
Formalizing the Graphical Notation of Proof Structures for

Lambek-Grishin Calculus

Sjoerd Dost

Abstract

In this paper a method of drawing proof structures for LG is presented. This method is

fully deterministic and produces readable depiction of the structure. The program at the end

of the paper implements this method and can draw a proof structure for any formula in L

A
T

E

X.

We only consider structures that are a direct result of lexical unfolding.

Introduction

The Lambek-Grishin calculus (LG) was first in-
troduced by Grishin in 1983 [2] as an extension
of Lambek-calculus. Moortgat in [3] gives a clear
overview of this logic and its notation. We will
use this notation, of which a brief summary can
be found in Figure 1. This paper will focus
on proof structures, hypergraphs usable for con-
structing proofs. Since this paper is about draw-
ing these structures, we mostly define them in
graphical terms. Of course correspondence be-
tween graphics and logic is pointed out, but the
exact logical background will only be relevant in
motivating a certain graphical notation.

Figure 1: Formula language for Lambek-Grishin
calculus (from [4])

A,B ::= p |
A⌦B | B\A | A/B |
A�B | A↵B | B ; A

Proof structures are hard to draw. In the lit-
erature some aspects of their graphical repre-
sentation have been formalized. Still structures
can be drawn in several ways and the litera-

ture is not consistent in doing so. This paper
presents a way of drawing these structures that
is formal and rigid, with no room for interpre-
tation. We also present a program capable of
automatically creating a structure correspond-
ing to a formula and drawing it in LATEX in this
way. We acknowledge that in some cases the
structures drawn here could have been drawn in
a more readable fashion, but hope that this (mi-
nor) lack of clarity is more than made up for in
consistency.

Proof Nets and Proof Structures

Proof nets were introduced for linear logic in
1987 by Girard [1]. Their extension for LG has
been shown in 2002 by Moot and Puite [6] and
expanded upon in [5] and [4]. Proof nets are a
graphical equivalent of a sequent proof in LG.
Using this graphical method of proving hides
much of the structural rules in a sequent proof,
making the proof more readable. What follows is
a graphically oriented description of proof nets.

Proof structures for LG are hypergraphs, con-
sisting of hyperedges and vertices. The hyper-
edges correspond to the logical rules and the ver-
tices to formulas. Proof structures are drawn as
a node-link diagram, in which vertices are drawn

1

as a dot and edges as a circle connected to its
vertices by lines. This circle can be filled either
white or black, called a tensor or cotensor re-
spectively. Each edge is a set of exactly three
vertices, so proof structures are 3-uniform hy-
pergraphs. Vertices are divided in premises and
conclusions for each edge. From now on we will
use the term link whenever we mean an edge.
All links have one or two premises.

In proof structures the orientation of vertices
relative to the links that contain them has
meaning. In a top-down approach we draw a
link’s premises above it and its conclusions be-
low it. Structures as a whole may be rotated
but for clarity the top-down approach is con-
sidered standard. If a link has more than one
premise its premises are ordered from left to
right, and likewise for its conclusions. This is
an important distinction for correctly drawing
these structures. In this paper we divide links
in one- and two-premise links. One-premise links
have a top, bottom-left and bottom-right vertex.
Two-premise links have a top-left, top-right and
bottom vertex.

.

.

.

. .

.

Figure 2: Links with one or two premises

Proof structures are defined such that each for-
mula (vertex) is at most once the premise and at
most once the conclusion of a link. Vertices can
be internal, meaning that they are both premise
and conclusion (thereby linking two links to-
gether). A vertex that’s not included in the con-
clusions of any link is a hypothesis of the struc-
ture. Likewise, a vertex that’s not included in
the premises of any link is a conclusion of the
structure. A proof structure with hypotheses
H1, . . . Hm and conclusions C1, . . . Cn is a proof
structure of sequent H1, . . . Hm) C1, . . . Cn [4].

To prove a sequent we first create a proof struc-
ture for each formula. These are connected to
each other, creating one structure, by means of
identifying formulas. We have a proof for the se-
quent if this resulting structure can be reduced
to a proof net, adhering to certain further con-

straints. Connecting and proving is beyond the
scope of this paper. We consider a proof struc-
ture for a formula created by means of lexical
unfolding.

Lexical Unfolding

We say a proof structure corresponding to the
hypothesis unfolding of this formula is a proof
structure for this formula. Any formula can be
lexically unfolded with either positive or nega-
tive polarity. This is respectively called hypoth-

esis and conclusion unfolding. The accompany-
ing code shows hypothesis unfolding by default,
with an option for conclusion unfolding. Lexi-
cal unfolding has a simple algorithm to create a
structure corresponding to the formula.

