

LMNLP, 2012

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Gijs Wijnholds & Michiel de Winter

Outline

- Grammar
- Generative Capacity
- Automaton
- Lexicalization of MCFG
- k-MCFG induces D_k
 - Derivation and String Algebras
 - Linearization and Dependency Semantics
 - Block-ordered trees

Introduction

- Multiple Context Free Grammars are like Context Free Grammars, but they act on *tuples* of strings.
- The max. number of tuples acted upon in such a grammar provides a measure that invokes an infinite hierarchy in the sense of generative capacity and computational complexity.

-

MCEGs

Grammar

Grammar

Definition

A Multiple Context Free Grammar is a 6-tuple (N, T, F, P, S, dim) such that:

- *N* is a finite set of non-terminal symbols, and *dim* assigns a dimension to every non-terminal,
- T is a finite set of terminal symbols,
- F is a finite set of mcf-functions,
- *P* is a finite set of production rules of the form $A_0 \rightarrow f[A_1, ..., A_k]$ with $k \ge 0$ $f: (T^*)^{dim(A_1)} \times ... \times (T^*)^{dim(A_k)} \rightarrow (T^*)^{dim(A_0)}$ and $f \in F$.

• $S \in N$ is a distinguished start symbol such that dim(S) = 1.

Grammar

mcf-function

Definition

- f is a *mcf*-function if:
 - f(x₁,...,x_k) = α₁β₁...α_nβ_n where α_i ∈ T* and β_j a variable from some x_m.
 - Each variable x_{ij} from some vector x_m occurs at most (or exactly) once in the right hand side (linearity)

Definition

The dimension of a *MCFG G* is given by the maximal dimension of the non-terminals, i.e. max(dim(N)). We call a *MCFG* of dimension k a k-MCFG.

k-MCFG induces *D_k* 00000 00000 000

Example & Notation: $\{a^n b^n c^n d^n | n \ge 1\}$

$$S \to f_1[A]$$
 $A \to f_2[A]$ $A \to f_3[]$

 $f_1[\langle X, Y \rangle] = \langle XY \rangle \quad f_2[\langle X, Y \rangle] = \langle aXb, cYd \rangle \quad f_3[] = \langle ab, cd \rangle$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Gijs Wijnholds & Michiel de Winter

k-MCFG induces *D_k* 00000 00000

Example & Notation: $\{a^n b^n c^n d^n | n \ge 1\}$

$$S \to f_1[A]$$
 $A \to f_2[A]$ $A \to f_3[]$

 $f_1[\langle X, Y \rangle] = \langle XY \rangle \quad f_2[\langle X, Y \rangle] = \langle aXb, cYd \rangle \quad f_3[] = \langle ab, cd \rangle$

Example run:

 $S \to f_1[A] \to f_1[f_2[A]] \to f_1[f_2[f_3[]]]$ $= f_1[f_2[\langle ab, cd \rangle]] = f_1[\langle aabb, ccdd \rangle] = \langle aabbccdd \rangle.$

・ロト ・母 ト ・目 ト ・目 ・ つへぐ

Gijs Wijnholds & Michiel de Winter

MCFGs and D_k

sRCG notation

In equivalent notation:

$$S(XY) \rightarrow A(X, Y)$$

$$A(aXb, cYd) \rightarrow A(X, Y)$$

$$A(ab, cd) \rightarrow \epsilon$$

Gijs Wijnholds & Michiel de Winter

sRCG notation

In equivalent notation:

$$S(XY) \rightarrow A(X, Y)$$

$$A(aXb, cYd) \rightarrow A(X, Y)$$

$$A(ab, cd) \rightarrow \epsilon$$

Example run:

 $S(aabbccdd) \rightarrow A(aabb, ccdd) \rightarrow A(ab, cd) \rightarrow \epsilon$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Gijs Wijnholds & Michiel de Winter

String language

Definition

Let
$$G = (N, T, F, P, S)$$
 be a *MCFG*.

