
Proof structures of a fragment of NL}R as HRG

René van Gasteren

July 15, 2012

Abstract

In this paper I show that the proof of Moot(2008) showing that NL}R and
TAGs are equivalent, is only correct for a fragment of NL}R. Also we will see how
a proof net and proofstructure of such a fragment can be made using Hyperedge
Replacement Grammars (HRGs). Since HRGs are context free graph grammars, I
will also show a way to compile away the structural rules.

1 Introduction

Moot(2008) shows that both NL}R and LG generate the same class of languages as
TAGs, using hyperedge replacement grammars as an intermediate step. Thereby showing
that NL}R and LG are mildly context-sensitive formalisms and therefor benefit from
the property of polynomial parsability.
We’re going to see in this paper that this is only correct for a fragment of NL}R and
LG Grammar. The former needs a restriction on the use of the structural rules in R,
the latter is proven to be more expressive than TAG. Moot himself gives a solution for
this problem, although not explicitly in his paper. I will use a 2008 presentation and a
draft called ’Type-logical and Hyperedge Replacement grammars’, both work by Moot,
to give a solution for NL}R

I will first, in section 2, introduce Hyperedge Replacement Grammar. This grammar
plays a central role, because it is used to represent proof nets. In section 3, I will show
the relations between di↵erent grammars like Moot did in his paper, and show that there
is a problem with it. In section 4, I will try to show how to deal with this problem and
give a good example of proof nets as HRG.

2 Hyperedge Replacement Grammars

A Hyperedge Replacement Grammar (HRG) is a graph grammar where a language is
built by replacing hyperedges for hypergraphs. HRG’s were introduced by Bauderon &
Courcelle(1987) and Habel & Kreowski(1987) as a type of context free graph grammar.
I’ll give a definition of hypergraphs, hyperedge replacement and hyperedge replacement
grammars below.

1

Definition 1.1 A hypergraph generalizes the notion of graph by allowing the edges,
called hyperedges, to connect not just two but any number of nodes. Let � be an alpha-
bet edge labels and let � be an alphabet of selectors. A hypergraph over � and � is a
tuple hV,E, lab, nod, exti, where

V is the finite set of vertices,

E is the finite set of hyperedges disjoint with V ,

lab is a labeling function, from E to �, assigning an edge label to each hyperedge,

nod is the incidence function that associates with each edge e 2 E a partial function
nod(e) : � ! V , that is, it selects a vertex for every selector � of the edge,

ext is the external function, a partial function from � to V , that is for every selector
� of the hypergraph it selects a vertex.

Definition 1.2 The type of a hypergraph H is the domain of the external function,
type(H) = dom(ext) The type of an edge e is the domain of the incidence function
type(e) = dom(nod(e)).

Definition 2 The operation of hyperedge replacement replaces a hyperedge by a hy-
pergraph H of the same type. Let H and K be two disjoint hypergraphs with the same
set of edge labels � and the same set of selctors �. Let e be an edge ofH such that type(e)
= type(K). The hyperedge replacement of e by G, H[e := G] = hV,E, lab, nod, exti is
defined as follows.

V = VH [VK ,

E = (EH � e) [Ek,

lab = labH [labK ,

nod = nodH [nodK ,

ext = extH ,

Foralls 2 type(e), nodH(e, s) = extK(s)

Definition 3.1A hyperedge replacement grammar (HRG) is a tupleG = hN,T,�, P, Si,
such that

N is the alphabet of nonterminal edge labels,

2

T is the disjoint alphabet of terminal edge labels,

� is the alphabet of selectors,

P is the set of productions,

S 2 N is the start nonterminal symbol

Definition 3.2 Let G be a hyperedge replacement grammar. The language gen-
erated by G is the set of hyperedges without hyperedges labeled by nonterminal edge
labels derivable from S.

Definition 3.3 The rank of a terminal or nonterminal symbol is the number of its
tentacles. The rank of a hyperedge replacement grammar is the maximum rank of a
nonterminal symbol in the grammar

3 Relations between grammars

Moot(2008) gives 4 lemma’s with proof sketches about the relations between LTAGnf ,
NL}R , LG, TAG, and HR2. Here, I’m just going to mention three of them without
proof, because we’re assuming these lemma’s are correct. Further I will clarify the con-
text and notation of the lemma’s. The fourth lemma is the controversial one and is in
our focus right now.

Lemma 1: HR2 grammars generating trees and TAG grammars are strongly equi-
valent. The lowercase ’2’ indicates the rank of the hyperedge grammar.

Lemma 2: For every LTAG grammar G there is a weakly equivalent LTAGnf gram-
mar G0. It is also know that every TAG has a strongly equivalent LTAG en vice versa.
The criteria of a LTAG in normal form (nf) is not relevant here.

Lemma 3: If G is an LTAGnf grammar, then there is a strongly equivalent NL}R

grammar G0 and a strongly equivalent LG grammar G00.

Lemma 4: If G is a Lambek Grammar (specifically NL}R or LG), then there is a
strongly equivalent HR2 grammar G0.

Figure 1 gives a representation of the relations between the grammars. LG grammar
has to be included at the right top.