The algorithm takes a formula � and a boolean
h signifying hypothesis or conclusion. This
boolean is True by default for hypothesis unfold-
ing. We start by creating a proof structure with
a single vertex n. This vertex is its main vertex
and defines it uniquely. Vertex n is decorated
with �. We call the algorithm and as arguments
pass it n and h. If � is an atomic formula, we
stop here. Otherwise, we locate its main connec-
tive c and split the formula in two subformulas
�1 and �2. Here �1 is the part of the formula
left of c and �2 the part to the right. We look
up the link corresponding to the rule eliminat-
ing or introducing this operator (depending on
h) in a table (see [4] Figure 3). This link is con-
nected to n and added in the proof structure’s
list of links. Its other vertices are recursively
unfolded by calling the algorithm again for each
vertex. The boolean flag given to these recur-
sive calls correspond to the vertex appearing in
the link’s hypotheses or conclusions. Recursion
stops when atomic formula are unfolded, as de-
scribed above. Finally the algorithm returns the
unfolded structure.

Graph drawing heuristics

Graphs can be drawn in many ways, each with
its own merits. To measure how good a graph-
ical representation is we need heuristics. Many

2

criteria for good graph drawing have been de-
bated, of which we name a few. These criteria
are numbered in order of importance.

1. Above all, the drawing should be readable.
That is, the underlying structure must be
intelligible.

2. The number of crossing edges should be as
low as possible.

3. The total area taken should be minimized.
This can be measured as the area of its
smallest enclosing box.

Since our graph must conserve both up-down
and left-to-right ordering in the structure, we
cannot hope to fulfill all these criteria in equal
measure. Both rotating and mirroring a link are
out of the question. If we would allow them we
would directly introduce ambiguity in our draw-
ing.

We take criterion 1 to be the most important
and all others to be subgoals leading towards it.
In fact, we will pose a restriction on our drawing
making sure to maintain readability: all vertices
will be drawn as close as possible to the links
containing them (up to a minimum distance).
For internal vertices this means as close as pos-
sible to one of the two links that contain them.
All links will resemble as closely as possible one
of the two layouts shown in Figure 2. Note that
although only tensors are shown the same goes
for cotensors.

The result of lexical unfolding is a connected
proof structure. Its main vertex n can be taken
as a unique starting point for traversing the
graph. A naive way of displaying the structure
is by printing this vertex at coordinates (0,0)
and traversing the structure, printing each con-
nected link or vertex in position relative to this
main vertex. By creating equal spacing between
two premises or two conclusions of the same link
we maintain symmetry. This will become prob-
lematic for structures that are not trees: multi-
ple links are now drawn in the same place. A
structure with inherent overlapping using this
method is shown in Figure 3.

a

. x b .

d c

(a) x :: (a↵ (b\c))\d

d

. .

c

b .

a

x

e

(b) x :: e↵ ((a↵ (b\c))\d)

Figure 3: Inherent overlap

The structure in 3a can be drawn quite symmet-
rical. For the structure in 3b we are tempted
to replace x in 3a with another link (abstract-
ing over tensors and cotensors), but then either
way symmetry is broken. Note that the over-
lap would occur between the top two links in 3b.
The solution is to give up this tree-like symme-
try and draw links underneath each other. This
means that 3a is not the way we would formally
draw a structure like this. In some cases such as
3a symmetry might be used to draw a clear pic-
ture, but it is impossible to generalize this way
of drawing. We therefore do not use symmetry

3

as a way of adhering to criterion 1. Our solu-
tion will try to make up for this loss in possible
clarity.

Note that criterion 2 may be fully met when
drawing proof structures that are planar. We
do not give a solution striving for zero crossing
links since proof structures can be non-planar.
We merely wish to avoid lots of crossings.

Displaying the structure

Instead of drawing the structure from the view-
point of a single vertex or link at a time, we now
consider a method that considers the structure
as a whole. We print all links in the structure
underneath each other and then draw vertices
and lines accordingly. Immediately the benefit
of our method becomes clear: whereas symmetry
in larger structures means more and more dis-
tance between links, the distance between two
subsequent links is now constant. Especially for
larger structures this is in favor of criterion 3
since the smallest bounding box will only in-
crease linearly with the number of links.

The most important influence on the drawing is
now the ordering of links in the structure’s list of
links. The algorithm for lexical unfolding eval-
uates links recursively, leading to an ordering
that is not optimal for this method. This order-
ing can be thought of as a pre-order traversal.
The order we use is more an inorder traversal,
where the hypotheses are treated as the left sub-
tree and the conclusions as the right subtree.