• For every
$$A \in N$$
:

- For every $(A \rightarrow f[]) \in P : f[] \in yield(A)$,
- **②** For every $(A \rightarrow f[A_1, ..., A_k]) \in P(k \ge 1)$ and all tuples $\tau_1 \in yield(A_1)...\tau_k \in yield(A_k) : f[\tau_1, ..., \tau_k] \in yield(A).$
- Nothing else is in yield(A).
- The string language of G is $L(G) = \{w | \langle w \rangle \in yield(S)\}.$

Closure Properties

Theorem

For every k, the class of k-MCFLs is closed under:

- substitution
- homomorphism and inverse homomorphism
- union, concatenation and Kleene closure
- intersection with a regular language

So the class of k-MCFLs forms a substitution closed full Abstract Family of Languages.

MCFGs and D_k

k-MCFG induces *D_k* 00000 00000 000

Generative Capacity

Mild Context Sensitivity

- Every MCFL is semilinear,
- The (fixed) recognition problem for k-MCFGs is polynomial,
- $count_k = \{a_1^n \dots a_k^n | n \ge 0\} \in (k-1)$ -MCFL for k odd, (k-2)-MCFL o.w.
- $cross_k = \{a_1^n b_1^m ..., a_k^n b_k^m | l, k \ge 0\} \in k\text{-MCFL},$
- $copy_k = \{w^k | w \in \Sigma^*\} \in k\text{-MCFL}.$

Gijs Wijnholds & Michiel de Winter

Mild Context Sensitivity

- Every MCFL is semilinear,
- The (fixed) recognition problem for k-MCFGs is polynomial,
- $count_k = \{a_1^n \dots a_k^n | n \ge 0\} \in (k-1)$ -MCFL for k odd, (k-2)-MCFL o.w.
- $cross_k = \{a_1^n b_1^m ..., a_k^n b_k^m | l, k \ge 0\} \in k\text{-MCFL},$
- $copy_k = \{w^k | w \in \Sigma^*\} \in k\text{-MCFL}.$

So, mild context-sensitivity?

MIX is a MCFL

- MIX_k = {w ∈ {a₁,..., a_k}||a₁|_w = ... = |a_k|_w}. MIX₃ ∈ 2-MCFL (Salvati 2011). General case: can show with shuffle closure that MIX_k ∈ k-MCFL.
- This is bad, we do not want completely free word order.

MIX is a MCFL

- MIX_k = { w ∈ {a₁,..., a_k} ||a₁|_w = ... = |a_k|_w}. MIX₃ ∈ 2-MCFL (Salvati 2011). General case: can show with shuffle closure that MIX_k ∈ k-MCFL.
- This is bad, we do not want completely free word order.
- (Kanazawa, 2009,2010) discusses well-nested *MCFG*, which also is capable of describing *count_k*, *cross_k*, *copy_k*. It is not known (but suspected) that *MIX* is not a well-nested *MCFL*.

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Gijs Wijnholds & Michiel de Winter

イロト 不得 とくほと くほとう ほ

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

• The pumping lemma for *k*-*MCFL*s is weak in the sense that it is existential:

Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a 2k-pumpable string $w \in L$.

MCFGs and D_k

Beyond MCFL

We saw the definition of k-pumpability for a string, but:

• The pumping lemma for *k*-*MCFL*s is weak in the sense that it is existential:

Theorem

(Seki et al. 1991) For any infinite MCFL L, there exists a 2k-pumpable string $w \in L$.

 In contrast, the pumping lemma for well-nested MCFL is universal:

Theorem

(Kanazawa,2010) For any MCFL_{wn} L, all but finitely many strings $w \in L$ are 2k-pumpable.

