
Proofs nets
and the categorial flow of information
Michael Moortgat and Richard Moot
Utrecht Institute of Linguistics OTS, LABRI-CNRS Bordeaux
M.J.Moortgat@uu.nl,moot@labri.fr

Abstract

The Lambek-Grishin calculus (LG) is a multiple-conclusion extension of
Lambek’s categorial type logic with dual families of fusion (’merge’) and
fission operations, and linear distributivity principles relating these two.
Thanks to the distributivity principles, LG captures dependency patterns
beyond context-free, both in syntax and semantics. In this paper we rep-
resent the information flow in categorial derivations in terms of a proof
net graphical calculus. We study the correspondence between the compo-
sition graphs for these nets and the terms associated with focused sequent
derivations.

1 Background, motivation

In this paper, we study LG, a type logic based on the generalization of Lambek’s
Syntactic Calculus proposed in Grishin (1983). The formula language of this
logic is given in (1).

A,B ::= p | atoms: s, np, . . .
A ⊗ B | B\A | A/B | product, left vs right division
A ⊕ B | A � B | B ; A coproduct, right vs left difference

(1)

2 Proofs nets and the categorial flow of information

Algebraically, LG combines the residuated triple of (3) — fusion with its two
residuals — with the dual residuated triple in (4): fission, left and right differ-
ence.

A ≤ A ; from A ≤ B and B ≤ C infer A ≤ C (2)

A ≤ C/B iff A ⊗ B ≤ C iff B ≤ A\C (3)

B ; C ≤ A iff C ≤ B ⊕ A iff C � A ≤ B (4)

For the interaction between the fusion and fission families, we have the pos-
tulates of (5).1 These postulates have come to be called linear distributivity
principles (e.g. Cockett and Seely (1996)): linear, because they respect resources
(no material gets copied).

(A ; B) ⊗ C ≤ A ; (B ⊗ C) C ⊗ (B � A) ≤ (C ⊗ B) � A
C ⊗ (A ; B) ≤ A ; (C ⊗ B) (B � A) ⊗ C ≤ (B ⊗ C) � A (5)

LG is attractive for syntactic and for semantic reasons. Syntactically, the in-
teraction principles of (5) bring expressivity beyond context-free. Moot (2007)
gives an LG encoding of the adjunction operation of Tree Adjoining Gram-
mar, the most restricted formalism in the mildly context-sensitive hierarchy
Kallmeyer (2010); Moortgat (2009) has an LG grammar for MIX, according to
Salvati (p.c.) an instance of a non-wellnested 2-MCFG. The upper bound for
the syntactic expressivity of LG grammars in their full generality is open; see
Melissen (2010) for discussion.

At the semantic level, LG derivations can be given an interpretation in
the continuation-passing style. The CPS interpretation leads to a considerable
simplification of the syntax/semantics interface: semantic scope construal can
be obtained on the basis of simple first-order syntactic types, as shown in
Bastenhof (2012) and discussed in §3.1.

Despite these attractions, working with the standard ‘symbolic’ presenta-
tions of LG involves rather formidable technical machinery. Our focus in this
paper is on proof nets — an elegant graphical calculus that captures the essence
of LG derivations without the bureaucracy of heavy symbol manipulation.

2 Display sequent calculus and proof nets

A sequent calculus for LG, in the ‘display logic’ style, can be found in Goré
(1997). We present it in §2.1, using the notation of Moortgat (2009). In §2.2,

1There is a second set, with the inequalities reversed, which we’ll not discuss here.

Moortgat and Moot 3

we introduce the proof net graphical calculus, and show how it leads to a
representation of LG derivations that is free of spurious ambiguities.

2.1 sLG: display sequent calculus

The characteristic feature of Display Logic is that for every logical connective,
there is a corresponding structural connective, not just for conjunction and
disjunction as in standard sequent calculus. We use the same symbols for the
logical operations and their structural counterparts; structural operations are
marked off by centerdots. Below the grammar for input (sequent left hand
side), and output structures (sequent rhs). Atomic structures are formulas F .

