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1 Introduction

Category theory is a relatively new field of mathematics. It was discovered
in the middle of the 19th centry. Samuel Eilenberg and Saunders Mac Lane
provided a first definition of a category and William Lawvare expanded the
applications of the filed. Nowadays category theory is even considered to be
an alternative to set theory as a foundation for mathematics. In the 1960’s, it
was Joachim Lambek who first combined Gerhard Gentzen’s methods with
category theory and linguistics.

The aim of this paper is to present categorical interpretations of linguis-
tically interesting substructural logics such as ILL and the Lambek calculus.
We will provide the reader with the necessary background in category the-
ory. No preliminary knowledge of that field is required. Following the seminal
ideas of Lambek we will examine categorical interpretations thoroughly from
a proof theoretical point of view. Ultimately, we will focus on the categorical
interpretation of intuitionistic linear logic and the Lambek calculus following
the lines of the paper of Richard Blute and Philip Scott [2] and Lambek’s
paper “Categorial and Categorical Grammar” [7], respectively. In our presen-
tation we will particularly try to spell out some details that are left out in
the mentioned literature.

In the next section we will introduce the needed definitions of category
theory, followed by a section on the connection between category theory and
general proof theory. In Section 4 we eloborate the categorial translation of
ILL and the associative Lambek calculus L. In the conclusion we will give a
brief summary of the presented material and also give a small outlook how
the presented concepts can be extended.

2 Preliminaries in category theory

In this section we will introduce some basic notions of category theory such as
the definitions of a category, functor, natural transformation and adjunction.
We will also present the notion of a monoidal category, which will be of great



interest for our considerations in Section 4 on the categorical interpretation
of some substructural logics. For a more thorough introduction to category
theory the reader is referred to Steve Awodey’s book [1].

Definition 1. A category C consists of the following:
e A class of objects, denoted by Ob(C).
e A class of arrows, denoted by Ar(C).

e Mappings dom, cdom : Ar(C) — Ob(C), that assign to the arrows
their domain and codomain. We often write f : A — B to indicate
that f € Ar(C) is an arrow, with dom(f) = A and cdom(f) = B.

e For all objects A, B and C and arrows f: A — B,g: B — C there
is an arrow go f : A — C. The arrow g o f is called the composition
of g and f.

e for any object A there is an identity arrow 14 : A — A.

For all objects A, B,C and D and arrows f : A — B,g : B — (C and
h : C — D the above must satisfy the following axioms:

e foly=f=1pof (Identity law)
e ho(go f)=(hog)o f (Associativity)

The variety of categories is endless. In order to have a slight inside we will
present two examples of categories and give a detailed explanation why they
satisfy the imposed axioms. The most "famous" category is the category Set,
the category of sets. The class of objects of this category is the class of all
sets and the collection of arrows is the class of all possible functions on sets.
The mappings dom and cdom are defined in the obvious way by sending
a function to its actual domain and codomain, respectively. Composition
is given by set theoretical function composition. For every set there is a
canonical identity function that serves also as the identity function in the
categorical sense. It is easy to check that given these definitions, the axioms of
associativity and identity are satisfied. A bit more abstract kind of category
is given by considering a fixed partial order as a category. Let P = (P, <)
be a partial order on a set P. The partial order can be seen as a category
as follows. The objects of the category are the elements of the set P and
we require an arrow from the element p to ¢ if and only if p < ¢ in P.
With this interpretation the identity axiom follows from the reflexivity axiom
of the partial order, whereas function composition holds by transitivity of
the partial order. Since there is at most one arrow between two elements
associativity condition holds and also the unit law is satisfied.

In the next definition we will present the product category. Building the
product of two categories will be for us mostly of technical interest.



Definition 2. Given two categories C,D the product category C x D is
defined as follows.

e Ob(C x D) := Ob(C) x Ob(D), where the x on the right hand side is
the cartesian product of the two classes of objects.

e Ar(CxD) := Ar(C)xAr(D). More precisely, for arrows f : C; — Cy € C
and g : D1 — Do € D of D there is an arrow fxg: Cy x Dy — Dy X Dso.

e For an object C' x D of C x D the identity arrow is defined as 1¢ X 1p.
e Composition is defined coordinate-wise.

The reader can easily check, that given the above definitions the identity and
associativity axiom are inherited from the categories C and D. So C x D is
indeed a category.

