
Conversions between D and MCFG

August 2, 2012

Abstract

We study the Displacement Calculus D and Multiple Context Free
Grammars. We show that a restricted fragment of MCFG can be
recognized by higher-order constructions in D. Furthermore, we show
that a restricted fragment ofD, namely the one without product unit in
negative positions, and with only (A "k B) #k C constructions su�ces
to define the class of well-nested Multiple Context Free Languages
(MCFLwn). We make the connection between these two constructions
more explicit by showing how to construct a higher-dimensional but
first-order grammar from such a restricted two-dimensional grammar.
The construction in [5] shows that the resulting grammar is indeed a
well-nested one.

1 Introduction

In [5], a construction was given that shows that L(D1) = MCFL
wn

, i.e. the
class of languages generated by first-order Displacement grammars coincides
with the class of languages generated by well-nested Multiple Context Free
Grammar. Moreover, the construction is dimension-specific, i.e. given a
D1 grammar of sort k, there is a (weakly) equivalent MCFG of dimension
k + 1. This paper complements that result by showing that by allowing
specific higher-order constructions in 1D1 (sort 1, first order) grammars,
one can generate any MCFL

wn

. Furthermore, a construction is given
that transforms this kind of D grammars to first-order D1 grammars. The
construction in [5] then verifies well-nestedness, so we get that the class of
languages of these formalisms coincide.

1



2 Definitions

We define several fragments of the Displacement Calculus, as well asMultiple
Context Free Grammars.

2.1 MCFG

Definition 1 (MCFG) A Multiple Context Free Grammar is a 6-tuple
(N,T, F, P, S, dim) such that:

• N is a finite set of non-terminal symbols, and dim assigns a dimension
to every non-terminal,

• T is a finite set of terminal symbols,

• F is a finite set of mcf-functions,

• P is a finite set of production rules of the form
A0 ! f [A1, ..., A

k

] with k � 0
f : (T ⇤)dim(A1) ⇥ ...⇥ (T ⇤)dim(Ak) ! (T ⇤)dim(A0) and f 2 F .

• S 2 N is a distinguished start symbol such that dim(S) = 1.

Definition 2 f is a mcf -function if:

• f(�!x1, ...,�!x
k

) = ↵1�1...↵n

�
n

↵
n+1 where ↵

i

2 T ⇤ and �
j

a variable from
some �!x

m

.

• Each variable x
ij

from some vector �!x
m

occurs at most (or exactly)
once in the right hand side (linearity)

Definition 3 The dimension of a MCFG G is given by the maximal di-
mension of the non-terminals, i.e. max(dim(N)). We call a MCFG of
dimension k a k-MCFG.

Definition 4 (Well-nestedness) An mcf-function f is well-nested if it
satisfies the following condition:

• if i 6= i0, j  q
i

, j0  q
i

0 then ↵1�1, ...↵n

�
n

,↵
n+1 where ↵

i

/2 (T [
V ar) ⇤ x

ij

(T [ V ar) ⇤ x
i

0
j

0(T [ V ar) ⇤ x
ij+1(T [ V ar) ⇤ x

i

0
j

0+1

We call a MCFG G well-nested if all the mcf-functions are well-nested.

2



Definition 5 (Lexicalized MCFG) We call a MCFG(wn) G lexicalized,
denoted lMCFG(wn), if for every production rule p it holds that there is
exactly one a 2 T such that for the corresponding mcf -function it holds that
f(�!x1, ...,�!x

k

) = a�1...�n, i.e. each rule produces only one terminal symbol,
called the anchor.

Definition 6 (MCFL) Let G = (N,T, F, P, S) be a MCFG.

• For every A 2 N :

1. For every (A ! f []) 2 P : f [] 2 yield(A),

2. For every (A ! f [A1, ..., A
k

]) 2 P (k � 1) and all tuples ⌧1 2
yield(A1)...⌧

k

2 yield(A
k

) : f [⌧1, ..., ⌧
k

] 2 yield(A).

3. Nothing else is in yield(A).

• The string language of G is L(G) = {w|hwi 2 yield(S)}.

• We denote by k-MCFL the class of languages generated by the set of
MCFGs of dimension at most k. We denote by MCFL the class of
languages generated by an arbitrary MCFG. We use a wn subscript
to denote the well-nested variants.

The following facts about these di↵erent language classes are known:

1. For each k, k-MCFL(wn) ⇢ (k + 1)-MCFL(wn)

2. For each k, k-MCFL
wn

⇢ k-MCFL.

3. MCFL
wn

⇢ MCFL.

2.2 Displacement Grammar

Here we define Displacement Grammar and several fragments. General Dis-
placement Calculus is obtained by extending the (associative) Lambek Cal-
culus L with infinitely many residual connective families ("

k

, #
k

,�
k

) that,
in e↵ect, enable wrapping and extraction from specific points in a string.
Therefore, the string algebra acted upon contains a special element, called a
separator. More surprisingly, apart from the separator the string algebra is
just a free monoid, as the arrow families are interpreted by means of defined
operations.