I ::= F | I · ⊗ · I | I · � · O | O ·; · I
O ::= F | O · ⊕ · O | I · \ · O | O · / · I

(6)

Figures 1 and 2 then give the structural and logical rules of sLG. The (dual)
residuation principles take the form of ‘display postulates’, so called because
they allow any formula component of a structure to be displayed as the sole
occupant of the sequent lhs or rhs. The logical rules apply to formulas thus dis-
played. The one-premise rules simply replace a logical connective by its struc-
tural counterpart; these rules are invertible. The non-invertible two-premise
rules give expression to the monotonicity properties of the type-forming oper-
ations. The distributivity principles (5) appear in rule form here as G1 − G4 in
the structural group.

It is shown in Moortgat (2009) that the display sequent format sLG enjoys
cut elimination and thus allows for decidable proof search. Still, there is room
for improvement:

• spurious ambiguity: as with sequent calculi in general, one and the same
matching of occurrences of atomic subformulae in a proof’s axiom leaves
may be obtained in different ways as a result of irrelevant rule permuta-
tions;

• no parsing: backward chaining sequent proof search requires the structure
of the formulas making up the end sequent to be given in advance; for
genuine LG parsing, one would like this structure to be computed as the
outcome of the deduction process;

• display equivalences represent alternative views on one and the same
structure: one would like to have a proof format where there is no need
for the explicit structural manipulations of the display postulates.

4 Proofs nets and the categorial flow of information

A⇒ A Ax X⇒ A A⇒ Y
X⇒ Y Cut

X⇒ Z · / · Y

X · ⊗ · Y⇒ Z
rp

Y⇒ X · \ · Z
rp

Y ·; · Z⇒ X

Z⇒ Y · ⊕ · X
drp

Z · � · X⇒ Y
drp

X · ⊗ · Y⇒ Z · ⊕ ·W
Z ·; · X⇒W · / · Y G1

X · ⊗ · Y⇒ Z · ⊕ ·W
Y · � ·W ⇒ X · \ · Z G3

X · ⊗ · Y⇒ Z · ⊕ ·W
Z ·; · Y⇒ X · \ ·W G2 X · ⊗ · Y⇒ Z · ⊕ ·W

X · � ·W ⇒ Z · / · Y G4

Figure 1: sLG. Structural rules.

A · $ ·B⇒ Y
A $ B⇒ Y

$L $ ∈ {⊗,;,�} X⇒ A · # ·B
X⇒ A # B

#R # ∈ {⊕, /, \}

X⇒ A Y⇒ B
X · ⊗ · Y⇒ A ⊗ B ⊗R A⇒ X B⇒ Y

A ⊕ B⇒ X · ⊕ · Y ⊕L

X⇒ A B⇒ Y
A\B⇒ X · \ · Y

\L X⇒ A B⇒ Y
X · � · Y⇒ A � B �R

X⇒ A B⇒ Y
B/A⇒ Y · / · X

/L X⇒ A B⇒ Y
Y ·; · X⇒ B ; A ;R

Figure 2: sLG. Logical rules.

The proof net approach to be discussed below removes these problematic as-
pects.

2.2 Proof nets

Proof nets are a graphical way of representing proofs, introduced first for linear
logic Girard (1987). The proof nets for LG we present in this section are a
simple extension of the proof nets for the multimodal Lambek calculus of Moot
and Puite (2002). A proof structure is a (hyper)graph where the vertices are

Moortgat and Moot 5

labeled by formulas and the edges connect these formulas.2 The hyperedges
correspond to the logical rules, linking the active formulas and the main formula
of the rule and keeping track of whether one is dealing with a non-invertible
two-premise rule or with an invertible one-premise rule. We’ll call these tensor
and cotensor links respectively.

Definition 2.1. A link is a tuple 〈t, p, c,m〉where

• t is the type of the link — tensor or cotensor

• p is the list of premises of the link,

• c is the list of conclusions of the link,

• m, the main vertex/formula of the link, is either a member of p, a member
of c or the constant “nil”.