The link containing the main vertex is still used
as a starting point and we’ll call it the main link.
When evaluating a link’s premises, all new links
created will be drawn above it, so they will be
ordered before that link. Its conclusions will be
ordered after it so to draw them below it. This
ordering plays into the relative meaning of up
and down in the structure meaning premise and
conclusion respectively. To get this specific or-
dering we construe a method of inserting a link
in the list of links. The main link is added as
the sole element of the order list at start. Now
for each link that is created, we give it its origin,
which is the link that evaluated a vertex creating

this link, and a boolean signifying hypothesis or
conclusion. If the evaluated vertex was a conclu-
sion of the origin link, the current link is created
as hypothesis and vice versa. So a link that has
True as its hypothesis value is a conclusion of
the origin link. The ordering algorithm for all
links other than the main link is now relatively
simple.

We call this method for every link, giving it a
boolean h and link O:

if h is True then

insert self directly after O in order
else

insert self directly before O in order
end if

Since the absolute index of links in this list can
change due to links being inserted before them,
we cannot immediately use the order list as the
list of links. The list of links is first naively con-
structed and its contents are permuted accord-
ing to the order list after unfolding. After order-
ing we can draw the links in the structure’s list
one by one below each other. We draw the first
link at (0, 0) and decrease y by 3 every time we
draw a new link. The next logical step is draw-
ing the vertices. We can draw the premises and
conclusions of each link close to it, but in doing
so we would draw internal nodes twice (once for
each link containing them). We therefore only
draw the first occurrence of a vertex, for which
we need to remember which vertices we’ve al-
ready drawn.

x n

.np

s

x n

.np

s

Figure 4: Shifting on the x-axis

All that is left is drawing connections between
vertices and links. To minimize crossings we first
minimize the length of lines by shifting links on
the x-axis relative to the previous link. If it

4

is connected to this link we can minimize the
length of the connecting line by aligning the
point of connection, see Figure 4. Here the left
structure has applied shifting so the shape of the
lower tensor remains intact.

This shifting is accomplished by comparing each
link to draw with the link we drew before it.
The method, called adjust xy, takes the previous
and current link and compares them, returning
a tuple (x, y) containing adjustments to the x
and y coordinates. We adjust the y-coordinate
as well because we can also make the draw-
ing more compact by decreasing link distance in
some cases. Adjustments are only made if the
previous link is connected to the current link via
one internal vertex, according to this table:

top-left top top-right
bottom-left (0,0) (-1,1) (-2,1)
bottom (1,1) (0,0) (-1,1)
bottom-right (2,1) (1,1) (0,0)

We now draw lines, straight ones between local
links and vertices and curved ones in case link
and vertex are separated by more than a link’s
length. For cotensors we draw an arrow point-
ing to their main formula. This can be a curved
arrow if it’s main formula is drawn higher up the
structure.

A justification for using this many curved lines
can be seen in Figure 3. Here curved lines make
sure longer lines do not cross lines between a link
and simple hypotheses or conclusions, making
these immediately identifiable. The only cross-
ing in fact will occur between curved lines.

We can now also justify the decision to draw all
links below each other. When two structures
are connected by identifying their formulas, the
resulting structure needs no transformation to
be drawn. Connecting two structures can re-
sult in new symmetries, which a method based
on symmetry will try to show by adjusting the
whole structure. Using our method connecting
two structures is a simple operation of first plac-
ing the two structures beneath each other and
then drawing a line between the two identified
formulas. Of course, in this process one of the
two vertices is destroyed. How to identify for-
mulas and connect structures in a useful way is

beyond the scope of this paper.

Summarizing, our method is described as:

1. Create the proof structure

2. Reorder the links

3. For each link, do:

(a) Adjust x- and y-coordinates

(b) Draw self at (x,y)

(c) Draw all vertices in premises not al-
ready drawn

(d) Draw all vertices in conclusions not
already drawn

(e) Adjust the y-coordinate

4. Draw all links and arrows

Python, L

A
T

E

X and TikZ

Appendices A through D give a program that
implements the described method of drawing
proof structures. This implementation is object-
oriented and written in Python. The bulk of
the work is done in classes-linear.py, con-
taining all relevant objects. In proofnet.py the
main method is called, unfolding the main ver-
tex. Upon creation links and vertices unfold fur-
ther so that the structure is built up as a re-
sult. Afterwards the structure can be printed to
LATEX using the TikZ package.

A quick look at argparser.py reveals all op-
tions in this program. Alternatively execut-
ing the python proofnet.py --help command
does the same. We give an overview of all im-
plemented options:

• -t or --tex: do not print the structure
in LATEX

• -a or --abstract: hide internal node
decoration

• -m or --main: hide main formula as ar-
gument given

• -r or --rotate: orientate the structure
lengthwise

5

• -c or --conclusion: conclusion unfold-
ing instead of hypothesis unfolding

A sample call and its output in Figure 5.

a

.

