
Logical Methods in Natural Language Processing

On some properties of the sequent calculus for NL

and NL}
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Abstract

The familiar properties of a relation of consequence have been gen-
eralized to hold independently of the proof calculus of a logic. In this
paper, we show that those properties hold for NL and NL} and we
point out some applications, as well as some future work

The properties of a relation of consequence that were postulated for
the first time by Tarski [16, 17, 18] caused great controversy when new
substructural or non-monotonic logics emerged. However, new work trying
to answer the question What is a logic? have bring them back into scene.
This re-born of the tarskian characterization of the consequence relation
took place in the very complicated world of Category Theory.

Then, the plan of the paper will be to give a very general sketch of how
those properties are used. However, for the interested reader, we provide the
appropriate bibliography to get the whole formalization. This constitutes
the Motivation section. We proceed then to briefly present the calculus with
which we are concern. The core of the paper is the proof of the mentioned
properties for NL and NL}. Finally we provide what can be an application
of this proof.

1 Motivation

During the decade of the 80’s (past century), a line of research looking
for a definition of a logical system was particularly flourishing. [3, 5, 10,
11, 15] The main tool used in achieving this formalization was a couple of
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ideas: institution[5] and ⇡� institution[3]. The first of them works with the
semantics of a logic, while the second does it with its proof calculus. Later,
both ideas were put together to constitute the formalism called General
Logic [11, 10].

A General logic is based on the idea of giving a fix abstract formalization
that can be suitable to model, translate or rewrite any logic just by giving its
signature. A signature ⌃ is a tuple that determines the non-logical symbols
of a system. For instance, for first order logic ⌃FOL = (F, P ) where F
is a set of ranked function symbols and P a ranked alphabet of predicate
symbols. For the logics that concern us here, a signature ⌃NL = (A, T ) can
be given by a set of atomic types and a set of composed types.

Everything is settle within a category theory framework, thus signatures
form a category, whose objects are signatures, and whose morphisms are
signature morphisms which preserves the relevant properties in question.
For instance for the first example, preserving rank of symbols, for our second
example, preserving types. Those morphisms induce a functor sen(⌃) which
gives the set of sentences of a given signature and its translation into a target
signature.

These very general ideas are enough to sketch what a ⇡�institution or en-
tailment system is. An entailment system[11, 10] is a triple ✏ = (Sign, sen,`
) with Sign a category of signatures, sen : Sign ! Set a functor associating
to each signature ⌃ in Sign its set of sentences, and `, is taken to be a func-
tion associating to each signature ⌃, a relation `⌃✓ }(sen(⌃)) ⇥ sen(⌃),
the entailment relation of ⌃ satisfying:

1. Reflexivity: For all ' 2 SEN(⌃), {'} `⌃ '.

2. Monotony: If � `⌃ ' y � ✓ �0, then �0 `⌃ '.

3. Transitivity: If � `⌃ 'i, i 2 I, and � [ {'i|i 2 I} `⌃  , then � `⌃  .

4. `-traductibility: If � `⌃ ' then for any H 2 Mor(Sign),

H : ⌃! ⌃0 :
SEN(H(�)) `⌃0 SEN(H(')).

Last condition can be seen as a generalization of the requirement that
 Los and Susko [9] added to the tarskian characterization of a consequence
relation. Thus, the only thing we want to focus on is the fact, that first
three properties should hold for any ` relation, independently of the proof
calculus generating it. For logical systems like linear logic [4], in which we do
not have weakeing nor contraction, it may look straightforward impossible
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to fulfill. However, given a signature of linear logic ⌃LL we have to take as
objects of sen(⌃LL) sequents, not formulas. [11, 10]. Then, `LL should be
identified with the horizontal bar of the closure of a derivation [10, p.284]

A bit more precisely, we can say that given a set � = {(�) �)i}i2I of
sequents in sen(⌃LL) and a sequent �0 := �0 ) �0 2 sen(⌃LL), � `LL �0
i↵ there exists a derivation � such that its root is �0 and its branches contain
sequents of �

As Lambek calculus [7] as well some extensions of it used in typelogi-
cal grammars [13] are directly linked with linear logic, it is natural to ask
whether the calculus for these logics satisfies the aforementioned properties.
In the following, we prove they hold as well for NL [8] and NL} [12]

2 NL

Let´s recall the Gentzen presentation for the NL calculus. Here we follow
the presentation given in [13]

Given a set A of atomic types, the language F of a simple Lambek
system is given by:

F := A | F/F | F • F | F\F

For the Gentzen presentation, derivability is given between a term T and
a type formula, where

T := F | (T , T )

Thus, a sequent is a pair (�, A) where � 2 T and A 2 F , and is denoted
�) A

The Gentzen presentation is given by:
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A ) A
Ax