3



Definition 7 (Types and order) The types of the Displacement Calculus
are inductively defined as follows:

T := p | T • T | T\T | T/T | T �
k

T | T "
k

T | T #
k

T
where k 2 NAT

Definition 8 (Order) The order of a type is defined by the following ho-
momorphism:

ord(p) = 0
ord(A •B) = max(ord(A), ord(B))
ord(A\B) = ord(B/A) = max(ord(A) + 1, ord(B))
ord(A�

k

B) = max(ord(A), ord(B))
ord(A # B) = ord(B " A) = max(ord(A) + 1, ord(B))

We place an important note here: If we look at types as functions, one
may specify the input and output types of that function. A semantic type
map does this, and indeed, higher-order types are mapped to higher-order
lambda terms/functions. We want to state here, however, as we are going to
be dealing with higher-order ", # types, what we mean by input and output
position in these cases. So, given the type (A " B) # C or C " (B # A)
respectively, a semantic type map would give us (B ! A) ! C in both
cases. In other words, C is in the output position in these types, whereas
A " B (B # A) is in an input position.

Definition 9 (Hypersequent Calculus) The proof theory for the full Gen-
eral Displacement Calculus is as follows:

4



�!
A ! A

id
� ) A �h�!A i ) B

�h�i ) B
Cut

� ) A �h�!B i ) C

�h�,��!A\Bi ) C
\L

�!
A,� ) B

� ) A\B \R

� ) A �h�!B i ) C

�h��!B/A,�i ) C
/L �,

�!
A ) B

� ) B/A
/R

�h�!A,
�!
B i ) C

�h���!A •Bi ) C
•L � ) A � ) B

�,� ) A •B •R

�h⇤i ) A

�h�!I i ) A
IL

⇤ ) I
IR

� ) A �h�!B i ) C

�h�|
k

����!
A #

k

Bi ) C
#
k

L
�!
A |

k

� ) B

� ) A #
k

B
#
k

R

� ) A �h�!B i ) C

�h����!B "
k

A|
k

�i ) C
"
k

L �|
k

�!
A ) B

� ) B "
k

A
/R

�h�!A |
k

�!
B i ) C

�h�����!A�
k

Bi ) C
�

k

L � ) A � ) B
�|

k

� ) A�
k

B
�

k

R

�h[]i ) A

�h�!J i ) A
JL

[] ) J
JR

where k 2 NAT .

Fact 1 The full General Displacement Calculus enjoys Cut-elimination.

Definition 10 (Weaker fragments) We define the following fragments
of the full Hypersequent Calculus :

1. We obtain first-order Displacement Calculus, denoted D1, by dropping
the /R, \R, •L, "

k

R, #
k

R,�
k

L rules.

2. We obtain product-unit-free Displacement Calculus, denoted DJ, by
dropping the IL rule.

5



3. We obtain full General Displacement Calculus, denoted DIJ, by doing
nothing.

The reader may verify that restricting the hypersequent calculus to D1, one
indeed has no use for higher-order types.

Definition 11 The dimension of a D grammar G is given by the maximal k
such that "

k

, #
k

or �
k

is allowed to appear in proofs. We call a D grammar
of dimension k a k-D grammar.

Fact 2 L(D1) ✓ L(DJ) ✓ L(DIJ).

2.3 Relations between D and MCFG

As noted earlier, the goal of this paper is to relate restrictions on MCFGs
to restrictions on D grammars. One result was already given in [5], where
it is shown that for any k, L(k-D1) = (k + 1)-MCFL

wn

. The result is nice
because the dimension as it is represented in well-nested MCFG precisely
matches that of first-order General Displacement Calculus, i.e. the num-
ber of strings acted upon by a predicate of a MCFG

wn

equals the number
of strings that the corresponding type in a D1 grammar holds. A major
disadvantage is that, although dealing with only first-order types should be
computationally attractive, for each dimension one requires a new family of
connectives.

The main result of this paper is the rather surprising fact that L(D1) =
L(1 �DJ). We prove this by giving a construction from an arbitrary well-
nested MCFG to a 1-DJ grammar, which exploits the use of higher-order
types. By the result of [5] we then have inclusion from left to right. The con-
verse is shown by showing how an arbitrary 1-DJ grammar can be converted
into a L(D1) grammar, where the use of higher-order constructions deter-
mines the dimension of the latter grammar. We thus get L(D1) = L(1�DJ),
although we lose the dimension-specific equality. Thus, we get that only one
extra family of connectives on top of the associative Lambek Calculus L is
enough to describe well-nested MCFLs.

On top of this result, we show an algorithm that construct from a specific
class of ill-nested MCFGs weakly equivalent L(1 � DJ) grammars. This
gives a partial result on what kind of ill-nestedness of MCFGs describes
languages that are still well-nested languages (although maybe of higher di-
mension).

6



Furthermore, we will show a construction from L(DIJ to MCFGs, i.e. that
includes higher-order types involving the empty string type I. This gives
rise to the conjecture that L(DIJ) = MCFL.

3 Preliminary: two di↵erent modes of presenta-

tion

In this section, we briefly outline the intuition behind the relation between
MCFG derivations and D grammar derivations. It should become clear
then, that specific fragments of these two constructs admit a direct conver-
sion.

