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In this paper I will give a clear explanation of the encoding of an MCFG expressing 
the shuffle language L2s into an ACG. Step by step I explain what happens, and try 
to give an idea of why this is done. With this I hope to give more clarity than the 
original papers on this topic. 

 
Introduction 
Abstract Categorial Grammars (ACG) were introduced by De Groote in 2001 as a new categorical 
formalism, based on linear logic (de Groote, 2001). ACG’s   have   the   property   of   generating   two  
languages, the abstract and the object language. The first gives a set of grammatical structures and 
the latter a set of concrete forms. A lexicon gives the encoding from abstract to object language. The 
formalism was not introduced to compete with existing formalisms but rather to give a framework in 
which they could be encoded (de Groote, 2002), thus enabling us to show similarities and differences 
between formalisms and their expressivity. 
 
This encoding of formalisms has already been done for TAG (de Groote, 2002) and m-LCFRS (de 
Groote and Pogodalla, 2003). These papers are very technical, though, and hard to read. With this 
paper, I will give an example encoding of an m-MCFG, which is in fact equivalent to the m-LCFRS into 
an ACG step by step to show more clearly how this is done.  
 
Shuffle language L2s 
Our example will be the shuffle language Ls2 as introduced in (Dost, 2011). This language consists of 
strings  of  brackets  of  two  types  (e.g.  “(  )”  and  “[  ]”),  that can be shuffled as long as a type only has 
closing brackets after enough opening brackets.  For  reasons  of  convenience  we  will  use  “d  b”  and  “q  
p”  respectively  to  represent  the  two  kinds  of  brackets.  Formally, our language will look like this: 
 
Ls2 = { {d,b,q,p}*  such that   |w|d =|w|b , for each prefix w’  of  w  |w’|d |w’|b 
 |w|q =|w|p , for each prefix w’  of  w  |w’|q |w’|p } 
 
Possible derivations of this language are dbqp and qdbp but not pq, qppq and qdppbq. 
 
Abstract Categorial Grammars 
I will give a general idea here of how ACG’s work. For full formal definitions, see (de Groote, 2001), 
(de Groote, 2002) and (de Groote and Pogodalla, 2003). As said above, an ACG consists of an abstract 
language, an object language and a lexicon. These languages are built by higher-order linear 
signatures, being triples  = A,C,t, where A is the finite set of atomic types, C the finite set of 
constants and t the function that assigns a linear implicative type to each constant in C. Given these 
two languages 1 = A1,C1,t1 and 2 = A2,C2,t2, a lexicon L : 1  2 is the interpretation of the 
abstract language into the object language. This lexicon forms a pair L = F,G so that F: A1  T(A2) is 
the interpretation of atomic types of 1  as types built upon A2, and G: C1  (2) the interpretation 
of the constants of 1 as -terms built upon 2. 
 
An abstract categorial grammar itself now forms a quadruple G = 1,2,L,s, with 1 and 2 being the 
mentioned abstract and object vocabulary respectively, L the lexicon from the first to the latter and s 
an atomic type from the abstract vocabulary, as a start symbol. 
 
m-Multiple Context-free Grammars 
We will now take a look at m-MCFG’s and also give an 2-MCFG for our example language Ls2. An 
MCFG is defined as a 5-tuple G = N,T,F,R,S where: 



- N is the finite set of non-terminals 
- T is the finite set of terminals 
- F is the set of mcf-functions, with the restriction that each component on the right hand side 

may not appear more than once. 
- P is a finite set of rules 
- S  N is the start symbol. 

 
Other than normal context-free grammars, an multiple context-free grammars deals with tuples of 
strings, rather than single strings. Because these tuples do not necessarily have to be well-nested, 
MCFG’s are capable of handling crossed dependencies, which are, as we will see, the case with L2s. An 
MCFG has dimension m if it has a maximum predicate dimension of m. In other words, predicated of 
an 2-MCFG can have no more arguments than 2. For our example we will use the implementation 
given by (Dost, 2011), written as a simple Range Concatenation Grammar. This formalism is 
equivalent to MCFG, but its notation is closer related to that of the Prolog programming language, 
making it easier to implement.  
 
Our MCFG will now be the following: 
 

N = { S, A, Y } 
T = { d, b, q, p } 
 
r0: S ( x1 x2 )  A ( x1 , x2 ) 
r1: Y ( d, b )   
r2: Y ( q, p )   
r3: A ( ,  )   
r4: A ( x1 x2 , y1 y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r5: A ( x1 y1 , x2 y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r6: A ( x1 y1 , y2 x2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r7: A ( x1 , x2 y1 y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r8: A ( x1 , y1 x2 y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r9: A ( x1 , y1 y2 x2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r10: A ( x1 x2 y1 , y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r11: A ( x1 y1 x2 , y2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
r12: A ( x1 y1 y2 , x2 )  Y ( x1 , x2 ) , A ( y1 , y2 ) 
 

As we can see, r0 concatenates two strings given by A to be the final output. Predicate A can be 
either empty, or an concatenation of two tuples, of which one is recursive. Predicate Y puts in the 
constant symbols. The use of this predicate Y avoids redundancy, because without it we would have 
to duplicate rules r4 – r12 for the cases of d/b and q/p. Furthermore, the three different separations 
of the strings on the left hand side are needed to enable more complex bracketing around other 
substrings. 
 