MCFL=OUT(DTWT) (D.J.Weir)

The class of string languages that can be described by *MCFG*s are also characterized by Deterministic Tree Walking Transducers:

Definition

- A DTWT is a 6-tuple $(Q, G, \Delta, \delta, q_0, F)$ where:
 - Q is a finite set of states,
 - G = (N, T, S, R) is a CFG without ϵ -rules,
 - Δ is a finite set of output symbols,
 - $\delta: Q \times (N \cup T) \rightarrow Q \times \{stay, up\} \cup \{d(k) | k \ge 1\} \times \Delta^*$ is the transition function,
 - q₀ is the initial state,
 - $F \subseteq Q$ is the set of final states.

k-MCFG induces *D_k* 00000 00000 000

A DTWT for $\{a^n b^n c^n d^n | n \ge 1\}$

Consider $M = (\{q_0, q_1, q_2, q_3\}, G, \{a, b, c, d\}, \delta, q_0, \{q_3\})$ where $G = (\{S, A\}, \{e\}, S, \{S \rightarrow A, A \rightarrow A, A \rightarrow e\})$ and:

$$\begin{split} \delta(q_0, S) &= (q_0, d(1), \epsilon) & \delta(q_2, A) = (q_2, d(1), c) \\ \delta(q_0, A) &= (q_0, d(1), a) & \delta(q_2, e) = (q_3, up, \epsilon) \\ \delta(q_0, e) &= (q_1, up, \epsilon) & \delta(q_3, S) = (q_3, up, \epsilon) \\ \delta(q_1, S) &= (q_2, d(1), \epsilon) & \delta(q_3, A) = (q_3, up, d) \\ \delta(q_1, A) &= (q_1, up, b) \end{split}$$

Gijs Wijnholds & Michiel de Winter

k-MCFG induces *D_k* 00000 00000

A DTWT for $\{a^n b^n c^n d^n | n \ge 1\}$

Consider $M = (\{q_0, q_1, q_2, q_3\}, G, \{a, b, c, d\}, \delta, q_0, \{q_3\})$ where $G = (\{S, A\}, \{e\}, S, \{S \rightarrow A, A \rightarrow A, A \rightarrow e\})$ and:

$$\begin{split} &\delta(q_0, S) = (q_0, d(1), \epsilon) & \delta(q_2, A) = (q_2, d(1), c) \\ &\delta(q_0, A) = (q_0, d(1), a) & \delta(q_2, e) = (q_3, up, \epsilon) \\ &\delta(q_0, e) = (q_1, up, \epsilon) & \delta(q_3, S) = (q_3, up, \epsilon) \\ &\delta(q_1, S) = (q_2, d(1), \epsilon) & \delta(q_3, A) = (q_3, up, d) \\ &\delta(q_1, A) = (q_1, up, b) \end{split}$$

Exercise: Draw the derivation tree + traversal for *aabbccdd*.

Lexicalization of MCFG

Introduction

Lexicalization is important for our purposes because dependency structures correspond precisely to lexicalised grammars.

Gijs Wijnholds & Michiel de Winter MCFGs and D_k ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = めんの

Substitution

Given some rule $A_0(\overrightarrow{\alpha_0}) \rightarrow A_1(\overrightarrow{\alpha_1})...A_n(\overrightarrow{\alpha_n})$, we substitute A_k by considering all rules $A_k(\overrightarrow{\beta_0}) \rightarrow \gamma$ and replacing the variables of $\overrightarrow{\alpha_k}$ in α_0 by their corresponding chunks in β_0 , and replacing $A_k(\overrightarrow{\alpha_k})$ by γ :

$$A(X, YZ) \rightarrow B(X, Y)D(Z)$$
$$B(aX, bY) \rightarrow C(X, Y)$$
$$\downarrow$$
$$A(aX, bYZ) \rightarrow C(X, Y)D(Z)$$

This preserves string language and does not affect dimension.