In case m is a member of p we speak of a left link (corresponding to the left
rules of the sequent calculus, where the main formula of the link occurs in the
antecedent) and in case m is a member of c we speak of a right link.

Graphically, links are displayed as shown below. A central node links
together the premises and conclusions of the link; when we need to refer to
the connections between the central node and the vertices, we will call them its
tentacles. The interior of this central node is white for a tensor link and black
for a cotensor link. The premises are drawn, in left-to-right order, above the
central node and the conclusions, also in left-to-right order, are drawn below it.
The main formula of cotensor links is drawn with an arrow towards it; the main
formula of a tensor link can only be determined by inspection of the formulas.

P1 · · · Pm

C1 · · · Cn

tensor rule

P1 · · · Pm

C1 · · · Cn

cotensor rule (right rule)

P1 · · · Pm

C1 · · · Cn

cotensor rule (left rule)

Figure 3 shows the links for LG. The links for the fission connectives are
up-down symmetric versions of the links for the fusion connectives.

2In what follows we will often speak of formula occurrences (or simply formulas if there is no
possibility of confusion) instead of vertices labeled by formulas.

6 Proofs nets and the categorial flow of information

Fusion connectives — hypothesis

[L/]

A

A / B B

[L⊗]

A ⊗ B

A B

[L\]

A

B B \ A

Fusion connectives — conclusion

[R/]

A

A / B B

[R⊗]

A ⊗ B

A B

[R\]

A

B B \ A

Fission connectives — hypothesis

[L�]

A

A � B B

[L⊕]

A ⊕ B

A B

[L;]

A

B B ; A

Fission connectives — conclusion

[R�]

A

A � B B

[R⊕]

A ⊕ B

A B

[R;]

A

B B ; A

Figure 3: Links for proof structures of the Lambek-Grishin calculus

Definition 2.2. A proof structure 〈S,L〉 is a finite set of formula occurrences S
and a set of links L from those shown in Figure 3 such that

• each formula is at most once the premise of a link,

• each formula is at most once the conclusion of a link.

Moortgat and Moot 7

s

np \ s

s / (np \ s)

np

s

s

s

s � s

(s � s) ; np

np

Figure 4: Lexical unfolding

Formulas which are not the conclusion of any link are called the hypotheses
of the proof structure. Formulas which are not the premise of any link are called
the conclusions of the proof structure.

We will say that a proof structure with hypotheses H1, . . . ,Hm and conclu-
sions C1, . . . ,Cn is a proof structure of H1, . . . ,Hm ⇒ C1, . . .Cn.

Example 1. Figure 4 shows the hypothesis unfolding of (s � s) ; np and the
conclusion unfolding of s / (np \ s). Both are obtained by simple application of
the rules of Figure 3 until we reach the atomic subformulas.

Though the figure satisfies the condition on proof structures (connectedness
is not a requirement), it is a proof structure of (s � s) ; np, s, s,np ⇒ s / (np \
s), s, s,np. We obtain a proof structure of (s� s) ; np⇒ s / (np \ s) by identifying
atomic formulas.3 In this case, we choose to identify the top s of the left
subgraph with the bottom s of the right subgraph and perform the unique
choice for the remaining atomic formulas. The result is the proof structure
shown in Figure 5 on the left.

Due to the graphical constraints of writing these proof nets on the plane —
we want to draw the np \ s node below the cotensor link at the bottom of the
figure, since it is a conclusion of this link, but would have to draw the figure
on a cylinder to make this work — we need to use curved tentacles connect the
minor premise of (co-)implication links to the rest of the proof structure.

Definition 2.3. An abstract proof structure 〈V,L, h, c〉 is a set of vertices V, a set
of (unlabeled) links L and two functions h and c, such that

• each formula is at most once the premise of a link,

3This node identification corresponds to the “axiom links” of linear logic proof nets.