3.1 MCFG derivations as D proofs

Although we speak of MCFG in this paper, another, equivalent formalism
was defined in [1] called Simple Range Concatenation Grammar (sRCG).
Although the definition of an MCFG is more appropriate to work with
here, the presentation of rules in sRCG format is more simple. Given
an MCFG rule A ! f [B1, ..., B

k

] and an mcf -function f(�!x1, ...,�!x
k

) =
↵1�1, ...↵n

�
n

,↵
n+1, the corresponding sRCG rule isA(↵1�1, ...↵n

�
n

,↵
n+1) !

B1(�!x1)...B
k

(�!x
k

). Just for the sake of clarity, we choose to visualize MCFG
production rules in sRCG format, although the proofs use the MCFG def-
initions. Henceforth, when we refer to production rules, we mean MCFG
rules, but will write sRCG rules.

Production rules of an MCFG may be seen as derivation schemes. In fact,
they are linear Horn clauses. Such a rule can be represented by a tree in
the following sense: given a rule A(�!↵1, ...,�!↵n

) ! B1(�!x1)...B
k

(�!x
k

), we draw
its tree representation like:

A(�!↵1, ...,�!↵n

)

B1(�!x1) ... B
k

�!
( x

k

)

A derivation can be unambiguously represented as a general tree, with the
nodes labelled with production rules, for each non-terminal associated with
the rule, an edge runs to a production rule that starts with that non-

7



terminal, for instance:

S(XY bZ) ! A(X)B(Y, Z)

A(a) ! ✏ B(XY, bZ) ! A(X)B(Y, Z)

A(a) ! ✏ B(X, b) ! A(X)

A(a) ! ✏

The general intuition behind constructing aD lexicon that mimics an lMCFG
production rule is that one turns the tree representation of the rule upside
down, and constructs a type assignment for the anchor such that, given the
leaves of the tree as derivations and the anchor as lexical item, one can de-
rive the root of the tree as the conclusion of a D derivation and nothing else.
So, we get the following picture:

A(a�!↵1, ...,�!↵n

)

B1(�!x1) ... B
k

�!
( x

k

) a : A/T
Lex

...
�!x1 : B1

...
�!x2 : B2 ...

...
�!x
k

: B
k....

�!↵1 · 1 · ... · 1 ·�!↵n

: T

a�!↵1 · 1 · ...1 ·�!↵n

: A

Once the types for each anchor are constructed, it is clear that for every
possible lMCFG derivation there is a corresponding D proof and vice-versa.
So the only tricky thing here is when exactly a production rule is such that
one can directly read o↵ an anchor type. In [5] it is shown that a direct
construction is possible in the case of well-nested production rules (corre-
sponding to first-order anchor types). However, for ill-nested rules a direct
interpretation is absent, as one can see in the following typical examples:

A(aX1Y1, Y2X2)

B(X1, X2) C(Y1, Y2)

...
X1 · 1 ·X2 : B ) B

IH

...
Y1 · 1 · Y2 : C ) C

IH

X1 · Y1 · 1 · Y2 ·X2 : B �1 C
�1R A ) A

Ax.

a ·X1 · Y1 · 1 · Y2 ·X2 :
��������!
A/(B �1 C), B �1 C ) A

/L

A(aX1Y1, X2Y2)

B(X1, X2) C(Y1, Y2)
a ·X1 · Y1 · 1 ·X2 · Y2 :? ) A

?

8



In our proofs, we will assume the correspondence between well-nested
production rules and first-order D types.

4 Main result: L(D1) = L(1-DJ)

In this section, our main result is proven, namely that first-order General
Displacement Calculus is equal in terms of generative capacity to higher-
order two-dimensional Displacement Calculus. Given that L(D1) = MCFL

wn

,
we show respectively that MCFL

wn

✓ L(1-DJ) and L(1-DJ) ✓ L(D1).
What follows is the main result that L(D1) = L(1-DJ), in other words,
there is a trade-o↵ between dimension and type order in Displacement Cal-
culus.

4.1 From left to right: MCFL
wn

✓ L(1-DJ)

We show a direct construction of a 1-DJ grammar, given an arbitrary well-
nested MCFG. The construction follows [5] except that the tuple delimiters
in the MCFG

wn

are interpreted prosodically rather than using a separator.
Each intercalation is represented then using these ‘variables’ in a higher-
order position. Consider for instance the production rule A(aXY Z) !
B(X,Z)C(Y ). We add a lexical entry s1

B

: S1
B

for the first tuple delimiter
of the B predicate, and add a lexical entry a : A/((B "1 S1

B

) �1 C). By
induction then, we may assume that any B tuple X,Y is represented in
the resulting grammar as X · S1

B

· Y and so (given Z : C) we may derive
aXY Z : A.

Lemma 1 For any lMCFG
wn

G, there is a 1-D
J

grammar G0 such that
L(G) = L(G0).