MCFGs 000000 000 00000000

k-MCFG induces *D_k* 00000 00000 000

Lexicalization of MCFG

Elimination of left-recursion

Given left-recursive rules $A_0(\overrightarrow{\alpha_0}) \rightarrow A_0(\overrightarrow{\delta_1})...A_n(\overrightarrow{\alpha_n})$ and other rules $A_0(\overrightarrow{\beta_0}) \rightarrow \gamma$, we eliminate left-recursion by choosing a fresh non-terminal *B* with $dim(B) = dim(A_0)$ and for each of the left-recursive rules:

- Add the rules $B(\overrightarrow{\alpha_0}) \to A_1(\overrightarrow{\alpha_1})...A_n(\overrightarrow{\alpha_n})B(\overrightarrow{\delta_1})$ and $B_0(\overrightarrow{\alpha'_0}) \to A_1(\overrightarrow{\alpha_1})...A_n(\overrightarrow{\alpha_n})$ where $\alpha'_0 = \alpha_0/\alpha_1$.
- ② Add the rule $A_0(\beta'_0) \rightarrow \gamma B(\beta_1)$ where $\beta'_0 = \beta_0 + +\beta_1$ (variables inserted).
- 8 Remove the left-recursive rule.

000 00 00000000

MCFGs

Lexicalization of MCFG

Example

$$\begin{array}{c} A(XY,Z) \rightarrow A(X,Z)C(Y) \\ A(X,Y) \rightarrow D(X,Y) \\ A(X,YZ) \rightarrow E(X,Y,Z) \\ \downarrow \\ B'(X,\epsilon) \rightarrow C(X) \\ B'(XY,Z) \rightarrow C(Y)B'(X,Z) \\ A(XT_1,T_2Y) \rightarrow D(X,Y)B'(T_1,T_2) \\ A(XT_1,T_2YZ) \rightarrow E(X,Y,Z)B'(T_1,T_2) \\ A(X,Y) \rightarrow D(X,Y) \\ A(X,YZ) \rightarrow E(X,Y,Z) \end{array}$$

Preserves string language and dimension.

Gijs Wijnholds & Michiel de Winter

Algorithm

On a *MCFG G* with $\epsilon \notin L(G)$, we lexicalize it by the following algorithm:

- Order the clauses, say $\{A_1, ..., A_n\}$,
- ② Ensure (with substitution) that if $A_j(\alpha_1, ..., \alpha_m) \rightarrow A_k(X_1, ..., X_n)\gamma, j \le k$,
- Eliminate left-recursive clauses $A_k \rightarrow A_k \gamma$, thereby introducing new clauses B_k ,
- **(**) Lexicalize the clauses, starting with A_{n-1} and ending with A_1 ,
- **\bigcirc** Lexicalize the B_k clauses,
- Add a new start clause $S'(X) \rightarrow S(X)$.

The construction only uses substitution and elimination of left-recursive rules, and hence preserves both string language and dimension.

Gijs Wijnholds & Michiel de Winter

MCFGs

Lexicalization of MCFG

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

 $S(XYZ) \rightarrow A(X,Z)B(Y)$ $A(X, YZ) \rightarrow A(X, Y)C(Z)$ $A(X, Y) \rightarrow D(X)E(Y)$ $B(b) \rightarrow \epsilon$ $C(c) \rightarrow \epsilon$ $D(d) \rightarrow \epsilon$ $E(e) \rightarrow \epsilon$