The fourth lemma is underspecified by Moot. It is not described which structural
rules are included in R. In order for this figure and lemma 4 to be correct, the gram-

3

Figure 1: A visual representation of the four lemma’s

mars NL}R and LG must be referring to a fragment of them. There are proves that
NL}R and LG grammar are more expressive than TAG. Moot(2002) shows that a large
freedom in structural rules in R gives a PSPACE formalism generating exactly the
context-sensitive languages. De Grootte(1999) and Capelletti(2007) show that NL}R

with R = ; (NL}; or just NL}) generates exactly the context-free languages and is
polynomial parsable. Hence, the set of structural rules in R for the grammar the lemma
is talking about, is restricted but not empty. Further Mellissen(2009) proves that LG
can generate languages, that TAG cannot. In the next section we are going to find out
what restrictions are needed in order to make lemma 4 correct for NL}R .

4 Analysis of structural rules for NL}R

Unrestricted structural rules give rise to a context-sensitive language and PSPACE deci-
sion problem. For a rule the number of links on the left hand side can be more than one,
which means context is important. Hyperedge Replacement Grammars are context free
graph grammars (Engelfriet 1997). The right hand side of a rule can be any complex
graph, the left hand side is always a single nonterminal hyperedge.

To avoid that our combinations of structural rules fall into an associative, commu-
tative system, we will end up with a number of restrictions on the final grammar. This
gives us the tools to describe the generated proof nets as a hyperedge replacement gram-
mar, where the structural rules are factored out.

Definition 4.1 Given a structural rule r with connectives c1, ..., cn on the left hand
side and connectives d1, ..., dn on the right hand side a trace is a bijection associating
each element ci with an element of dj .

Definition 4.2 Let P be a proof net. It is well-bracketed i↵ there are no two con-
tractions c1 and c2 in the conversion sequence of A such that such that on any of the
paths between the two traces t1a and t1b of c1 there is just one of the traces of c2.

4

The combination of well-bracketedness and traces guarantee that every path in a
proof net can be described by a context free grammar.

Definition 4.3 Given a grammar G with a set of structural rules R, a mode m is
inert with respect to this grammar and these structural rules if we can apply all its
contraction before applying any structural rules.

Lemma 5 An NL}R or LG grammar G is well-bracketed if 1) all its external
modes are inert, and 2) the structural rules are a subset of one of the following sets
{P1, P2, P3, P4}, {P10, P20}, {P30, P40}, {Gr1, Gr2, Gr3, Gr4}, {Gr10, Gr20}, {Gr30, Gr40}.

In his draft, Moot gives an HR2 Grammar. This grammar constructs proof struc-
tures and proof nets in a way that is very similar to contructing regular proof nets,
except for the structural rules, which are compiled away. In the appendix I will show an
example of a proof net for ’agent that Trinity escaped from’, both in regular style proof
nets and in HRG style. The HRG I use is the one in the appendix of Moot 2008 draft.

Let me make some things clear about the idea and representation of proof nets and
proof structures as HRG. S is of type ; and is the start, T is a proof net contracting to
a tree, and V is a proof net contracting to a vertex. With ’compiling away’ in this ex-
ample we mean that the ’np’ in the subformula}2np is placed on his position in one step,

�[� · np]) A

�[�]) A/}2np

instead of multiple small steps,

...
�[� · h2npi]) A

�[� ·}2np]) A

�[�]) A/}2np

In appendix A I show how we derive a proof net from a proofstructure for n �
((n\n)/(s/}2np) � (np � (np\s)/np)) ` n

In appendix B I show how we derive a (abstract) proof structure for the same NL}R

formula, only this time using HR2 rules. The steps taken are not necessarily the same,
and the other way around compared the constructions in A. Also, in this example the
proof net is not derived from the proof structure. I have numbered the conversions, such
that I can motivate them here. As the reader can see the tensor tree is not complete
before we use the ’structural use with unary control’ in (4); the last tensor rule is
(6). This is why we cannot derive the proof net and the proof structure in the same

5

derivation. I restructured the structure without using a actual rule in (5). After (6) the
proofstructure is complete and I continue with the axiom rules and rewriting T- and
V-labeled edges a vertex in (7) (8) (9), ending in the lexical unfolding of the words. As
you can see, I do multiple steps at once in (9).

5 Conclusion

We have seen how Moot comes to his conclusion that NL}R and LG generate the same
class of languages as TAGs. I mentioned several proofs for the claim that this conclusion
is only correct for a fragment of both grammars. After I have introduced HRGs as a
context free graph grammar, we have seen how to use them as an intermediate step
showing the equivalence between TAGs and a fragment of NL}R , describing proof nets
and proof structures as HRG.

6 Bibliography

Melissen, M. The generative capacity of the Lambek-Grishin calculus: A new lower
bound. In P. de Groote, M. Egg, and L. Kallmeyer, editors, Proceedings 14th Confer-
ence on Formal Grammar, volume 5591 of Lecture Notes in Computer Science, pages
118132. Springer, 2010.

Moortgat, M. & Moot, R. (2012), proof nets and the categorial flow of information.

Moot, R. & Puite, Q. (1999), Proof Nets for Multimodal Categorial Grammars, in
Geert-Jan M. Kruij↵ & Richard T. Oehrle, eds., ’Proceedings of Formal Grammar’,
Chapter 10.

Moot, Richard and Quintijn Puite. 2002. Proof nets for the multimodal Lambek
calculus. Studia Logica, 71(3):415442.

Moot, R. (2008), Type-Logical and Hyperedge Replacement Grammars Draft

7 Appendix

6

7

8

9

	Introduction
	Hyperedge Replacement Grammars
	Relations between grammars
	Analysis of structural rules for NL R
	Conclusion
	Bibliography
	Appendix