.

b

c

x

d

Figure 5

python proofnet.py -ram x (a(/)(b\c))(\)d

Discussion

The described algorithm can easily be imple-
mented. It is formulated in such terms that ex-
pansion to use for more complicated structures
or nets is easy. There are, however, some struc-
tures that could have been drawn better. Con-
sider the structure of � : a/(b↵ (d\c)) in Figure
6.

b

. .

d

c

�

a

Figure 6

This structure has a crossing link that could
have been avoided by shifting the top two links
to the right. Generally when drawing a link we
could derive its x-coordinate from its predeces-
sors instead of the link immediately preceding it.
We chose not to implement this fix, as a simpler
structure (though not a direct result of unfold-
ing) cannot use this fix. This structure is shown
in Figure 7.

a� b

. .

a⌦ b

Figure 7

This structure corresponds to the sequent
a� b) a⌦ b after identifying formulas. It is
not derivable, but that is besides the point. Such
a structure should be drawable in such a way
that it is clear what it represents. With shifting
this structure would only get worse. We think
that any formal drawing rule that would make
the structure in Figure 6 more readable would
only distort Figure 7. Again, a solution might
be a check whether the structure is a tree and
only resorting to the described method if the
structure is not.

Conclusion

The accompanying code fully automates lexical
unfolding, both hypothesis and conclusion, and
can print the resulting structure in a readable
fashion. It might be improved upon by first test-
ing whether the structure is a tree, in which case
it may be drawn using a standard tree-drawing
algorithm. This seems to be the most common
alternative for drawing (simple) structures. Fur-
ther work might include expanding this code to
a prover for LG.

6

References

[1] Jean-Yves Girard. Linear Logic: its syntax and semantics. Theoretical Computer Science,
50:1-102, 1987.

[2] V.N. Grishin. On a generalization of the Ajdukiewicz-Lambek system. In A.I. Mikhailov,
editor, Studies in Nonclassical Logics and Formal Systems, pages 315–334. Nauka, Moscow,
1983. [English translation in Abrusci and Casadio (eds.) Proceedings 5th Roma Workshop,
Bulzoni Editore, Roma, 2002].

[3] Michael Moortgat. Symmetries in Natural Language Syntax and Semantics: The Lambek-
Grishin Calculus. Proceedings WoLLIC ’07, pg 264-284, 2007.

[4] Michael Moortgat and Richard Moot. Proof nets and the categorial flow of information. 2012.

[5] Richard Moot. Proof nets for display logic. Technical report, CNRS and INRIA Futurs, 2007.

[6] Richard Moot and Quintijn Puite. Proof nets for the multimodal Lambek calculus. Studia

Logica, 71(3):415–442, 2002.

7

A: proofnet.py

#!/ usr / bin /env python

LIRa r e f e r s to :
h t t p ://www. p h i l . uu . n l /˜moortgat / lmnlp /2012/Docs/ contributionLIRA . pdf
Proofs ne t s and the c a t e g o r i a l f l ow o f in format ion
Michael Moortgat and Richard Moot

#BLEH
#A/(B(/)(D\C))
#STERKER NOG
#E/(A/(B(/)(D\C)))

from h e l p e r f u n c t i o n s import ⇤
import c l a s s e s l i n e a r as c l a s s e s
import a rgpar s e r

import os , sys
import plat form

By d e f a u l t the formula appears in hypo the s i s p o s i t i on .
def unfo ld fo rmula (formula , hypothes i s =1):

ver tex = c l a s s e s . Vertex (formula , hypothes i s)
s t r u c tu r e = c l a s s e s . Proo fSt ruc ture (formula , ver tex)#, hypo the s i s)
i f not s imple fo rmula (formula) :

ve r tex . unfo ld (formula , hypothes i s , s t r u c tu r e) # Recurs i ve l y un fo ld
Toggle whole formula
p = argpar s e r . Parser ()
args = p . get arguments ()
i f args . main :

ver tex . main =’ | t e x t t t {{{0}}} ’ . format (args . main)
return s t r u c tu r e

def main () :
p = argpar s e r . Parser ()
args = p . get arguments ()
i f l en (args . formula) != 1 :

p . p r i n t h e l p ()
sys . e x i t ()

formula = args . formula [0]
hypothes i s = not args . c onc lu s i on
s t r u c tu r e = unfo ld fo rmula (formula , hypothes i s)
s t r u c tu r e . pr int debug () # for debugging
i f not args . tex :

s t r u c tu r e . toTeX ()
os . system (’ pd f l a t ex formula . tex ’)
i f plat form . system () == ’Windows ’ :

os . system (’ s t a r t formula . pdf ’)
e l i f plat form . system () == ’ Linux ’ :

os . system (’ pdfopen �� f i l e formula . pdf ’)
Mac OS X ?