Gijs Wijnholds & Michiel de Winter

MCFGs 000000 000 000

00000000

Lexicalization of MCFG

k-MCFG induces *D_k* 00000 00000 000

Result

$$S'(X) \rightarrow S(X)$$

$$S(dYeU) \rightarrow C(U)B(Y)$$

$$S(dXYeZ) \rightarrow B'(X,Z)B(Y$$

$$A(dX,eY) \rightarrow B'(X,Y)$$

$$A(d,e) \rightarrow \epsilon$$

$$B'(X,Yc) \rightarrow B'(X,Y)$$

$$B'(\epsilon,c) \rightarrow \epsilon$$

$$B(b) \rightarrow \epsilon$$

$$C(c) \rightarrow \epsilon$$

$$D(d) \rightarrow \epsilon$$

$$E(e) \rightarrow \epsilon$$

Gijs Wijnholds & Michiel de Winter

MCEGs

Some questions

- A DTWT takes a CFG G and produces a MCFL L using the derivation trees of G. Is there a relation with dependency structures? Not trivial, because DTWT just produce string languages, unknown whether the derivation trees of MCFGs have a connection with configurations of a DTWT.
- *MIX_k* is a shuffle language (see Bergland et al. 2011,Salvati 2011). Suspicion: *SL* ⊂ *MCFL*, *SL* ⊈ *MCFL*. *SL* ∧ *RL* (shuffle languages intersected with regular languages) contain *count_k*, *cross_k*, *MIX_k* but not *copy_k*. Is there a relation with *MCFL* − *MCFL_{wn}* and LG?

Introduction

- *MCFG*s induce exactly the dependency structures of bounded degree. More specifically, the dimension *k* of some *MCFG G* corresponds to the maximal block degree of the induced dependency structure.
- In the case of CFG, the induction was quite simple: given a derivation tree t, the induced dependency structure is simply an ordering of the nodes v in t with respect to the string position of the anchor produced by v.
- Here, we will show how to construct a derivation algebra $T_{\Sigma(G)}$ for a *MCFG G*, and define linearization and dependency semantics.

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Derivation and String Algebras

Derivation Algebra

Definition

Let G = (N, T, F, P, S, dim) be an *MCFG*. Define $\Sigma(G)$ to be the *N*-sorted set given by *P*, where

$$Type_{\Sigma(G)}(A \to f[A_1, ..., A_m]) = A_1 \times ... \times A_m \to A.$$

The derivation algebra of G is defined as the term algebra $T_{\Sigma(G)}$ over $\Sigma(G)$.

Gijs Wijnholds & Michiel de Winter

Derivation and String Algebras

Example

Consider the grammar

$$\begin{split} S &\to f_1[A] & f_1[\langle X \rangle] = \langle Xb \rangle \\ S &\to f_2[A, B] & f_2[\langle X \rangle, \langle YZ \rangle] = \langle XYbZ \rangle \\ A &\to f_3[] & f_3[] = \langle a \rangle \\ B &\to f_4[A, B] & f_4[\langle X \rangle, \langle YZ \rangle] = \langle XY, bZ \rangle \\ B &\to f_5[A] & f_5[\langle X \rangle] = \langle X, b \rangle. \end{split}$$

Gijs Wijnholds & Michiel de Winter

Derivation and String Algebras

Example

Then $\Sigma(G) = \{$

$$\begin{array}{l} (S \rightarrow f_1[A]) : A \rightarrow S \\ (S \rightarrow f_2[A, B]) : A \times B \rightarrow S \\ (A \rightarrow f_3[]) : A \\ (B \rightarrow f_4[A, B]) : A \times B \rightarrow B \\ (B \rightarrow f_5[A]) : A \rightarrow B \\ \}. \end{array}$$

Derivation and String Algebras

Example

Then
$$\Sigma(G) = \{$$

 $(S \rightarrow f_1[A]) : A \rightarrow S$
 $(S \rightarrow f_2[A, B]) : A \times B \rightarrow S$
 $(A \rightarrow f_3[]) : A$
 $(B \rightarrow f_4[A, B]) : A \times B \rightarrow B$
 $(B \rightarrow f_5[A]) : A \rightarrow B$
 $\}.$

is the tree representation of some term in $T_{\Sigma(G)}$.

