LMNLP: LTAG₀ conversion to LG

Tuur Leeuwenberg

June 30, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of contents

Intro

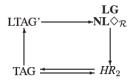
$LTAG_0$

definition difference with LTAG example; copylanguage

Conversion to LG

lexical conversion example; copylanguage graphical conversion example; copylanguage

Moot 2007 & LIRA-paper



- For each LTAG there is a weakly equivalent $LTAG_0$.
- For each $LTAG_0$ there is a strongly equivalent LG.
- If *LTAG* is out of the context free boundary then so is *LG*.

What is an LTAG₀

similar to a normal LTAG.

definition:

An $LTAG_0$ grammar is a tuple $\langle T, N_S, N_A, I, A \rangle$ such that:

- *T* is the finite set of terminals.
- N_S is the finite set of the substitution non-terminals.
- N_A is the finite set of the adjunction non-terminals.

- I is the finite set of the initial trees.
- A is the finite set of the auxiliary trees.

What is an LTAG₀

definition:

An $LTAG_0$ grammar is a tuple $\langle T, N_S, N_A, I, A \rangle$ such that:

conditions

- The root nodes of all initial trees are members of N_S .
- The root nodes of all auxiliary trees are members of N_A .

What is an LTAG₀

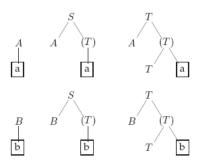
definition:

An $LTAG_0$ grammar is a tuple $\langle T, N_S, N_A, I, A \rangle$ such that:

conditions

- The root nodes of all initial trees are members of N_S .
- The root nodes of all auxiliary trees are members of N_A .
- (!) Every auxiliary tree has exactly one leaf which is a member of N_{A} . (foot node)
- ▶ (!) Every initial or auxiliary tree has exactly one leaf which is a member of T.
- (!) Every adjunction node is on the path from the lexical leaf to the root of the tree.

the copylanguage: $\{ww | w \in \{a, b\}^+\}$

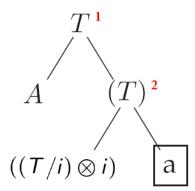


- (!) Every auxiliary tree has exactly one leaf which is a member of N_A . (foot node)
- (!) Every initial or auxiliary tree has exactly one leaf which is a member of T.
- (!) Every adjunction node is on the path from the lexical leaf to the root of the tree.

Constructing LG grammar g' from LTAG₀ g

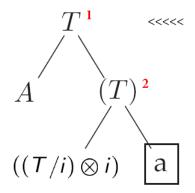
- The set of Atomic formulas A of g' will be $N_A \cup N_S \cup \{i\}$
- Each initial or auxiliary tree in g will have a lexical type assignment in g' constructed from it.
- footnodes are given the type $((T/i) \otimes i)$
- Then we start at the root R and travel down the tree to the lexical anchor, starting with as current formule f = R.
- If a binary link is passed, with a descendant A that does not lie on the path to the lexical anchor, f will be either A\f or f/A depending on whether A is the left or right descendent. If an adjunction node (T) is passed f will be (T ⊘ f) ⊗ ((T/i) ⊗ i)

 $LTAG_0$ to LG the copylanguage: $\{ww | w \in \{a, b\}^+\}$



footnodes are given the type $((T/i) \otimes i)$ We will construct the lexical type of a, while descending through the tree. While descending f will be the growing type.

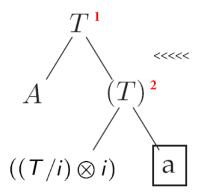
the copylanguage: $\{ww | w \in \{a, b\}^+\}$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $f = T^1$

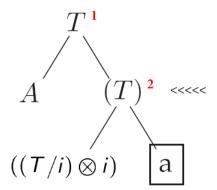
the copylanguage: $\{ww | w \in \{a, b\}^+\}$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $f = A \setminus T^1$

the copylanguage: $\{ww | w \in \{a, b\}^+\}$

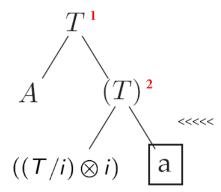


 $f = (T^2 \otimes (A \setminus T^1)) \oslash ((T^2/i) \otimes i)$

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

the copylanguage: $\{ww | w \in \{a, b\}^+\}$

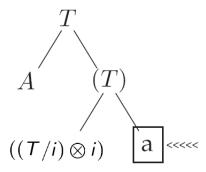


 $f = ((T/i) \otimes i) \setminus ((T^2 \otimes (A \setminus T^1)) \otimes ((T^2/i) \otimes i))$