i f name == ’ ma in ’ :
main ()

8

B: helper functions.py

import re

v e r t i c e s = 0
t e x l i s t = []

This re turns True i f the formula conta ins no connec t i v e s .
def s imple fo rmula (formula) :

c onnec t i v e s = re . compi le (r ” (\ ⇤ | \ \ | / | \ (\ ⇤ \) | \ (/ \) | \ (\ \ \)) ”)
search = connec t i v e s . s earch (formula)
return search i s None

Fl ip the hypo the s i s boolean
def f l i p hypo (hypothes i s) :

return (hypothes i s + 1) % 2

def type (connect ive , hypo) :
types = {

LIRa f i g u r e 3
(con , hypo) : (premise#,geometry)
geometry : (f) ormula , (l) e f t , (r) i gh t ,(<) arrow to prev ious

Fusion connec t i v e s � hypo the s i s
(”/” , 1) : (2 , ” f r l ”) ,
(”⇤” , 1) : (1 , ” f< l r ”) ,
(”\\” , 1) : (2 , ” l f r ”) ,
Fusion connec t i v e s � conc lus ion
(”/” , 0) : (1 , ” l f<r ”) ,
(”⇤” , 0) : (2 , ” l r f ”) ,
(”\\” , 0) : (1 , ” r l f <”) ,
Fiss ion connec t i ve s � hypo the s i s
(” (/) ” , 1) : (2 , ” f<r l ”) ,
(” (⇤) ” , 1) : (1 , ” f l r ”) ,
(” (\\) ” , 1) : (2 , ” l f<r ”) ,
Fiss ion connec t i ve s � conc lus ion
(” (/) ” , 0) : (1 , ” l f r ”) ,
(” (⇤) ” , 0) : (2 , ” l r f <”) ,
(” (\\) ” , 0) : (1 , ” r l f ”)

}
return types [(connect ive , hypo)]

9

C: argparser.py

import argparse
import textwrap

class Parser (ob j e c t) :

def i n i t (s e l f) :
s e l f . p = argparse . ArgumentParser (

f o rma t t e r c l a s s=argparse . RawDescriptionHelpFormatter ,
d e s c r i p t i o n = textwrap . dedent (’ ’ ’ \

Lex i ca l un fo l d ing o f proof s t r u c t u r e s f o r LG
Formula language :

A,B ::= p | atoms (use alphanum)
A⇤B | B\A | A/B | product
A(⇤)B | A(/)B | A(\)B coproduct

To use LaTeX commands as atoms , use | .
For example : | phi w i l l be t r an s l a t e d as \ phi ’ ’ ’) ,

usage = ’ proo fne t . py [opt ions] formula ’)
s e l f . p . add argument (’ formula ’ , metavar=’F ’ , type=str , nargs=’+’ ,

he lp=’ a formula in LG to unfo ld ’)
s e l f . p . add argument (’��tex ’ , ’�t ’ , a c t i on = ’ s t o r e t r u e ’ ,

he lp = ’ do not p r i n t r e s u l t to LaTeX ’)
s e l f . p . add argument (’��abs t r a c t ’ , ’�a ’ , a c t i on = ’ s t o r e t r u e ’ ,

he lp = ’ hide i n t e r n a l node deco ra t i on ’)
s e l f . p . add argument (’��main ’ , ’�m’ ,

he lp = ’ hide main formula as argument g iven ’)
s e l f . p . add argument (’��r o t a t e ’ , ’�r ’ , a c t i on = ’ s t o r e t r u e ’ ,

he lp = ’ r o t a t e s t r u c tu r e 90 degree s counte r c l o ckw i s e ’)
s e l f . p . add argument (’��conc lu s i on ’ , ’�c ’ , a c t i on = ’ s t o r e t r u e ’ ,

he lp = ’ conc lu s i on un fo ld ing in s t ead o f hypothes i s un fo ld ing ’)
s e l f . arguments = s e l f . p . pa r s e a r g s ()

def get arguments (s e l f) :
return s e l f . arguments

D: classes linear.py

from h e l p e r f u n c t i o n s import ⇤
import a rgpar s e r
import sys

order = [0]
drawn = []

class Proo fSt ructure (ob j e c t) :

def i n i t (s e l f , formula , ver tex) :
s e l f . formula = formula
s e l f . main = vertex
s e l f . l i n k s = []

def pr int debug (s e l f) :
print order
for t in s e l f . l i n k s :

print t . index

10

def add l ink (s e l f , l i n k) :
s e l f . l i n k s . append (l i n k)
l i n k . index = len (s e l f . l i n k s) � 1
l i n k . alpha = ’ t ’ + chr (l en (s e l f . l i n k s) + 96)

def toTeX(s e l f) :
Erase f i l e
f = open (’ formula . tex ’ , ’w ’)
f . c l o s e ()