In category theory we are often more interested in functions than in the
objects. There are not only arrows within a category, but also on "higher
levels". Our next definition will be the one of a functor, that provides us an
appropriate notion of a map between categories. On one more level above
we will introduce the concept of natural transformations as a notion of maps
between functors.

Definition 3. A functor F : C — D between categories C, D consists of:

e A map Fop : Ob(C) — Ob(D), i.e. it assigns to every object of C an
object of D.

e A map Fa, : Ar(C) — Ar(D) s.t. for all arrows f : A — B of the
category C there is an arrow Fa,(f) : For(A) — Fop(B). One can
observe that this notation implies that a functor has to preserve the
domain and the codomain of an arrow.

Furthermore, it has to preserve the identity arrow and composition, i.e.
o f(lA) = 1]:(14) and
o Flgof)=F(g)oF(f)

The notion of a functor can help us in comparing categories. It can also
serve to impose a particular structure or operation on the objects within a
category. An example of the latter is the product-functor x : Set x Set —
Set, that assigns a pair of sets to its cartesian product and two function f, g
to the pair of functions (f, g) defined point-wise. The reader can easily check
that for this definition the functor axioms are satisfied. Functors that have
a product category in their domain will come along throughout the whole
paper. This is why we are going to present one important property of product
functors already at this point. Let F : C x C' — D be a functor and C a



fixed object of the category C. Now we can define a map F(C,—):C — D
by sending an object C’ of C' to F(C,C") and an arrow g : C] — C} to
F(lc,g). It can be shown that this map inherits the functor axioms from
F. So fixing the first component of a product functor yields to a functor. A
similar result holds, if we fix the second component.

We continue with the promised definition of a natural transformation, a
notion of a map between to functors.

Definition 4. A natural transformation 0 : F — G between two functors
F,G:C — Dis given by a family (04 : F(A) — G(A)) 4con(c), s-t- for all
for all arrows f: A — B € Ar(C) the following diagram commutes.

F4) 2L 7(B)

| Joo

G(A) WQ(B)

A natural transformation is called natural isomorphism, if all components

are isomorphisms!.

One of the most fundamental definitions in category theory is the defi-
nition of adjoint functors. Pairs of adjoint functors occur in various areas
where category theory is applied. There are several equivalent definitions of
this concept that are used in the literature. We will cite the one that is often
referred as the "Hom-set definition", as it is the most convenient for our
purposes.

Definition 5. Given categories C, D and functors F and G satisfying:

f’

g

we say that G is a right adjoint of F (or equivalently F is a left adjoint of
G ), if for any C' € C and D € D there is a bijection

C D

P Homp(}"C, D) = HOHI(;(C, QD),

that is natural in both, C and D. Here, Homp(FC, D) refers to the
collection of arrows in D with domain FC' and codomain D. Similarly for
Hom¢(C,GD).

The last definition that we will introduce is the one of a monoidal cate-
gory. This class of categories will be of great interest in our later attempt

'For a categorical definition of an isomorphism see [1].



in finding the appropriate category for certain substructural logics. On the
other hand it is worth mentioning, that monoidal categories also occur in
other branches of mathematics.

Definition 6. A monoidal category is a category C together with
e 3 functor ® : C x C — C,
e a distinguished object I,
e natural isomorphisms 2 a,r,! with the following components

aspc:(A®B)®C — A® (B ()
la:IRA— A
ra: Al — A

satisfying the equations given by the commutative diagrams:

li=r:I®I —1

AR(I®C) "~ (Ax)®C

1®lcl er@l

A C AR C

A(B(CD)) —2~ (AB)(CD) —*~ ((AB)C)D
\Ll@a a®1T
A((BC)D) - (A(BC))D,

where in the last diagram we omitted the ® connective for readability
reasons.

The equations imposed by the last diagrams are often called coherence
conditions. One can say that they assure that "all possible ways of defining
a particular arrow lead to the same result". Mac Lane’s coherence theorem
states that if the three diagrams above commute, then all other diagrams
build up in a similar manner commute as well. A proof of this theorem can
be found in [9]. As the reader might infer, the name monoidal category refers
to the algebraic structure of a monoid. Indeed, a monoidal category can be
seen as a monoid by taking the class of objects as the underlying set of
the monoid with the ®-tensor as a binary relation on it. The distinguished
object I corresponds to the unit object of the monoid and the imposed
natural isomorphisms make sure that the monoid axioms are satisfied.