String Algebra

Kuhlmann's way of defining the string language of an MCFG:

Definition

Let G = (N, T, F, P, S, dim) be an *MCFG*. The string algebra for *G* is the $\Sigma(G)$ -algebra Θ with:

- $dom(\Theta)_A = (T^*)^{dim(A)}$ for all $A \in N$.
- For each production rule p = A → f[A₁,..., A_m] with f :: k₁ × ... × k_m → k and body γ: f_p(α₁,..., α_m) = γ[x_{ij}/α_{ij}] for x_{ij} the corresponding variable for α_{ij} in α_i.

• The string language of G is

$$L(G) := \{ \overrightarrow{a} | \exists t \in T_{\Sigma(G),S} : \langle \overrightarrow{a} \rangle \in \llbracket t \rrbracket_{\Theta} \}$$

k-MCFG induces *D_k* 0000● 00000

《曰》《聞》《臣》《臣》 [] 臣

Derivation and String Algebras

Reading off a string

Consider the running example:

 $f_2[f_3[], f_4[f_3[], f_5[f_3[]]]]$

k-MCFG induces *D_k* 0000● 00000

《曰》《聞》《臣》《臣》 三臣

Derivation and String Algebras

Reading off a string

Consider the running example:

 $f_2[f_3[], f_4[f_3[], f_5[\langle a \rangle]]]$

Gijs Wijnholds & Michiel de Winter

Derivation and String Algebras

Reading off a string

Consider the running example:

$f_2[f_3[],f_4[f_3[],\langle a,b\rangle]]$

Gijs Wijnholds & Michiel de Winter

Derivation and String Algebras

Reading off a string

Consider the running example:

 $f_2[f_3[], f_4[\langle a \rangle, \langle a, b \rangle]]$

Gijs Wijnholds & Michiel de Winter

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Derivation and String Algebras

Reading off a string

Consider the running example:

$$S \rightarrow f_2[A, B]$$

$$A \rightarrow f_3[] \quad \langle aa, bb \rangle$$

 $f_2[f_3[], \langle aa, bb \rangle]$

Gijs Wijnholds & Michiel de Winter

k-MCFG induces *D_k* 0000● 00000

Derivation and String Algebras

Reading off a string

Consider the running example:

$$S \rightarrow f_2[A, B]$$

$$\langle a \rangle \quad \langle aa, bb \rangle$$

 $f_2[\langle a \rangle, \langle aa, bb \rangle]$

Gijs Wijnholds & Michiel de Winter

k-MCFG induces *D_k* 0000● 00000

Derivation and String Algebras

Reading off a string

Consider the running example:

(aaabbb)

(aaabbb)

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Linearization Semantics

- Kuhlmann first gets rid so-called non-essential concatenation functions, i.e.:
 - ϵ -rules. Example: $A(b, \epsilon) \rightarrow \epsilon$.
 - Ill-ordered rules. Example: $A(XY) \rightarrow B(Y)C(X)$.
- Kuhlmann does this by relabelling ⇒ there are also normal form algorithms for this (Kallmeyer, §7.2)

Lemma

(Kuhlmann, lemma 6.2.1) For each lexicalized MCFG G, there is an equivalent lexicalized MCFG G' such that the derivation trees of G and G' are isomorphic modulo relabelling, the string semantics are equal, and G' does not contain useless, ill-ordered, or ϵ -rules. Linearization and Dependency Semantics

Definition

Let G = (N, T, F, P, S, dim) be an *MCFG*. The linearization algebra for G is the $\Sigma(G)$ -algebra Θ with:

- $dom(\Theta)_A = ((\mathbb{N}^*)^+)^{dim(A)}$ for all $A \in N$.
- For each production rule p = A → f[A₁,...,A_m] with f :: k₁ × ... × k_m → k,anchor a and body γ
 : f_p(α₁,..., α_m) = γ[a/ε][x_{ij}/pfx_i(α_{ij})] for X_{ij} the corresponding variable for α_{ij} in α_i and pfx_i is the string homomorphism defined by pfx_i(u) = i ∘ u.
- The linearization language of G is $\Lambda(G) := \{ \vec{u} | \exists t \in T_{\Sigma(G),S} : \langle \vec{u} \rangle \in [\![t]\!]_{\Theta} \}.$