8 Proofs nets and the categorial flow of information

s

ss � s

np np \ s

(s � s) ; np

s / (np \ s)

�

��

� �

(s�s);np�

�
s/(np\s)

Figure 5: Proof structure of (s� s);np⇒ s / (np \ s) corresponding to the lexical
unfolding of Figure 4 and its corresponding abstract proof structure

• each formula is at most once the conclusion of a link,

• h and c are functions from the hypotheses resp. conclusions of the abstract
proof structure to formulas

Note that the abstract proof structure corresponding to a two formula se-
quent A⇒ B has only a single vertex v, with h(v) = A and c(v) = B.

The transformation from proof structure to abstract proof structure is a for-
getful mapping: we transform a proof structure into an abstract proof structure
by erasing all formula information on the internal vertices. Visually, we remove
the formula labels from the graph and replace them by simple vertices (�). We
indicate the results of the functions h and c above (resp. below) the vertices (for
the hypotheses and conclusions respectively). As a result, we have to following
four types of vertices in an abstract proof structure.

� � � �A

B

A

B

internal hypothesis conclusion both

Example 2. Figure 5 shows (on the right) the transformation of the proof struc-
ture on its left into an abstract proof structure.

Moortgat and Moot 9

[R/]

�

H� �

�
C

[L⊗]

�
C

� �

H�

[R\]

�

H��

�
C

Figure 6: Contractions — Lambek connectives

[L�]

�

�
C

�

H�

[R⊕]

�
C

� �

H�

[L;]

�

�
C

�

H�

Figure 7: Contractions — Grishin connectives

Definition 2.4. A tree is an acyclic, connected abstract proof structure which
does not contain any cotensor links.

The trees of Definition 2.4 correspond to sequents in a rather direct way.
In fact, they have the pleasant property of “compiling away” the display rules
of the sequent calculus. Or, in other words, trees represent a class of sequents
which is equivalent up to the display postulates.

Definition 2.5. Given an abstract proof structure A, we say that A contracts in
one step to A′, written A→ A′ iff A′ is obtained from A by replacing one of the
subgraphs of the form shown in Figures 6 and 7 by a single vertex.

H�
C

H represents the result of the function h for the indicated node (relevant only

10 Proofs nets and the categorial flow of information

X�

��
V

Y�

�
W

�

�
W

�
V

X� Y� Y�

�
W

�X�

�
V

G1 G3

Figure 8: Grishin interactions I — “mixed associativity”

in case this node is a hypothesis of the abstract proof structure). Similarly, C
represents the formula assigned by the function c to the indicated node.

Given an abstract proof structure A we say that A contracts to an abstract
proof structure A′ if there is a sequence of zero or more one step contractions
from A to A′.

When we say that a proof structure P contracts to an abstract proof structure
A′ we will mean that the underlying abstract proof structure A of P contracts
to A′.

Y�

�

�
V

X�

�
W

�

�
W

�
V

X� Y�

X�

�
W

�
Y�

�
V

G2 G4

Figure 9: Grishin interactions II — “mixed commutativity”

To obtain expressivity beyond context-free, we are interested in LG with
added interaction principles. Figures 8 and 9 give the additional rewrite rules
on abstract proof structures that correspond to the rule form of Grishin’s dis-
tributivity laws.

Definition 2.6. A proof structure P is a proof net iff its underlying abstract proof
structure A converts to a tree using the contractions of Figures 6 and 7 and the
structural rules of Figures 8 and 9.

Moortgat and Moot 11

�

��

� �

(s�s);np�

�
s/(np\s)

G1

�

�� �

�

(s�s);np�

�
s/(np\s)

L;

(s�s);np� �

�

�
s/(np\s)

R/ (s�s);np�
s/(np\s)

Figure 10: Reducing the abstract proof structure of Figure 5 to a tree.

Theorem 1. A proof structure P is a proof net — that is, P converts to a tree T — iff
there is a sequent proof of T.

The proof is an easy adaptation of the proof of Moot and Puite (2002). A
detailed proof can be found in Moot (2007).