Znatural transformations are often specified by their components. In these cases the
underlying functors are implicit.



3 Proof Theory and Category Theory

As mentioned, Lambek combined Gentzen’s methods with category theory.
He emphasized the idea that arrows in freely generated categories are equi-
valence classes of proofs, raising the question what these equations between
proofs are. On the other hand, in the beginning of the 1970’s, Dag Prawitz
introduced a field of general proof theory by asking the philosophical ques-
tion what a proof is. In this section we will try to explain what general proof
theory is and how category theory may be used for investigating general
proof theory.

3.1 General Proof Theory

General proof theory has its foundations in Gentzen’s work [4]. By examining
proof-structure it tries to provide a satisfactory definition of a proof. Prawitz
specifies the following four topics in general proof theory in [10]:

(1) Defining the notion of a proof.

(2) Investigating the structure of different kinds of proofs (e.g. questions
concerning normal forms).

(3) Representing proofs as derivations and investigating equivalence among
them.

(4) Applying these insights to the other questions in logic.

If one is trying to provide a definition of a proof then she also needs to
be able to define when two proofs are identical. The notion of the identity
of proofs is supposed to bring some light to the first basic question what a
proof is. A proof should be an equivalence class of its representations. In this
manner a precise mathematical answer is given to a philosophical question|[3].

Of course, only proofs with the same assumptions and the same conclusi-
ons may be equivalent, but the whole field of general proof theory makes
sense only if we assume that there can be more than one proof from the
same set of premises to the same conclusion. Prawitz proposed an analysis
of proof identity based on reduction to normal form in natural deduction. In
the literature it is referred to this method as the Normalization Conjecture
[3]. However, Lambek’s work offers different a basis for proof equivalence
which we will refer to as Generality Conjecture. Since this paper is focused
on the connection between category theory and proof systems, we will later
try to briefly explain this concept.

3.2 Proof Systems as Categories

The first stepping stone in connecting Gentzen’s system with category the-
ory was Lambek’s definition of a deductive system. [t opens up a general



method how to interpret proof systems categorically. In such translations we
first represent the logic in question as a deductive system. Then we impose
additional equalities between the arrows in order to obtain a category.

Definition 7. A deductive system consists of:

e A class of objects (or types, or formulas) and

a class of arrows (or proofs).

The mappings source and target between them. They assign to an
arrow a source and a target object, respectively. The notation f : A —
B implies, that f is an arrow with source A and target B.

Identity arrow for each object A:

14:A— A

Composition of arrows:

f:A— B g:B—C
gof:A—C

In the translation from a given logic to a deductive system the formulas
of the logic become the objects of the deductive system. A proof in a the
logic corresponds to an arrow in the deductive system. More precisely, a
proof of B with assumption A will be translated into an arrow with source
A and target B. Imposing an identity arrow for every object, as it is stated
in the above definition, means nothing else than having a proof of every
formula from itself. Composition of arrows corresponds to the transitivity of
the provability relation. Deductive systems can be enriched by adding more
inference rules.

We are now going to explain the translation step from deductive systems
to categories. It is noticeable that the definition of a deductive system is very
similar to the definition of a category (compare Definition 1 from Section 2).
In a category also the following equations need to be satisfied.

o foly=f=1gof (Identity Law)

e ho(go f)=(hog)of,forall f: A— B,g: B— Candh:C — D
(Associativity).

Indeed, we can turn a deductive system into a category by imposing the
identity law and associativity condition between arrows. Now an arrow in
the category corresponds to an equivalence class of proofs. Further infe-
rence rules are translated as natural transformations, where the interplay



between introduction and elimination rules of logical connectives is given via
adjunction. Altogether the translation yields the following picture:

Logic Category Theory
Formulas S objects
Equivalence classes of proofs D arrows
Inference rules ¢ > Natural transformations

Ultimately, we will sketch the proof identity criterion in a categorical
setting that was first proposed by Lambek. What we need to consider are
generalizations of derivations that diversify variables without changing the
rules of inference. As an example let us consider the two projections that
correspond to two derivations of conjunction elimination:

7r11,7p :pAp — pand 7T§7p :pAD— p.
The two arrows have a different generality. They generalize to 7T}1)7q :
p /A g — pand 7r§7q : p A q — q respectively. The difference in generality
follows as these two arrows do not have the same codomain.?