Write to formula . t e x
Header
f = open (’ formula . tex ’ , ’ a ’)

f . wr i t e (’ \documentclass [c l a s s=minimal , border=0pt]{ s tanda lone }\n\n ’)
f . wr i t e (’ \usepackage { t ikz�qt r e e }\n ’)
f . wr i t e (’ \usepackage { stmaryrd }\n\n ’)
f . wr i t e (’ \\ begin {document}\n\n ’)

Tikzp i c tu r e

r o t a t e = ””
Toggle r o t a t i on
p = argpar s e r . Parser ()
args = p . get arguments ()
i f args . r o t a t e :

r o t a t e = ” ro t a t e =270 ,”

f . wr i t e (’ \\ begin { t i k z p i c t u r e } [’)
f . wr i t e (r o t a t e)
f . wr i t e (’ s c a l e =.8 , ’)
f . wr i t e (’ co t enso r / . s t y l e={minimum s i z e=2pt , f i l l , draw , c i r c l e } ,\n ’)
f . wr i t e (’ t en so r / . s t y l e={minimum s i z e=2pt , f i l l =none , draw , c i r c l e } , ’)
f . wr i t e (’ s i b l i n g d i s t anc e =1.5cm, l e v e l d i s t anc e=1cm, auto]\n\n ’)

x = 0
y = 0

i f not s e l f . l i n k s :
f . wr i t e (s e l f . main . toTeX(x , y , s e l f . main))

else :
Shu f f l e s e l f . l i n k s according to order
s e l f . l i n k s = map(lambda x : s e l f . l i n k s [x] , o rder)
p r e v i o u s l i n k = None

for l i n k in s e l f . l i n k s :

i f p r e v i o u s l i n k i s not None :
(x adj , y ad j) = ad jus t xy (p r ev i ou s l i nk , l i n k)
x += x adj
y += y adj

f . wr i t e (’ {0} at ({1} ,{2}) {{}} ;\n ’ . format (l i n k . toTeX () , x , y))
f . wr i t e (l i n k . hypotheses to TeX (x , y))
f . wr i t e (l i n k . conc lus ions to TeX (x , y))
y �= 3
p r e v i o u s l i n k = l i n k

for l i n e in t e x l i s t :
f . wr i t e (l i n e)

11

f . wr i t e (’ \n\end{ t i k z p i c t u r e }\n\n ’)

End of document
f . wr i t e (’ \end{document} ’)
f . c l o s e ()

def ad jus t xy (prev ious , cur r ent) :
i f i s i n s t a n c e (prev ious , OnePremise) :

i f prev ious . bottomLeft . c onc lu s i on i s cur rent :
i f i s i n s t a n c e (current , OnePremise) :

i f cur rent . top . hypothes i s i s prev ious :
return (�1 ,1)

else :
i f cur rent . topRight . hypothes i s i s prev ious :

return (�2 ,1)
e l i f prev ious . bottomRight . c onc lu s i on i s cur rent :

i f i s i n s t a n c e (current , OnePremise) :
i f cur rent . top . hypothes i s i s prev ious :

return (1 , 1)
else :

i f cur rent . topLe f t . hypothes i s i s prev ious :
return (2 , 1)

else :
i f prev ious . bottom . conc lu s i on i s cur rent :

i f i s i n s t a n c e (current , TwoPremise) :
i f cur rent . topLe f t . hypothes i s i s prev ious :

return (1 , 1)
e l i f cur rent . topRight . hypothes i s i s prev ious :

return (�1 ,1)
return (0 , 0)

class Vertex (ob j e c t) :

def i n i t (s e l f , formula=None , hypo=None) :
global v e r t i c e s
s e l f . s e t hypo th e s i s (None)
s e l f . s e t c o n c l u s i o n (None)
s e l f . alpha = chr (v e r t i c e s + 97)
v e r t i c e s += 1
i f formula i s not None :

s e l f . main = formula
s e l f . at tach (formula , hypo)