Example 3. We show that the proof structure of Figure 5 is a proof net by
contracting it to a tree. Starting with rule (G1), the two cotensor links can be
contracted in any order. Figure 10 shows a complete sequence.

Example 4. For a second example (to be taken up again when we discuss fo-
cused proof search in §3) we turn to Figure 11 which shows the lexical proof
structures for a generalized quantifier noun phrase, a transitive verb, a deter-
miner and a lexical noun.

Consider the sentence ‘everyone likes the teacher’. In the unfocused sequent
calculus sLG, the sequent (np /n)⊗n, (np \ s) /np,np /n,n⇒ s has at least seven
proofs, depending on the order of application of the introduction rules for the
five occurrences of the logical connectives involved: ⊗ (once), / (three times),
\ (once). Figure 12 gives, on the left, the single possible identification of n and
np formulas that gives rise to a proof net with the lexical entries in the desired
order. The corresponding abstract proof structure is given in the middle. This
abstract proof structure allows us to apply a contraction directly, as shown on
the right.

12 Proofs nets and the categorial flow of information

(np / n) ⊗ n

n

np / n

n

np

np np \ s

s

(np \ s) / np np

np / n n

np n

Figure 11: Lexical proof structures for a generalized quantifier noun phrase, a
transitive verb, a determiner and a noun.

(np / n) ⊗ n

np / n n

np np \ s

s

(np \ s) / np np

np / n n
(np/n)⊗n�

� �

� �

�
s

(np\s)/np� �

np/n� n�

(np/n)⊗n� �

�
s

(np\s)/np� �

np/n� n�

L⊗

Figure 12: Judgement (np / n) ⊗ n, (np \ s) / np,np / n,n ⇒ s: proof structure,
abstract proof structure and contraction.

The table below summarizes the correspondence between proof nets and
sequent proofs.

sequent calculus proof structure conversion
axiom axiomatic formula —
cut cut formula —
two-premise rule tensor link —
one-premise rule cotensor link contraction
interaction rule — rewrite

The invertible one-premise rules correspond to both a link and a contraction

Moortgat and Moot 13

and the interaction rules are invisible in the proof structure, appearing only in
the conversion sequence.

With a bit of extra effort in the sequentialization proof (and the exclusion
of cuts on axioms) we can show that these correspondences are 1-to-1, that is
each axiomatic formula in a proof net corresponds to exactly one axiom rule in
the sequent proof, each non-invertible two-premise rule corresponds to exactly
one link in the proof net and each invertible one-premise rule to exactly one
link in the proof net and exactly one contraction in its conversion sequence.

Summing up, the proof net approach offers the following benefits in com-
parison to sequent proof search.

• Parsing. Whereas for sequent proof search the structure of the sequent
has to be given, the contraction sequence that identifies a proof structure
as a proof net actually computes this structure.

• Removal of spurious ambiguity. Proof nets, like (product-free) natural
deduction, have different proof objects only for proofs of a judgement
which differ essentially. The combinatorial possibilities for such read-
ings, which are obtained by finding a complete matching of the premise
and conclusion atomic formulas, can easily be enumerated for a given
sequence of formulas.

• Display rules compiled away. The tensor trees associated with well-
formed proof nets represent a class of sequents which is equivalent up to
the display postulates.

3 Proof nets and focused display calculus

The spurious non-determinism of naive backward-chaining proof search can
also be addressed within the sequent calculus itself, by introducing an appro-
priate notion of ‘normal’ derivations. In §3.1, we introduce fLG, a focused
version of the sequent calculus for LG. In §3.2, we then study how to interpret
focused derivations from a proof net perspective.