Two derivations have the same generality when every generalization of
one of them leads to a generalization of the other, so that the two gene-
ralizations have the same assumptions and conclusion. Now this provides a
proof identity criterion, namely Generality Conjecture.

Definition 8. Generality Conjecture

Two derivations are equivalent if and only if they have the same genera-
lity.

There is no ultimate answer to the question what the equivalence between
proofs is. In Subsection 4.2. we will see an example of two proofs in the
Lambek calculus that look different on the first sight but are equivalent in
the categorical translation.

4 Categorical Interpretations of Lingusitcally Inte-
resting Substructural Logics

Linear logic was introduced by Jean-Yves Girard in 1987 [5]. While classical
logic emphasizes the notion of #ruth and intuitionisitc logic the notion of

3This subtle difference is not captured by normalization procedure, that we mentioned
as the proof identity criterion proposed by Prawitz.



proof, linear logic sees formulas as resources. On the other hand, Lambek
proposed the famous noncommutative logic 1958 in his paper The Mathema-
tics of Sentence Structure [8]. This logic can be in particular used to model
the combinatory possibilities of the syntax of natural languages. His calculus
has become one of the fundamental formalisms of computational linguistics.
In this chapter we will present adequate categories for two different sub-
structual logics. Namely for intuitionistic linear logics and for the Lambek
calculus.

Let us first briefly remind of the proof theoretic way for obtaining these
logics. Restricting different structural rules provides different logics. Structu-
ral rules in question were considered by Gentzen in 1934 |4]. They are wea-
kining, contraction and permutation and they can act on the left and on the
right side of a sequent.

Left Right
. 'FA '-A
Weakening & =~ TrAA
o , NAJAEA '-AAA
ontraction —RA'_ A "TEA A A, A
P ) I',A T, B, I'sHA ' A, A Ag, B, Ag
ermutation FluBuF2aA7F3 l_A FI_AlaBaA27Aa A3

In the family of linear logics, contraction and weakening might get forbi-
dden as structural rules. Permutation rule is responsible for commutativity.
By abolishing the permutation rule one gets non-commutative systems such
as the Lambek calculus.

Since intuitionistic logic accepts contraction and weakening on the left
side of sequents, as the right side consists only of one formula, we can inves-
tigate intuitionistic linear logic by adding further constrains on intuitionistic
logic. Intuitionistic linear logic (ILL) is a fragment of Girard’s linear logic,
i.e. intuitionistic logic without weakening and contraction.

4.1 Intuitionistic Linear Logic

In the first step towards a categorical interpretation of ILL we will formulate
intuistionistic linear logic with operation ® and —o as a deductive system.

Definition 9. ILL as a deductive system:

e The class of objects contains a special type I and is closed under the
binary operations ® and —o.



e The class of arrows contains the following axioms and is closed under
the listed rules of inference:

14 : A — A (Identity)

ra:A®I — Aand ry': A — A®I (Unit-laws)
asBc: (A®B)®C — A® (B ® C) (Associativity)
saB: A® B — B® A (Commutativity)

f:A— B g:B—C
gof:A—C

[ C®A—DB g:C — (A — B)

ot f*:C — (A — B) —o elim xg:C®A— B

In order to get familiar with proof techniques in a deduction system we
will consider some examples of such proofs. Note that every proof is given by
the construction of a particular arrow and thus the proof that corresponds
to an arrow can be reconstructed just by reading its name.

It is immediate to see that next to the imposed Right-unit-laws we can infer
Left-unit-laws by using the commutativity arrow:

s A I®A—-ARIT ra:AQI — 1 7“;1:I~>A®I sAT:ARI—1IQRA

raospa:I®A—T sAJor;xl:I—>[®A
An example of a bit more involved derivation is given below. The result,
namely the inference rule

f:A— B g:C—D
(sp,B o (s pof)o(*(shaoaosac) : ARC —>B®D’

®rule

has a clear categorical translation. For readability reasons we will omit the
names of the arrows in the proof.