CONSTRUCTION: Let G = (N,T, F, P, S, dim) be a lexicalized well-nested
MCFG. For each A 2 N , add type assignments si

a

: Si

A

for 1  i  dim(A).
Following the construction of [5], we consider each rule separately, and add
type assignments for the anchors of the rules. Given a rule A(a�!↵1, ...,�!↵n

) !
B1(�!x1)...B

k

(�!x
k

), we add a type assignment a : A/T where T is determined
by the way �!x1...�!x

k

are combined to obtain �!↵1, ...,�!↵n

. As G is well-nested,
�!↵1, ...,�!↵n

is a concatenation of subparts and wrap units (separators), com-
bined with wrapping of subparts and product units. As each rule is by
definition linear, each �!x

i

is used exactly once. Hence, there is a way of de-
scribing such a combination using a first-order type, say T 0. We transform

9



this T 0 into T by the following means:

1. Replace every D �
k

E by (D "1 Sk

D

)�1 E,

2. Replace every D • Jk by D • Sk

A

(where Jk means J but as the k-th
occurrence in the final A tuple.

CORRECTNESS: The construction of [5] shows that the translation into
first-order D types mimics the production rules of G exactly, so we only need
to show that the additional transformation gives us (1) a two-dimensional
grammar and (2) the same string language.

(1) First of all, there are no occurrences of arrow connectives, so the only
higher-dimensional connectives are occurrences of � with an index
greater than 1. These are all handled by the first part of the trans-
formation, and reduced to the "1,�1 connectives. Furthermore, all
the newly introduced separators are replaced by prosodic variables.
Therefore, the only moment in a derivation when a string is split is
when producing a D "1 Sk

E

tuple.

(2) Given an occurrence of some D�
k

E in T 0, a derivation in G will look
like this:

....
X · 1k · Y : � ) D

....
Y : � ) E

XY Z : �|
k

� ) D �
k

E
�

k

The transformation then allows the following derivation in G0:

....
X 0 · sk

D

· Y 0 : �0|1Sk

D

) D

X 0 · 1 · Y 0 : �0 ) D "1 Sk

D

....
Y 0 : �0 ) E

X 0Y 0Z 0 : �0|�0 ) (D "1 Sk

D

)�
k

E
�

k

The second part of the transformation then guarantees that instead
of separators, there are actually prosodic variables available, hence we
conclude that the transformation indeed preserves string language.

10



Example. Consider the following grammar for {anbncndnenfn|n � 1}:

S(XY Z) ! A(X,Y, Z)
A(aXP1, P2Y P3, P4ZP5) ! A(X,Y, Z)B(P1)C(P2)D(P3)E(P4)F (P5)

A(aP1, P2P3, P4P5) ! B(P1)C(P2)D(P3)E(P4)F (P5)
B(b).
C(c).
D(d).
E(e).

The construction of [5] gives the following grammar:

S := (A�2 I)�1 I
a : A/(((A�1 (B • J • C))�2 (D • J • E)) • F )

a : A/(B • J • C •D • J • E • F )
b : B
c : C
d : D
e : E
f : F

The additional transformation gets rid of the higher-index � connectives
and the J types, resulting in the following grammar:

S := (((A "1 S2
A

)�1 I) "1 S1
A

)�1 I
a : A/(((((A "1 S1

A

)�1 (B • S1
A

• C)) " S2
A

)�1 (D • S2
A

• E)) • F )
a : A/(B • S1

A

• C •D • S2
A

• E • F )
b : B
c : C
d : D
e : E
f : F
s1
A

: S1
A

s2
A

: S2
A

The reader may try out some derivations to verify that the latter two gram-
mars are indeed weakly equivalent.

11



4.2 From right to left: L(1-DJ) ✓ L(D1)

We show a direct construction of a first-order D grammar from an arbitrary
1-DJ grammar. The intuition is as follows: for any ", # introduction, the
natural deduction rule is one of the following:

↵ : A....
↵|� : B

� : A # B
I #

↵ : A....
�|↵ : B

� : B " A
I "

meaning that, as the grammars are constructive and we do not allow the
product unit in the antecedent position (↵ 6= 0), the ↵ : A has to be con-
structed first by means of some other legitimate derivation. We show that
it is possible to construct a first-order grammar that e↵ectively allows the
derivations of � but without using the mentioned introduction rules. The
introduction rules are only used when the lexicon contains B " A (A # B)
in a negative position. Thinking of B " A as an expression of type B but
at the place of the separator lacking an expression of type A and A # B as
an expression that, wrapped in an A tuple would produce an expression of
type B, it is clear that A " J and J # A are trivial types for any type A.
Indeed, A " J ⌘ A ⌘ J # A (both in the hypersequent calculus as in the
prosodic interpretation). We exploit this fact in the construction.
To make the construction as explicit as possible, we elaborate a bit on types
as functions here. Given a first-order lexical item x : X, we can have a
direct interpretation of types as simply typed (syntactic) functions, by as-
signing a syntactic map, together with a semantic type map, which would
assign for example to b : B/A, the function f(X) = bX : A ( B and to
c : A # C the function g(hX,Y i) = XcY : A ( C, and we see in the
construction of [5] that this interpretation of types exactly covers all the
well-nested mcf -functions. Also, every D1 derivation essentially is a recipe
for a repeated application of these functions to one another, yielding finally
some string. So the key point of our construction is that, instead of deriving
(by means of arrow introduction rules) types as A " B to be used as input
to some higher-order type, for example (A " B)\C, we add a lifted type A0

(lifted in the sense that as A is one-dimensional, A0 is two-dimensional) and
add lexical items that allow exactly those derivations of A0 (which will be a
D1 derivation) such that the syntactic function (or yield) is the same as a
derivation of A " B. As we can track all the places in derivations where the
specific expression of type B was inserted that is later extracted, we allow
a derivation in which there is a separator inserted at one of these places.