3.1 fLG: focused display calculus

The strategy of focusing has been well-studied in the context of linear logic,
starting with the work of Andreoli Andreoli (2001). It is based on the distinction
between asynchronous and synchronous non-atomic formulas. The introduction

14 Proofs nets and the categorial flow of information

rule for the main connective of an asynchronous formula is invertible; it is non-
invertible for the synchronous formulas. Backward chaining focused proof
search starts with an asynchronous phase where invertible rules are applied
deterministically until no more candidate formulas remain. At that point,
a non-deterministic choice for a synchronous formula must be made: this
formula is put ‘in focus’, and decomposed in its subformulae by means of
non-invertible rules until no more non-invertible rules are applicable, at which
point one reenters an asynchronous phase. The main result of Andreoli (2001)
is that focused proofs are complete for linear logic.

Focused proof search for the Lambek-Grishin calculus has been studied by
Bastenhof (2011) who uses a one-sided presentation of the calculus. In this
section, we implement his focusing regime in the context of the two-sided
sequent format of Bernardi and Moortgat (2010). We proceed in two steps.
First we introduce fLG, the focused version of the sequent calculus of §2.1.
fLG makes a distinction between focused and unfocused judgements, and has
a set of inference rules to switch between these two. fLG comes with a term
language that is in Curry-Howard correspondence with its derivations. This
term language is a directional refinement of the λµµ̃ language of Curien and
Herbelin (2000).

The second step is to give a constructive interpretation for LG deriva-
tions by means of a continuation-passing-style translation: a mapping d·e that
sends derivations of the multiple-conclusion source logic to (natural deduction)
proofs in a fragment of single-conclusion intuitionistic Linear Logic MILL (in
the categorial terminology: LP). For the translation of Bastenhof (2011) that
we follow here, the target fragment has linear products and negation A⊥, i.e. a
restricted form of linear implication A(⊥, where ⊥ is a distinguished atomic
type, the response type. Focused source derivations then can be shown to
correspond to distinct normal natural deduction proofs in the target calculus.

fLGA/,⊗,\,�,⊕,;
d·e
−−−−−→ LPA∪{⊥}

⊗,·⊥

(
·
`

−−−−−→ IL{e,t}
×,→

)
For the linguistic illustrations in §3.2, we compose the CPS translation d·e with
a second mapping ·`, that establishes the connection with Montague-style se-
mantic representations. This mapping sends the linear constructs to their intu-
itionistic counterparts, and allows non-linear meaning recipes for the translation
of the lexical constants.

Moortgat and Moot 15

fLG: proofs and terms In the Curry-Howard proofs-as-programs tradition,
we set up fLG starting from a term language for which the sequent logic
then provides the type system. The term language encodes the logical steps
of a derivation (left and right introduction rules, and the new set of left and
right (de)focusing rules, to be introduced below); structural rules (residuation,
distributivity) leave no trace in the proof terms.

Sequent structures, as in §2.1, are built out of formulas. Input formulas now
are labeled with variables x, y, z, . . ., output formulas with covariablesα, β, γ,
To implement the focusing regime, we allow sequents to have one displayed
formula in focus. Writing the focused formula in a box, fLG will have to deal
with three types of judgements: sequents with no formula in focus (we’ll call
these structural), and sequents with a succedent or antecedent formula in focus.

X ` Y X ` A A ` Y

Corresponding to the types of sequents, the term language has three types of
expressions: commands, values and contexts respectively. For commands, we use
the metavariables c,C, for values v,V, for contexts e,E. The typing rules below
provide the motivation for the subclassification.

v ::= µα.C | V ; V ::= x | v1 ⊗ v2 | v � e | e ; v

e ::= µ̃x.C | E ; E ::= α | e1 ⊕ e2 | v\e | e/v

c ::= 〈x � E〉 | 〈V � α〉

C ::= c | x y
z .C |

x β
z .C |

β x
z .C |

α β
γ .C |

x β
γ .C |

β x
γ .C

(7)

Typing rules To enforce the alternation between asynchronous and syn-
chronous phases of focused proof search, formulas are associated with a po-
larity: positive for non-atomic formulas with invertible left introduction rule:
A ⊗ B, A � B, B ; A; negative for non-atomic formulas with invertible right in-
troduction rule: A ⊕ B, A\B, B/A. For atomic formulas, one can fix an arbitrary
polarity. Different choices lead to different prooftheoretic behaviour (and to
different interpretations, once we turn to the CPS translation). We will assume
that atoms are assigned a bias (positive or negative) in the lexicon. Below the
typing rules for fLG (restricting attention to the cut-free system).