《曰》《聞》《臣》《臣》 三臣

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

 $f_2[f_3[], f_4[f_3[], f_5[f_3[]]]]$

《曰》《聞》《臣》《臣》 三臣

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

 $f_2[f_3[], f_4[f_3[], f_5[\langle \epsilon \rangle]]]$

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

$f_2[f_3[], f_4[f_3[], \langle 1, \epsilon \rangle]]$

◆□ > ◆□ > ◆臣 > ◆臣 > □ □ ○ ○ ○

k-MCFG induces *D_k*

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

$$S \to f_2[A, B]$$

$$A \to f_3[] \quad B \to f_4[A, B]$$

$$\langle \epsilon \rangle \quad \langle 1, \epsilon \rangle$$

$f_2[f_3[],f_4[\langle\epsilon\rangle,\langle 1,\epsilon\rangle]]$

k-MCFG induces Dk

00000

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Gijs Wijnholds & Michiel de Winter

MCFGs 000000 000 00000000

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

$$S \to f_2[A, B]$$

$$A \to f_3[] \quad \langle 1 \cdot 21, \epsilon \cdot 2 \rangle$$

$$f_2[f_3[], \langle 1 \cdot 21, \epsilon \cdot 2 \rangle]$$

k-MCFG induces Dk

00000

Gijs Wijnholds & Michiel de Winter

 $\begin{array}{c} k\text{-MCFG induces } D_k \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \circ \circ \end{array}$

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

$$f_2[\langle \epsilon \rangle, \langle 1 \cdot 21, \epsilon \cdot 2 \rangle]$$

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Linearizing a tree

Consider the running example:

 $(1 \cdot 21 \cdot 221 \cdot \epsilon \cdot 2 \cdot 22)$

 $(1 \cdot 21 \cdot 221 \cdot \epsilon \cdot 2 \cdot 22)$

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Dependency Semantics

Definition

Induced dependency structures Let G be an *MCFG* and let $t \in T_{\Sigma(G)}$. The dependency structure induced by t is the segmented structure $D := (nod(t), \leq, \leq, \equiv)$ with:

- $u \leq v$ iff u dominates v in t,
- $u \leq v$ iff u precedes v in $[t]_L$,
- $u \equiv v$ iff u and v appear in the same component of $[t]_{L}$.

Gijs Wijnholds & Michiel de Winter

MCFGs 000000 000 000000000 *k*-MCFG induces D_k 0000000000

イロト イポト イヨト イヨト 二日

Linearization and Dependency Semantics

Computing a dependency structure

Running example:

Gijs Wijnholds & Michiel de Winter

Linearization and Dependency Semantics

Computing a dependency structure

Running example:

Dependency structure:

Gijs Wijnholds & Michiel de Winter

k-MCFG induces *D_k* ○○○○○ ●○○

Block-ordered trees

Block-order collect (again)

BLOCK-ORDER-COLLECT(u)

Block-ordered trees

3

Relation to block-ordered trees

• In the case of block-ordered trees, we go over a node *i* times, considering every *j*-th element of the *i*-th tuple. This is similar to the semantics for the *j*-th variable of the *i*-th component in an *mcf*-function. Hence, we obtain the following result:

Theorem

Kuhlmann, 6.2.1 $\forall k \in \mathbb{N} : D(k - MCFG) = D_k$.

Gijs Wijnholds & Michiel de Winter

Block-ordered trees

- Give the derivation tree + corresponding dependency structure for *aabbccdd* using the (lexicalized version of the) grammar given for {*aⁿbⁿcⁿdⁿ*}.
- Draw all possible dependency structures in D_3 with 4 nodes.

MCFGs and D_k