�) A �[A] ) C

�[�] ) C
Cut

(�, B) ) A

�) A/B
/R

�) B �[A] ) C

�[(A/B,�)] ) C
/L

(B,�) ) A

�) B\A \R
�) B �[A] ) C

�[(�, B\A)] ) C
\L

�[(A,B)] ) C

�[A •B] ) C
•L �) A �) B

(�,�) ) A •B •R

Thus, let’s fix some basic notation, already mentioned. Let ⌃NL =
(A, T ) be a NL signature. Let sen(⌃NL) be the set of sequents over ⌃NL.
We will denote by �i = (�, A) an arbitrary sequent in sen(⌃NL), by �i, a
derivation of �i in NL, by � a set of sequents in sen(⌃NL). Let �NL be the
following relation:
� �NL �i i↵ there exists �i a derivation of �i in NL such that for any

sequent �i 2 �i, �i 2 �.
Then we want to show that

1. �,�i �NL �i

2. If � �NL �i, and �,�i �NL �i, then � �NL �i

3. If � �NL �i, then �, �NL �i, for some  set of sequents

Then, for 1, given any �i = (�, A), such that there is a derivation �i in
NL with set of sequents �,

�) A A ) A
�) A

is always a derivation of �i such that �,�i �NL �i
Now, let´s assume that property 2 holds for the premises of the rules

of the calculus given. Let´s show by induction on the derivation that it
holds for the conclusion. Assume that � �NL �0, with derivation �1 and
�,�0 �NL �0 with derivation �2 for �0 = (�0, A0), �0 = (�0, B0)

Then we have two main cases: either the last rule used in �2 introduces
the main connective of B0 or not.

Case 1 .- The last rule R used in �2 does not introduce the main connec-
tive of B0 Then the following rules should be considered:
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• For any application of [Ax], it holds vacuously, as then � = ?, and �0
is the empty sequent

• If R = [Cut], then we have the following:

�0 = �[�0] ) C �0 = �[X] ! C, where

�0 ) X �0 = �[X] ! C

�0 = �[�0] ) C

for some X,A,B,C 2 F , �0,�0 2 T
as NL has cut-elimination (see [7]), we can find a cut X ) Y , �[Y ] )
C of lower degree by which we can obtain �0. By inductive hypothesis
non of those sequents will be �0 Then, by transitiviy, we have �0 ) Y
and applying cut with �[Y ] ) C we obtain �0, thus � �NL �0

For the remaining cases recall that any other rule have the subformula
property [14] i.e. either the types in the conclusion are the same than
the types in the premises, or are the immediate subtypes of the active
formula.

• Thus if R = [•L], then conclusion and premise have the same types
and: �0 = �01[(A • B)] ) C, and �0 = �01[(A,B)] ) C for some
A,B,C 2 F , �01 2 T
Then we have the following subcases for �1: �0 could have been ob-
tained by [•R], [\L] or [/L]

– If [•R] was applied, then there exists �00,�
00
0 2 � such that �00 =

(A,X), �000 = (B, Y ) and

A ) X B ) Y
(A,B) ) X • Y

was the last step in �1, with �01 = ?, C = X • Y
Then, by monotonicity we can have A •B ) X • Y Thus � �NL

�0

– [/L] was applied. Then there exists �00,�
00
0 2 � such that

�00 = B ) X, �000 = �01[Y ] ) C and such that

B ) X, �01[Y ] ) C

�01[A,B] ) C
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was the last step in �1
Then we can obtain:

Y ) Y B ) X
Y/X ) Y/B

B ) B
(Y/X) •B ) (Y/B) •B

(Y/X) •B ) Y

finally applying cut with �01[Y ] ) C we have�0 Thus, � �NL �0

– [\L] can be handled analogously

– [Cut] follows by the case treated before.

If the types in the premises are the immediate subtypes of �0, then
either [\L], [/L] were applied. Then we have the following scenario:

�0 = �01[(A/B),�0
1] ) C

�0 = �01[A] ) C and there exists �00,

�00 = �
0
1 ) B for some A,B,C 2 F , �01,�

0
1 2 T and such that

�01[A] ) C �0
1 ) B

�01[(A/B),�0
1] ) C

was the last step in �2. Then, by its configuration, we may assume that
�0 could have been obtained by [Cut]. Thus, by inductive hypothesis
it can be handled with the previous case done by that rule and this is
analogous in the case of [/L]

Case 2.- The rule applied introduces the main connective . Then we have
to consider the following cases:

• R = [/R] Then

�0 = �1 ) A/B

�0 = (�1, B) ) A

and the last step in �2 was

(�1, B) ) A

�1 ) A/B
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By inductive hypothesis we may assume there exists �00,�
00
0 such that

�00 = (�1, B) ) X, �000 = X ) A and non of them is �0

Thus we can have (�1 • B) ) X from (�1, B) ) X, by [•L] and
(�1 •B) ) A by transitivity, and finally �1 ) A/B Then � �NL �0

• The case for [\R] is analogous

• [•R] We have that �0 = (�1,�1) ) A • B �0 = (�1 ) B) and there
exists �00 = (�1 ) A) such that

�1 ) A �1 ) B

(�1,�1) ) A •B

is the last step of �1

Then we may assume there exists �00 and �000 with �00 = �1 ) X
�000 = X ) B for some X and di↵erent from �0 from which �0 was
obtained then we can have:

A ) A, X ) B by [Ax] and Hypothesis

A •X ) A •B by monotonicity

�1 ) X X ) (A •B)/A by hypothesis and property of •
�1 ) A �1 ) (A •B)/A by hypothesis and transitivity

(�1,�1) ) ((A •B)/A) •A by [•R]

(�1,�1) ) A •B by application

Thus � �NL �0

Now, finally for weakening, we have that such a property holds. Strictly
speaking nothing force me to use a sequent, as well we have some fool uses of
a sequent. However, in practice we always avoid such derivations, and if we
restrict ourselves to ‘clean’derivations, there’s no way for it to hold as the
calculus keeps strict record of the rules used. Thus, theoretically speaking,
this property holds and allows us to see this calculus within the class of
calculus, in practice, any weakened proof will be avoided.

3 NL }
NL } can be seen as the base case of a number of extensions of Lambek cal-
culus made by Moortgat [13] In analogy with linear logic, new operators are
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introduced to bring back to the calculus structural properties in a controlled
way. Here we present this extension following [13]

The class of type-formulas is extended with the following operators:

F := A | F/F | F • F | F\F |}F | ⇤F

then, the class of terms is also extended with unary operator:

T := F | (T , T ) | (T )⇧

and the following rules are added to NL

�) A
(�)⇧ ) }A

}R
�[(A)⇧] ) B

�[(}A)⇧] ) B
}L

(�)⇧ ) A

�) @A @R
�[A] ) B

�[(@A)⇧] ) B
@L

we have the residuation laws } @ A ) A and A ) @}A
Thus, we have half of the way done by the previous section, and now we

need to prove the properties in question for the remaining rules. Note that
here we will have reflexivity by the same reasoning as in the previous section.
Also, as before, transitivity is the case that requieres more work. However,
incidentally, we found a shortcut. We will make use of the following lemma
due to Jäger See [6, p.52]
LEMMA Let X[Y ] ! A be a theorem of NL}. Then there is a type B
such that

1. NL} ` Y ) B

2. NL} ` X[B] ) A

3. There is a type occuring in X[Y ] ) A which contains at least as many
connectives as B

Thus assume
� �NL} �0 by a derivation �1 and
�,�0 �NL} �0 by a derivation �2
we want to show that � �NL} �0

Note that as the new term operator (·)⇧ will only be involved if the new
rules are used, we may safely restrict to prove everything just for these rules.
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If [}R] was used in the last step of �2 then we have that

�0 = (�)⇧ ) }A

�0 = �) A for some � 2 T , A 2 F
by the lemma stated we know that there exists sequents �00,�

00
0 such

that �00 = � ) X and �000 = X ) A. By inductive hy‘pothesis we
know that non of those is �0 Then form �) X we obtain (�)⇧ ) }X
by [}R] form X ) A we obtain }X ) }A by isotonicity of } and
finally by transitivity we obtain (�)⇧ ) }A � �NL} �0

If [@R] was applied then we have that

�0 = (�)⇧ ) A

�0 = �) @A

was the last step done in �2. By the lemma we know that there exists
sequents � ) X, (�)⇧ ) }X, and }X ) A from which �0 was
obtained by cut. By inductive hypothesis we may assume that non of
those is equal to �0 then }X ) A implies X ) @A by the residuation
law. By transitivity with �) X we obtain �) @A which is what we
wanted

For the following two cases, we can say that were proved by Jäger [6].
Of course, his lemma and proof were used for very di↵erent purposes
and in a very di↵erent context, however, it happens that he actually
proved what we wanted to prove for these cases:

[}L] was used, then

�[(A)⇧] ) B = �0
�[}A] ) B = �0

was the last step of �2

by the lemma we can assume that �[(A)⇧] ) B was obtained by cut
from the sequents (A)⇧ ) X and �[X] ) B for some X 2 F di↵erent
from �0 by inductive hypothesis. Thus we can have }A ) X form
(A)⇧ ) X by [}L] and by cut with �[X] ) B we obtain �0 from �

[@R] is applied. Then we have:

�[A] ) B = �0
�[(@A)⇧] ) B = �0
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was the last step in �2

Again we may assume that there exists sequents A ) X and �[X] ) B
form which �0 was obtained by cut. The same strategy works here,
from A ) X we can obtain (@A)⇧ ) X by [@R]; and by cut with
�[X] ) B we obtain again �0 from �

Finally for weakening we are again in the same situation as before, it
holds though in practice we will avoid such kind of derivations.

4 Application

As we mentioned at the beginning of this work, those properties are required
for a logic to be formalized as an institution. Morphisms required for trans-
lation are much every day work of typelogical grammarian. Thus we can
say that as a matter of fact typelogical grammars are already formalized
as a General Logic. As an example, of a more direct work on this vein
see the work of Paiva[2], whose dialectica category have been found to be
a more suitable model for linear logic than the one suggested by Seely[1].
Thus it will be an interesting exercise to actually enjoy of the fruits of this
formalism.
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