12



Consider, for example, the following lexical items:

e : (A " B) # E
a : A/B
b : B/A
c : A

we could derive for instance c : A, abc : A, ababc : A, etc., and hence we
could derive a1 : A " B, aba1 : A " B, etc.
The trick is to replace the A " B in the first lexical assignment (as it causes
a higher-order type) with a lifted type A0, and then add types that allow
to derive a1 : A0, aba1 : A0 etc. So, we replace the first lexical assignment
by e : A0 # E, and we search through all types that output an expression of
type A, namely the second and last entry. We ‘traverse’ these entries from
output to input, replacing each type by a fresh marked type and repeating
for all entries that output the replaced type, until we find an input of type
B, which we replace by a J , so that the place where an expression of type
B would be inserted to finally derive an expression of type A will now be
filled by a separator, but consequently we may only derive an expression of
type A0 (this is to guarantee that any other derivation that use an ordinary
expression of type A does not get disturbed by our surgery). However, we
need to make sure that after inserting one separator, we can still derive
longer strings, i.e. at this point of the surgery we might be able to derive
a1 : A0, but not aba1 : A0. To do this, traverse all types that have A as in-
put, traversing them from this type, and replacing all types by their marked
doubles. For the example, this will result in the following lexicon:

e : A0 # E
a : A/B
b : B/A
c : A

a : A0/J

a : A0/B0

b : B0/A0

Now we can derive a1 : A0 using just the fifth lexical entry, and aba1 : A0

by additionally using the last two entries.

13



Lemma 2 For any 1-DJ grammar G, there is a D1 grammar G0 such that
L(G) = L(G0).

CONSTRUCTION: For each lexical assignment, do the following:

1. For each higher-order type (A " B) # C (or (A " B)\C or C " (B # A)
or C/(B # A)) in an output position, replace the A " B (B # A) in
the input position by A0 (A0).

2. For each A0, consider all lexical assignments that have A as their final
output type. Traverse these items from output to input, and for each
input type, replace it by a marked double, and traverse all items that
output the original type. Do this until a B input is encountered, and
replace this by a J and stop. Now, for each entry that has A as an
input type, traverse the type from input to output, starting at this A,
replacing every type by its marked double.

3. Replace each ", # connective with the corresponding "
k

, #
k

connectives
(corresponding in the sense that, as A0 is of higher-dimension than A,
"
k

, #
k

connectives might need to be replaced by, say, "
k+1, #k+1).

4. Delete useless entries.

CORRECTNESS: We have to show that G0, the grammar that results from
the described transformation, is language-preserving and that it is first-
order. Clearly, G0 is first-order, as the only connectives that give rise to
higher order types are ", #, but precisely these cases are handled by step 1
of the construction. Now we need to show that L(G) = L(G0). Let D be a
derivation containing an introduction of ", so it contains a subderivation of
the form

c : (B " A) # C
Lex

↵ : A....
�|↵ : B

� : B " A
I "

�|c : C

By the transformation, we cannot derive c : (B " A) # C anymore, but
only c : B0 # C. However, part 2 of the transformation enables us to derive
�0 : B0, because the place where ↵ was inserted in � in order to derive B,

14



can now be a separator by using the alternative lexical item, given by part
2 of the transformation.
For the converse, let D be a derivation of G0. Either it uses only original
types from G, in which case it is derivable in G. The other case is when
it uses new types, given by the transformation. As all the atomic types in
the new types are solely di↵erent from those in G, nothing of the derivation
that uses these types can interfere with lexical items in G. So, it su�ces to
show that these types mimic exactly the relevant introduction rules for G, in
which case any derivation from these types can be derived in G. It is clear,
by the choice of fresh types, that such derivations are uniquely determined,
and that they thus only derive expressions of the form �0 : B0, for which it
holds that one can derive �0 : B " A in G. As the type B0 # C is unique
in G, and comes from some type (B " A) # C in G, we know that we can
derive �0|a : C in G0, but also that we can derive �0|a : C in G.