・ロト ・聞 と ・ 聞 と ・ 聞 と …

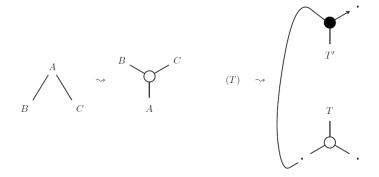
æ 👘

the copylanguage: $\{ww | w \in \{a, b\}^+\}$



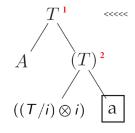
 $lex(a) = ((T/i) \otimes i) \setminus ((T^2 \otimes (A \setminus T^1)) \otimes ((T^2/i) \otimes i))$ Now we would like to abbreviate the $((T^2/i) \otimes i)$ to T' Resulting in: $lex(a) = T' \setminus ((T \otimes (A \setminus T)) \otimes T')$

graphical conversion; binary split & adjunction

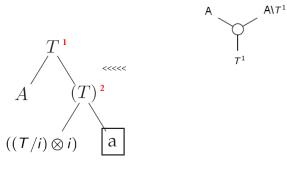


イロト イポト イヨト イヨト

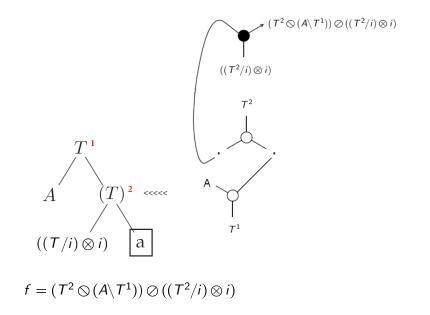
э



 $f=T^1$



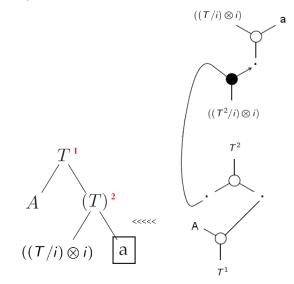
 $f = A \backslash T^1$



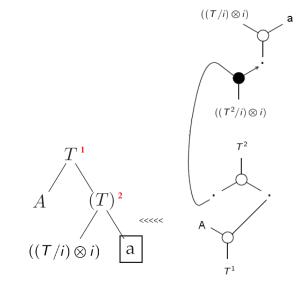
 $f = ((T/i) \otimes i) \setminus ((T^2 \otimes (A \setminus T^1)) \otimes ((T^2/i) \otimes i))$

・ロト ・四ト ・ヨト ・ヨト

æ

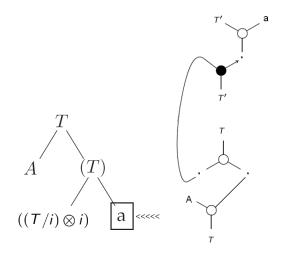


 $LTAG_0$ to LG



 $f = ((T/i) \otimes i) \setminus ((T^2 \otimes (A \setminus T^1)) \oslash ((T^2/i) \otimes i))$ Abbreviate the $((T/i) \otimes i)$ to T'

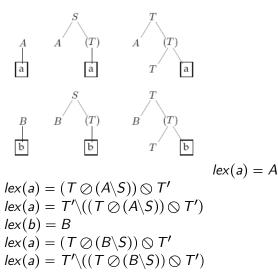
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇



Resulting in: $lex(a) = T' \setminus ((T \otimes (A \setminus T)) \oslash T')$

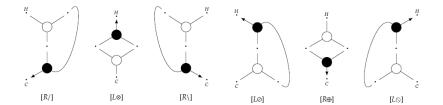
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

the copylanguage: $\{ww | w \in \{a, b\}^+\}$



イロト イポト イヨト イヨト

э



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

æ

$$lex(a) = A$$

$$lex(a) = (T \oslash (A \setminus S)) \otimes T'$$

$$lex(a) = T' \setminus ((T \oslash (A \setminus S)) \otimes T')$$

$$lex(b) = B$$

$$lex(a) = (T \oslash (B \setminus S)) \otimes T'$$

$$lex(a) = T' \setminus ((T \oslash (B \setminus S)) \otimes T')$$