def s e t hypo th e s i s (s e l f , hypo) :
s e l f . hypothes i s = hypo

def s e t c o n c l u s i o n (s e l f , con) :
s e l f . c onc lu s i on = con

def toTeX(s e l f , x , y , l i n k) :
global t e x l i s t , drawn
co = ””
i f l i n k . i s c o t e n s o r () and l i n k . arrow i s s e l f . alpha :

co = ”[�>]”
l i n e = ”\draw{0} ({1}) �� ({2}) ;\n” . format (co , l i n k . alpha , s e l f . a lpha)
i f s e l f . i n t e r n a l () and s e l f . c onc lu s i on i s l i n k :

i f order . index (l i n k . index) != order . index (s e l f . hypothes i s . index) + 1 :
l i n e = s e l f . c u rv ed t en t a c l e (l ink , s e l f . hypothes i s)

t e x l i s t . append (l i n e)
i f s e l f . alpha in drawn :

12

return ””
drawn . append (s e l f . alpha)
l a b e l = operators to TeX (s e l f . main)
tex = ”\\node ({0}) at ({1} ,{2}) {{${3}$ }} ;\n” . format (s e l f . alpha ,

x , y , l a b e l)
return tex

def cu rv ed t en t a c l e (s e l f , l i nk , p r e v l i n k) :
co = ””
i f l i n k . i s c o t e n s o r () and l i n k . arrow i s s e l f . alpha :

co = ”[�>]”
s t a r t = ”\draw{0} ({1}) . . c o n t r o l s ” . format (co , l i n k . alpha)
d i r e c t i o n = ”west ”
i f i s i n s t a n c e (l ink , TwoPremise) :

i f l i n k . topRight i s s e l f :
d i r e c t i o n = ” eas t ”

e l i f i s i n s t a n c e (p r ev l i nk , OnePremise) :
i f p r e v l i n k . bottomRight i s s e l f :

d i r e c t i o n = ” eas t ”
c on t r o l s = ”+(north {0} : 4) and +(south { 0 } : 4 . 0) ” . format (d i r e c t i o n)
end = ” . . ({0}) ;\n” . format (s e l f . a lpha)
l i n e = s t a r t + con t r o l s + end
return l i n e

def i n t e r n a l (s e l f) :
return (i s i n s t a n c e (s e l f . hypothes i s , Link) and

i s i n s t a n c e (s e l f . conc lus ion , Link))

def attach (s e l f , l abe l , hypo) :
i f hypo :

s e l f . s e t hypo th e s i s (l a b e l)
else :

s e l f . s e t c o n c l u s i o n (l a b e l)

This i s the source o f the recurs ion
def unfo ld (s e l f , formula , hypo , s t ruc tu re , i=None) :

regexp = re . compi le (
r ””” (\ (.+\) | [\w ’{} | $]+) #l e f t formula

(\ ⇤ | \ \ | / | \ (\ ⇤ \) | \ (/ \) | \ (\ \ \)) #main connec t i ve
(\ (.+\) | [\w ’{} | $]+)$ #r i g h t formula

””” , r e .X)
search = regexp . match (formula)
try :

(l e f t , connect ive , r i g h t) = search . groups ()
except Attr ibuteErro r :

print ”Syntax e r r o r in formula ”
sys . e x i t ()

(h , geometry) = type (connect ive , hypo)
i f h == 1 :

t = (OnePremise (l e f t , r i ght , geometry , s e l f , s t ruc tu re , hypo , i))
else :

t = (TwoPremise (l e f t , r i ght , geometry , s e l f , s t ruc tu re , hypo , i))

class Link (ob j e c t) :

def i n i t (s e l f) :
print ” e r r o r ”

def toTeX(s e l f) :
co = ’ ’
i f s e l f . i s c o t e n s o r () :

13

co = ’ co ’
return ’ \\node [{0} t enso r] ({1}) ’ . format (co , s e l f . a lpha)

def parse geometry (s e l f , geometry , ver tex) :
index = geometry . f i nd (”<”)
i f index > �1:

s e l f . arrow = vertex . alpha
geometry = geometry . r ep l a c e (”<” , ””)
return geometry

def get lookup (s e l f , l e f t , r i ght , ve r tex) :
lookup = {

’ f ’ : (Link . attach , ver tex) ,
’ l ’ : (Link . eva l fo rmula , l e f t) ,
’ r ’ : (Link . eva l fo rmula , r i g h t)