Example. Consider the following 1-D
J

grammar for {www|w 2 {a, b}⇤}:

S := (((P " X)� I) " Y )� I
a : A
b : B
x : X
y : Y

a : (((P/A)/Y )/A)/X
a : ((P " X) # T1)/X

a : ((T1 " Y ) # (P/A))/Y
b : (((P/B)/Y )/B)/X
b : ((P " X) # T3)/X

b : ((T3 " Y ) # (P/B))/Y

We follow the construction. By step 1, we replace the start symbol, the last
two assignments for a and the last two assignments for b to get

S := (P 0 � I)� I
a : (P 0 # T1)/X

a : (T 0
1 # (P/A))/Y

b : (P 0 # T3)/X
b : (T 0

3 # (P/B))/Y

Step 2 instructs us to do a traversal from output to input for P, T1, T3 with
‘parameters’ X,Y, Y respectively, giving us new types:

15



a : (((P 0/A)/J)/A)/J
a : (P 0 #1 T 0

1)/J
a : (T 0

1 #2 (P 0/A))/J
b : (((P 0/B)/J)/B)/J

b : (P 0 #1 T 0
3)/J

b : (T 0
3 #2 (P 0/B))/J

Still following step 2, we need to do an upwards traversal, to ensure that we
can derive the rest of the strings, but in this example, this is not relevant,
so we skip it.
By step 3, we need to replace the ", # connectives by corresponding "

k

, #
k

connectives. We did this implicitly in the previous steps.
The x : X and y : Y are useless, and so are deleted. The final grammar thus
looks as follows:

S := (P 0 � I)� I
a : A
b : B

a : (((P 0/A)/J)/A)/J
a : (P 0 #1 T 0

1)/J
a : (T 0

1 #2 (P 0/A))/J
b : (((P 0/B)/J)/B)/J

b : (P 0 #1 T 0
3)/J

b : (T 0
3 #2 (P 0/B))/J

5 From MCFG to D

A very recent result [3] shows that MIX3 = {w 2 {a, b}⇤| |w|
a

= |w|
b

=
|w|

c

}, i.e. the permutation closure of {anbncn|n � 1} is not a well-nested
MCFL. It is shown in ([4]) that 1-D

IJ

can recognize MIX
n

for an arbitrary
n, i.e. the permutation closure of {an1 ...anm|n � 1} for fixed m. The latter
fact is obtained by exploiting c : (A " I) # B lexical entries, i.e. take an
expression of type A, non-deterministically insert a separator somewhere in
that expression, and infixate c in that location to produce an expression
of type B. Now, given the result of the previous section, unless MIX
is sóme well-nested MCFL, this means that the described use of product
units may discriminate between well-nested and ill-nested, i.e. as L(1-D

J

) =

16



MCFL
wn

, it might be so that L(1-D
IJ

) = lMCFL. We do not provide a
proof of this here, but rather show how a specific subclass of MCFG can be
converted to a L(1-D

J

) grammar. In other words, this says that for specific
kinds of ill-nested grammars, there also is a well-nested grammar, though of
possibly higher dimension.

Definition 12 Given some production rule p1 = A(↵) ! B1(�1)...Bn

(�
n

)
and a production rule p2 = C(�) ! D1(�1)...Dm

(�
m

), we say that p2 is in
the scope of p1 i↵ p2 is reachable from p1, i.e. there is some B

i

in the RHS
of p1 such that there is a production rule with B

i

on the LHS etc etc. that
reaches C.

Definition 13 (Single ill-nested MCFG) An MCFG G is single ill-nested,
denoted MCFG

sin

i↵ for all ill-nested production rules p, there is no ill-
nested production rule p0 such that p0 is in the scope of p.

We saw above that translating an ill-nested rule into a D lexical en-
try (or a set of entries) is not straightforward at all. However, it can be
done using higher-order constructs, given that every argument of the tuples
on the right-hand side has some specific type. For instance, consider the rule

A(aX1Y1, X2Y2) ! B(X1, X2)C(Y1, Y2)

If we would be able to keep track of the types of Y1, Y2 as the C tuple is built
up, say that Y1 has type C1 and Y2 has type C2, we could have the type
assignment a : (A/C2)/(B�(C " C2)), which means something like ‘concate-
nate a to a B tuple with a C tuple without the right component inserted, and
then concatenate the missing right component of C to the outside’. Now, if
an ill-nested rule has only well-nested rules in its scope, we can indeed keep
track of the tuple components as they are built up. So, instead of first build-
ing up B,C tuples in the example, we would build up a B tuple, and then
insert a C tuple as it is built up. So the derivation of C is carried over to the
one ill-nested rule. Without loss of generality, we assume that any ill-nested
rule is of the form A0(↵1

1...↵
1
n

...↵n

1 ...↵
n

n

) ! A1(↵1
1, ...,↵

n

1 )...An

(↵1
n

, ...,↵n

n

).
Given such an ill-nested rule, we consider the A1 tuple and add type assign-
ments for A2 through A

n

such that we get the following subsequent derived
strings:

↵1
1, ...,↵

n

1 : A1

17



↵1
1↵

1
2, ...,↵

n

1↵
n

2 : C
A2

↵1
1↵

1
2↵

1
3, ...,↵

n

1↵
n

2↵
n

3 : C
A3

...
↵1
1...↵

1
n

...↵n

1 ...↵
n

n

: A0

So our construction consists of two parts: assigning types such that we can
cycle through all RHS predicates in order to simulate the ill-nested rule,
and for each RHS predicate, simulating the construction of the tuple, and
we describe the two parts separately.
Firstly, we distinguish between two kinds of rules. We call a production
rule A(�!↵ ) ! B1(