Encoding L2s into ACG 
Now that we have the basics of the Abstract Categorial Grammar and an 2-MCFG expressing L2s we 
can start with encoding. We start with the abstract language, 1 = A1, C1, t1: 
 

A1 : The atomic symbols of the abstract language consist of the non-terminal symbols of the 
MCFG. (de Groote and Pogodalla, 2003) suggest to add an extra start symbol S’, to get 
from higher-order  functions back to strings. In our example, though, this is unnecessary 
because there are no recursive rules for S, and all strings are concatenated by this 
predicate. We can therefore say A1 = { S, A, Y } 



C1 : The constants of the object language consist of a one-to-one correspondence of R, which 
gives C1 = { r0, … , r12 }  

t1` : t assigns a linear implicative type to each constant c in C1. These being the rules of the 
MCFG, t1 gives the actual syntactic structure of the language. Therefore t1 is such that: 

t1(r0) = A - S 
t1(r1) = Y 
t1(r2) = Y 
t1(r3) = A 
t1(r4-12) = Y - (A - A) 

 
The object language now is fairly simple. It mostly gives the notation we will have as output, and 
some semantic interpretation. 2 = A2, C2, t2 will be as follows:  

 
A2 : {} 
C2 : the constants of the object language are the actual strings, and therefore the same as the 

set T of terminal symbols from the MCFG: { d, b, q, p } 
t2 : the function t of the object language assigns type  to every constant c in C2. 

 
Finally we have to define the lexicon L. First we assign types to the atomic types of 1. We know that 
S only produces a single string. Furthermore, we know that both Y and A take two strings, from which 
we can abstract, to produce a string. Given the atomic type  of 2, we have: 

 
L(S) =   (single string) 
L(A) = (  --  --  ) --  (take two strings, and abstract to produce a string) 
L(Y) = (  --  --  ) --  (Idem) 

 
This assignment is not very well explained, though, and remains hard to understand. After this, we 
build lambda-terms such that they represent the rules of the MCFG, and thus follow the structure 
given in t1: 
 

L(r0) = P. P(x1x2. (x1 + x2)) 
L(r1) = f. f(d, b) 
L(r2) =  f. f(q, p) 
L(r3) = f. f(, ) 
L(r4) = PQ. P(x1x2. Q(y1y2. (x1 + x2) (y1 + y2))) 
L(r5) = PQ. P(x1x2. Q(y1y2. (x1 + y1) (x2 + y2))) 
L(r6) = PQ. P(x1x2. Q(y1y2. (x1 + y1) (y2 + x2))) 
L(r7) = PQ. P(x1x2. Q(y1y2. (x1) (x2 + y1 + y2))) 
L(r8) = PQ. P(x1x2. Q(y1y2. (x1) (y1 + x2 + y2))) 
L(r9) = PQ. P(x1x2. Q(y1y2. (x1) (y1 + y2 + x2))) 
L(r10) = PQ. P(x1x2. Q(y1y2. (x1 + x2 + y1) (y2))) 
L(11) = PQ. P(x1x2. Q(y1y2. (x1 + y1 + x2) (y2))) 
L(r12) = PQ. P(x1x2. Q(y1y2. (x1 + y1 + y2) (x2))) 
 

We can now see that L(r0) has one predicate containing two strings that are concatenated ( + ) to 
become one single string. L(r1,r2,r3) give functions that put symbols (empty or non-empty) in. L(r4-
r12) show two predicates, both containing two strings. These four strings are concatenated into two 
longer strings, in the nine variants argued to be necessary earlier. 
 
  



With the ACG given above, we can now compute output of the shuffle language. Based on t1 we 
know which rules we can apply on each other. For example we can now computer the following 
program: 
 
L(r0(r4(r2  r11 (r1 r4(r2 r3))))) = L(r0(r4(r2  r11 (r1 r4((q,p), ))))) 
 = L(r0(r4(r2  r11 ((d, b) (q+p), )))) 
 = L(r0(r4((q,p),  ((d+(q+p)+b), )))) 
 = L(r0((q+p), ((d+(q+p)+b) + ))) 
 = L((q+p)+(d+(q+p)+b)+) 
 = q+p+d+q+p+b 
 
Conclusion 
We have seen step by step a method to encode an 2-MCFG into an ACG. Although we did not go into 
much detail of formal definitions, a clear view on how to do this encoding should be done should 
now be given. A difficult to understand part remains the assigning of types, especially that of the 
atomic types of the abstract language. 
 
References 

- Dost, S. (2011): Shuffle language in Minimalist Grammar, paper for course “Computationele 
Grammatica’s”, Universiteit Utrecht 

- de Groote, P. (2001): Towards Abstract Categorial Grammars, in Association for Computational 
Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the 
Conference, p. 148-155 

- de Groote, P. (2002): Tree-adjoining grammars as abstract categorial grammars. In TAG+6, 
Proceedings of the sixth International Workshop on Tree AdjoiningGrammars and Related 
Frameworks, p. 145–150 

- de Groote, P. and Pogodalla, S. (2003): m-linear CF Rewriting Systems as Abstract CGs, In 
Proceedings of Mathematics of Language 8, R.T. Oehrle & J. Rogers (editors), chapter 8 

-  Kallmeyer, L. (2010): Parsing beyond Context-free Grammars, Springer-Verlag, Berlin Heidelberg 
- Kuhlmann, M. (2010): Dependency Structures and Lexicalized Grammars: an algebraic approach,, 

Springer-verlag, Berlin Heidelberg 