}
return lookup

def s e t s t r u c t u r e (s e l f , s t ruc , hypo , o r i g i n i nd e x) :
global order
i f o r i g i n i nd e x i s not None :

new = len (order)
o r i g i n i nd e x = order . index (o r i g i n i nd e x)
i f hypo :

order . i n s e r t (o r i g i n i nd e x + 1 ,new)
else :

o rder . i n s e r t (o r i g i n i ndex , new)
s t ruc . add l ink (s e l f)
s e l f . s t r u c tu r e = s t ruc

def i s c o t e n s o r (s e l f) :
return hasa t t r (s e l f , ’ arrow ’)

def attach (s e l f , vertex , hypo) :
f l i pped hypo = f l i p hypo (hypo)
ver tex . attach (s e l f , f l i pped hypo)
return ver tex

def eva l f o rmu la (s e l f , part , hypo) :
i f s imple fo rmula (part) :

return s e l f . at tach (Vertex (part , hypo) , hypo)
else :

ve r tex = Vertex ()
s e l f . at tach (vertex , hypo)
part = part [1 : �1]
f l i pped hypo = f l i p hypo (hypo)
ver tex . unfo ld (part , f l ipped hypo , s e l f . s t ruc ture , s e l f . index)
Toggle a b s t r a c t
p = argpar s e r . Parser ()
args = p . get arguments ()
i f args . ab s t r a c t :

ve r tex . main = ” . ”
else :

ve r tex . main = part
return ver tex

class OnePremise (Link) :

def i n i t (s e l f , l e f t , r i ght , geometry , vertex , s t ruc , hypo , i) :
Link . s e t s t r u c t u r e (s e l f , s t ruc , hypo , i)
geometry = Link . parse geometry (s e l f , geometry , ver tex)

14

lookup = Link . ge t lookup (s e l f , l e f t , r i ght , ve r tex)
(funct ion , arg) = lookup [geometry [0]]
s e l f . top = func t i on (s e l f , arg , 1)
(funct ion , arg) = lookup [geometry [1]]
s e l f . bottomLeft = func t i on (s e l f , arg , 0)
(funct ion , arg) = lookup [geometry [2]]
s e l f . bottomRight = func t i on (s e l f , arg , 0)

def ge t hypothese s (s e l f) :
return [s e l f . top]

def g e t c on c l u s i o n s (s e l f) :
return [s e l f . bottomLeft , s e l f . bottomRight]

def num hyp(s e l f) :
return 1

def num con (s e l f) :
return 2

def hypotheses to TeX (s e l f , x , y) :
return s e l f . top . toTeX(x , y + 1 , s e l f)

def conc lus ions to TeX (s e l f , x , y) :
s1 = s e l f . bottomLeft . toTeX(x � 1 , y � 1 , s e l f)
s2 = s e l f . bottomRight . toTeX(x + 1 , y � 1 , s e l f)
return s1 + s2

class TwoPremise (Link) :

def i n i t (s e l f , l e f t , r i ght , geometry , vertex , s t ruc , hypo , i) :
Link . s e t s t r u c t u r e (s e l f , s t ruc , hypo , i)
geometry = Link . parse geometry (s e l f , geometry , ver tex)
lookup = Link . ge t lookup (s e l f , l e f t , r i ght , ve r tex)
(funct ion , arg) = lookup [geometry [0]]
s e l f . topLe f t = func t i on (s e l f , arg , 1)
(funct ion , arg) = lookup [geometry [1]]
s e l f . topRight = func t i on (s e l f , arg , 1)
(funct ion , arg) = lookup [geometry [2]]
s e l f . bottom = func t i on (s e l f , arg , 0)

def ge t hypothese s (s e l f) :
return [s e l f . topLeft , s e l f . topRight]

def g e t c on c l u s i o n s (s e l f) :
return [s e l f . bottom]

def num hyp(s e l f) :
return 2

def num con (s e l f) :
return 1

def hypotheses to TeX (s e l f , x , y) :
s1 = s e l f . topLe f t . toTeX(x � 1 , y + 1 , s e l f)
s2 = s e l f . topRight . toTeX(x + 1 , y + 1 , s e l f)
return s1 + s2

def conc lus ions to TeX (s e l f , x , y) :
return s e l f . bottom . toTeX(x , y � 1 , s e l f)

15

def operators to TeX (s t r i n g) :
s t r i n g = s t r i n g . r ep l a c e (”\\” , ”\\ backs la sh ”)
s t r i n g = s t r i n g . r ep l a c e (” (⇤) ” , ”\ oplus ”)
s t r i n g = s t r i n g . r ep l a c e (”⇤” , ”\ ot imes ”)
s t r i n g = s t r i n g . r ep l a c e (” (/) ” , ”\ o s l a sh ”)
s t r i n g = s t r i n g . r ep l a c e (” (\\ backs la sh) ” , ”\ obs la sh ”)
s t r i n g = s t r i n g . r ep l a c e (” | ” , ”\\”)
return s t r i n g

16