�!
�1)...Bn

(
�!
�
n

) distributed i↵ there are x
i

, x
j

2 �!
�
k

such that
x
i

2 ↵
m

and x
j

/2 ↵
m

. So, given two variables in the same tuple on the
RHS, they do not occurr in the same component in the LHS. Henceforth,
we distinguish distributed and non-distributed rules. Furthermore, we call
a rule recursive when A = B

i

for some i, and logically, the other rules are
non-recursive.
We first show how to go from a tuple ↵1, ...,↵n

: T
i

to a tuple ↵1�1, ...,↵n

�
n

:
T
o

given some tuple �1, ...,�n : B. The idea is to trace the components
�
i

of this tuple and to create a derivation cycle in which we insert each
component into the input tuple. We assume working on an MCFG that
has an ordering on the non-terminals such that for all clauses c 2 P it holds
that if A

i

! A
j

...A
k

then i  min(j, ..., k).1 Furthermore, we assume that
well-nested rules of the grammar are lexicalized componentwise, i.e. every
component of a tuple starts with a non-terminal item.2

Construction 1 Given that we want to construct ↵1�1, ...,↵n

�
n

: T
o

from
↵1, ...,↵n

: T
i

and �1, ...,�n : B, for all B clauses c do the following:

• If c is recursive, add type assignments xA
i

: XA

i

for each distributed
variable XA

i

associated with the non-terminal A. Now we construct
two type assignments, (1) one for initiating the rule from the T

i

tuple,
and (2) one for the actual recursion.

1The assumption is without loss of generality, for if there is a rule such that the
requirement does not hold, i.e. i > j for some RHS Aj , perform a substitution, where you
replace the rule by a set of rules, created by substituting Aj with all possible Aj rules.
Do this for all rules and the property eventually holds. As substitution preserves string
language, this algorithm also does.

2This is probably also without loss of generality, as well-nested MCFL can be lex-
icalized preserving dimension and string language ([5],p.47, lemma 4). Extending the
algorithm to work componentwise should not be di�cult.

18



Assignment 1 Following the components from left (1) to right (n), assign the
anchor of the first component the type (T

i

# T1)/P 0
1. For every

component (j) except for the last one, assign the anchor the type
(T

j

# T
j+1)/P 0

j

, and for the last component assign the anchor the
type (T

m

# T
m+1)/P 0

m

where P 0
k

is constructed as in the construc-
tion from [5] but including the distributed variables.

Assignment 2 Following the components from left (1) to right (n), assign the
anchor of the first component the type ((T

m+1 " XA

1 ) # R1)/Q0
1.

For every component (j) except for the last one, assign the anchor
the type ((R

j

" XA

j

) # R
j+1)/Q0

j

, and for the last component

assign the anchor the type ((T
m

" XA

m

) # T
m+1)/Q0

m

where Q0
k

is constructed as in the construction from [5] but including the
distributed variables.

• If c is non-recursive, we do the same as in the recursive case, but in
assignment 1, we do not include distributed variables, P 0

m

= A0 and
Q0

m

= A0.

Repeatedly applying this construction, we can give a 1-DJ grammar,
given an arbitrary single ill-nested MCFG.

Theorem 1 Single ill-nested MCFL
sin

✓ L(1-DJ).

PROOF: Let R = (N,T, V, P, S) be a lexicalized MCFG
sin

. Without loss
of generality, we assume that there exists an ordering on N such that for all
clauses c 2 P it holds that if c = A

j

! A
k

� then ord(A
j

)  ord(A
k

).3

For every well-nested rule that is in a path from the start symbol without
passing an ill-nested rule, we add a lexical entry according to the construc-
tion in [5]. For each ill-nested rule, we follow the following construction.
Let p = A0(a↵1

1...↵
1
n

, ...,↵1
n

...↵n

n

) ! A1(↵1
1, ...,↵

n

1 )...An

(↵1
n

, ...,↵n

n

) be an ill-
nested rule in P such that none of the RHS rules except for A1 do not reach
an ill-nested rule. We add new primitive types C

Ai for 2  i  n denoting
in which phase of the cycle we are. Then, for each A

i

for 2  i  n we
construct new type assignments as follows:

• If i = 2, then we construct new type assignments according to con-
struction 1 with input type A1 and output type C

A2 .

• If 2 < i < n then construct new type assignments according to con-
struction 1 with input type C

Ai and output type C
Ai+1 .

3The Greibach Normal Form for Context Free Grammar applies this concept.[2]

19



• If i = n then construct new type assignments according to construction
1 with input type C

An and output type A0.