DRA—ARD B®D—D®B
C—-D D—A—oAQRD A— B B—D-o-D®B
C—-A—-o0ARD A—D-—-oD®B
AQRC - C® A CRA—-ARD A®D —-D®B DB —-B®D
ARC —-AQD AR D —B®D

ARC —-B®D

10



We are now ready to present a categorical interpretation of ILL. Having a
close look at the deductive system given above the reader may remember the
monoidal categories that we introduced in Definition 6 of Section 2. Indeed,
these will be roughly the ones that offer us an adequate interpretation. The
®-functor will serve as an interpretation of the logical connective ®. However,
with no further restrictions on monoidal categories the structural rule of
commutativity is not available. Furthermore, an interpretation of the —o-
connective is missing. In order to obtain these we will consider a subclass of
monoidal categories, namely symmetric monoidal closed categories.

Definition 10. Let C be a monoidal category. C is called symmetric, if there
is a natural isomorphism with components sqp: A ® B — B ® A, that
satisfy the following diagrams:

AoB- 2% Be A Bl 2198
Y
5A,B lp
A® B B
1®s

AR(BR(C)—>A®(C®B)—=(A®(C)® B

la ls@

(AB)®(C—">(C®(A®B)—=(C® A)® B

Similar as in the definition of monoidal categories, the imposed commu-
tative diagrams ensure coherence for the inferences.

Definition 11. A symmeiric monoidal closed category is a symmetric mo-
noidal category C s.t. for all A € C the functor — ® A : C — C has a right
adjoint A — —: C — C.

We will now provide a detailed explanation why symmetric monoidal
closed categories serve as a good interpretation of ILL. Let C be such a
category. First we need to give adequate translations of the formulas into the
objects of the category. Then we need to check whether all the axioms and
rules of inference that we imposed in Definition 9 -where we presented ILL as
a deductive system- are satisfied. As our category C is monoidal it contains
a distinguished object I that serves as the special object I of the deductive
system. Now for any two objects A and B of C we need to find objects A®Q B
and A — B in C. The first is given by applying the ®-functor to the object
(A, B) of C xC. The latter is the image of B under the functor A — —. This
shows that the class of objects is as the translation requires. We continue
with interpretations of the axioms. The identity arrow exists for all A € C
simply because C is a category. Arrows for the associativity condition and
the unit laws are given because the functor ® provides a monoidal structure

11



on C. The components of the natural isomorphism s4 p serve as proofs of
the substructural rule of commutativity. It remains to infer the introduction
and elimination rule for the — connective:

f:C®A—B g:C — (A— B)

ot f*:C— (A— B) o elim xg:C®A— B

For this purpose we have to examine the Definition 5 of adjoint functors.
In order to obtain the first rule we keep object A of the category C fixed.
Now A — — : C — C being a right adjoint of the functor —® A:C — C
requires that for B, C in C there is a bijection

® : Home(C ® A, B) = Home(C, (A — B)).

In particular, for an arrow f : C ® A — B there is an arrow f*: C —
(A — B), which shows that the —o-introduction rule holds in our category.
For the —o-elimination rule just consider the bijection ® in the other di-
rection.

4.2 Lambek calculus

We will now give a similar characterization for the Lambek calculus. The
presented solution was first stated by Lambek in his seminal paper [7].

The most substantial difference to the system that we studies above is the
absence of the commutativity rule. Similarly as in the previous chapter we
will formulate the associative Lambek calculus L as a deductive system and
then introduce the corresponding categorical notion. Furthermore, we will
present an example of two proofs in the Lambek calculus that are equivalent
in the categorical translation.

Definition 12. The Lambek calculus is a deductive system such that :

e The class of types contains a special type I and is closed under the
binary operations -, / and \.

e The class of arrows contains for all types A, B, C' the following arrows
and is closed under the listed rules of inferences

1y:A— A

aspc:(A®B)®@C — A® (B®C)
aylpo i AQ(BRC) — (A®B)®C
TA:A®I—>Aand7“Zl:A%A®I
s I®A—Aandl' :A—I®A

12



f:A— B g:B—C
gof:A—C

f:A®B—C f:A®B—C
ff+A—C/B “f:B— A\C
g:A—C/B g:B— A\C
gt A B—C Tg:A®B—C

As for the case of ILL we take the monoidal categories from Section 2 as
a starting point for our interpretation. As previously the ®-functor serves as
the interpretation of ®-connective. However, the symmetric monoidal closed
categories would not serve as a good interpretation, because the symmetry
is not consistent with the absence of the permutation rule in the Lambek
calculus. A solution, that was first proposed by Lambek in |7], lies in the
notion of a biclosed monoidal category.