Correctness: It is obvious that when well-nested rules can be used only
out of the scope of ill-nested rules that the construction from [5] su�ces,
so we need to show that construction 1 su�ces to simulate ill-nested rules.
Given an ill-nested rule c = A0(a↵1

1...↵
1
n

, ...,↵1
n

...↵n

n

) ! A1(↵1
1, ...,↵

n

1 )...An

(↵1
n

, ...,↵n

n

)
it is clear that the construction of theorem 1 cycles through the A2, ..., An

tuples, adding them in order of appearance. For any derivation crossing
this ill-nested rule, a specific combination of A2, ..., An

tuples is added to
an unspecified A1 tuple. Thus, we need to show that construction 2 allows
to independently add each specific A

i

tuple such that each combination
can be made. In construction 2, we distinguish between recursive and non-
recursive rules. It is clear that for each rule, we add types that simulate
one rule application. So, given a derivation for an A

i

it either applies a
bunch of recursive rules and then a non-recursive one, or it directly applies
a non-recursive rule. In the first case, the translation of the recursive rules
ensures that we end up with a tuple with some X

i

variables, that get lifted
out after application of a non-recursive rule, using case 2 of the translation,
which uses (T

i

"
j

X
j

) # T
k

) constructions. In the second case, we just have
that we start from an A1 tuple, and put in components without distributed
variables. This is done by the A # T1,Ti

# T
i+1,Tn�1\Tn

constructions.

Example. The followingMCFG recognizesRESP2 = {anbncmdmenfngmhm|n,m 
1}:

S(X1Y1X2Y2) ! A(X1, X2)K(Y1, Y2)
A(aXb, eY f) ! A(X,Y )

A(ab, ef) ! ✏
K(cXd, gY h) ! K(X,Y )

K(cd, gh) ! ✏

The A rules are not reached by the second or greater argument on the
RHS of an ill-nested rule and the B rules are only reached by the second or
greater argument on the RHS of an ill-nested rule. So we follow [5] to get
type assignments for the A rules:
a : (((A/F )/E)/J)/B
a : (A/F )/(A� (B • J • E))
b : B
e : E

20



f : F
Now we follow construction 1 to get rules for the first, ill-nested rule:
For the first, recursive B rule, we add types for x, y,c and g:
x : X
y : Y
c : ((A # T3)/D)/X
g : ((T3\T1)/H)/Y
c : (((T1 " X) # T2)/D)/X
g : (((T2 " Y ) # T1)/H)/Y
d : D
h : H
For the second, non-recursive B rule, we add types for c, d:
c : (A # T4)/D
g : (T4\S)/H
c : ((T1 " X) # T5)/D
g : ((T5 " Y ) # S)/H

6 Conclusion & Future work

The main result of this paper is that general (of arbitrary dimension) first-
order Displacement Calculus (D1) is weakly equivalent to higher-order, but
one-dimensional Displacement Calculus without the use of product unit in
higher-order types (1-D

J

). Combined with the result of [5] that D1 is
weakly equivalent to the class of well-nested Multiple Context Free Lan-
guages (MCFL

wn

), 1-D
J

is also weakly equivalent to MCFL
wn

.
The combined results give a trade-o↵ between order and dimension: D1

has an infinite number of residuated triples "
k

, #
k

,�
k

, but only first-order
types, whereas 1-D

J

has only two residuated triples, namely the standard
Lambek connectives /, \, • and ", #,�. However, the latter system allows
higher-order types. When laid down next to well-nested Multiple Context
Free Grammar, however, the relation between D1 and MCFL

wn

is more
direct and refined, as for each k, the class of D1 grammars with dimension
at most k coincides with (k+1)-MCFL

wn

, so the place of separators in an
expression really corresponds to tuple delimiters in MCFG

wn

, whereas the
equivalence between 1-D

J

and MCFL
wn

does not consist of an equivalence
at each dimension.
We also showed that a specific subclass of lexicalized MCFL is a subset of

21



lexicalized MCFL by showing that one can construct a weakly equivalent
1-D

J

grammar.
As is shown in [4], the permutation closure of any context-free language can
be generated by a D grammar by exploiting product units in higher-order
position. As MIX3 is the permutation closure of a context-free language,
but not a well-nestedMCFL of dimension 2 (and quite likely not well-nested
at all), this shows that 1-D

IJ

, i.e. the full two-dimensional Displacement
Calculus goes beyond well-nesteds MCFL in terms of generative capacity.
The question is, however, how much further this goes. We conjecture here
that it is limited to lexicalized MCFL, although a full proof of equivalence
has not been constructed yet. Constructively going from an arbitrary lexi-
calized MCFL to a 1-D

IJ

seems a quite challenging route, and we have no
clue as to how this might be done. However, the other way around may be
simpler. A type assignment of the form x : (A " I) # B means something
as, given an expression of type A, insert a separator anywhere and place
the x there to obtain an expression of the form B. This behaviour might
be simulated in an MCFG by introducing a (predicate) type A0 of a higher
dimension than A, and adding a set of production rules that gives the com-
binatorics of creating all possible discontinous A-strings. Further study may
provide an explicit proof of the conjecture.

References

[1] P. Boullier. Proposal for a natural language processing syntactic back-
bone. 1998.

[2] S.A. Greibach. A new normal-form theorem for context-free phrase struc-
ture grammars. Journal of the ACM (JACM), 12(1):42–52, 1965.

[3] M. Kanazawa and S. Salvati. Mix is not a tree-adjoining language.

[4] G. Morrill and O. Valent́ın. On calculus of displacement. In TAG,
volume 10, pages 45–52, 2010.

[5] GJ Wijnholds. Investigations into categorial grammar: Symmetric pre-
group grammar and displacement calculus. 2011.

22