Definition 13. A biclosed monoidal category is a monoidal category C,
where for all A € C the functor — ® A : C — C has a right adjoint
—/A : C — C. In addition, for all A € C also the functor A® — : C — C has
a right adjoint A\—:C — C.

The functor —/A : C — C serves as an interpretation for the /-connective
and the functor A\— : C — C as an interpretation of the \-connective,
respectively. It is easy to see that the inference rules of the deductive system
can be obtained by the bijections that is given by the adjunctions. We will
not spell out the details of the translation as they are very easily inferred
from the description that we gave in the previous chapter.

We complete this Section by giving some remarks on further categorical
structure and on the equality of proofs that results from the categorical
interpretation.It can be shown that that in biclosed monoidal categories we
can define functors

/:CxCP—C
\:CP xC—C,

where C°P* is the opposite category of C. These functors are called internal
homomorphisms. Their construction can be found in [6]. The advantage of
the latter is that all the connectives are treated uniformly as binary operati-
ons on the category C. In this presentation we also see immediately that we
have inferences such as

f:A— B g:C— D and f:A— B g:C—D
flg: A/D — B/C f\g: B\C — A\D

“For a category C the category C°P is the opposite category. It contains exactly the
same objects as C and there is an arrow f* : B — A in C°? if and only if there is an
arrow f: A— Bin C.

13



They arise by applying the functors / and \ to the given arrows. Of course,
such inferences can also be made in the Lambek calculus.

Before finishing this chapter we will present some observations concerning
the equality of proofs that we already considered in Section 3. As mentioned
in Section 3 a categorical interpretation of deductive systems gives rise to a
natural notion of the equality of proofs. So let us consider an example. Here
are two proofs of the same formula:

f:A— B g: X —Y f':B—C Jg:Z—X
flg:A)Y — B/X f'/gd B/ X —C/Z
f'lgeflg:AlY — C/Z

and
f:A— B f'B—C g: X —Y g :Z—X
flof:A—C gog:Z —Y
flof/gog:A)Y — C/Z

The given proofs look different. Nevertheless, categorically they are equi-
valent. The reason for that lies in the functoriality of the map /: C xC? —
C, that we stated above. Beeing a functor particularly implies that the map
preserves composition of arrows. For arrows f, f',g,¢’ of C as above this is
expressed by the equation

froflgog=1F/d0flg,

where on the left side of the equation we first composed (f/,¢") and (f, g) in
C xC° and then applied the /-functor to the solution (f’ o f, ¢’ o g). Whereas
on the right hand side we applied the /-functor separately to the pairs (f’, ¢')
and (f,g) and then took the composite. Of course, there are many other
examples of proofs that become are via the categorical interpretation. In
order to detect them, one needs to observe carefully the equations forced
by axioms, coherence and naturality conditions that we imposed throughout
the paper.

5 Conclusion

We introduced the field category theory and showed how proof systems can
be interpreted categorically. For this purpose we explained Lambek’s notion
of a deductive system and its connection to categories. An important be-
nefits of this interpretation is the Generality Conjecture which we briefly
introduced. It is a criterion for proof identity and therefore an important
contribution for defining a proof. Nevertheless expressing a precise proof
identity criterion still represents a challenge for logicians.

Furthermore,we focused on providing categorical translation for two spe-
cific substructural logics that are relevant in linguistic applications. We

14



saw that symmetric monoidal categories provide an adequate categorical
translation of intuitionistic linear logic. Moreover, biclosed monoidal catego-
ries play the same role in the case of the Lambek calculus. In our presentation
we tried to contribute by explaining subtle details of these correspondences.
Furthermore, we gave some illustrative examples.

What is left out is whether the correspondences can be extended, if we
add more connectives and logical constants, such as 1 or ! in linear logics, or
impose more substructural rules. In the paper [2] Blute and Scott elaborate
a great variety of solutions for such extensions. The notion of *-autonomous
categories, that are symmetric monoidal categories with extra structure play
a central role for these concepts. Another kind of modification lies in conside-
ring an even more restricted system such as NL, the non-associative Lambek
calculus. Finding a categorical translation for the latter would imply drop-
ping monoidal categories as the starting point for our translation, because
their "conventional" definition includes arrows for associativity.
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