(Co-)Axiom, (de)focusing First we have the focused version of the axiomatic
sequents, and rules for focusing and defocusing which are new with respect

16 Proofs nets and the categorial flow of information

to the unfocused presentation of §2.1. There is a polarity restriction on the
formula A in these rules: the boxed formula has to be negative for CoAx, µ, µ̃∗;
for Ax, µ̃, µ∗ it has to be positive. In the (Co-)Axiom cases, A can be required to
be atomic.

x : A ` x : A
Ax

α : A ` α : A
CoAx

X ` V : A

〈V � α〉 : (X ` α : A)
µ∗

E : A ` X

〈x � E〉 : (x : A ` X)
µ̃∗

C : (x : A ` X)

µ̃x.C : A ` X
µ̃

C : (X ` α : A)

X ` µα.C : A
µ

(8)

From a backward-chaining perspective, the µ, µ̃ rules remove the focus from
a focused succedent or antecedent formula. The result is an unfocused premise
sequent, the domain of applicability of the invertible rules, i.e. one enters the
asynchronous phase. From the same perspective, the rules µ∗, µ̃∗ place a succe-
dent or antecedent formula in focus, shifting control to the non-invertible rules
of the synchronous phase. The µ∗, µ̃∗ rules are in fact instances of Cut where
one of the premises is axiomatic.

Invertible rules The term language makes a distinction between simple com-
mands c (the image of the focusing rules µ̃∗, µ∗: 〈x � E〉, 〈V � α〉) from extended
commands C. The latter start with a sequence of invertible rewrite rules replac-
ing a logical connective by its structural counterpart. We impose the require-
ment that in the asynchronous phase all formulas to which an invertible rule is
applicable are indeed decomposed.

C : (x : A · ⊗ · y : B ` X)
x y
z .C : (z : A ⊗ B ` X)

⊗L
C : (X ` α : A · ⊕ · β : B)
α β
γ .C : (X ` γ : A ⊕ B)

⊕R

C : (x : A · � · β : B ` X)
x β
z .C : (z : A � B ` X)

�L
C : (X ` x : A · \ · β : B)

x β
γ .C : (X ` γ : A\B)

\R

C : (β : B ·; · x : A ` X)
β x
z .C : (z : B ; A ` X)

;L
C : (X ` β : B · / · x : A)
β x
γ .C : (X ` γ : B/A)

/R

(9)

Moortgat and Moot 17

Non-invertible rules When a positive (negative) formula has been brought
into focus in the succedent (antecedent), one is committed to transfer the focus
to its subformulae.

e1 : B ` Y e2 : A ` X

e1 ⊕ e2 : B ⊕ A ` Y · ⊕ · X
⊕L

X ` v1 : A Y ` v2 : B

X · ⊗ · Y ` v1 ⊗ v2 : A ⊗ B
⊗R

X ` v : A e : B ` Y

v\e : A\B ` X · \ · Y
\L

X ` v : A e : B ` Y

X · � · Y ` v � e : A � B
�R

e : B ` Y X ` v : A

e/v : B/A ` Y · / · X
/L

e : B ` Y X ` v : A

Y ·; · X ` e ; v : B ; A
;R

(10)

Derived inference rules: focus shifting To highlight the correspondence with
the algorithm for proof net construction to be discussed in §2.2, we will use
a derived rule format for shifting between a conclusion and premise focused
formula. A branch from (µ̃∗) via a sequence (possibly empty) of structural rules
and rewrite rules to (µ) is compiled in a derived inference rule with the µ̃∗

restrictions on A and the µ restrictions on B.

E : A ` Y

〈x � E〉 : (x : A ` Y)
µ̃∗

...
(res, distr, rewrite)

...
(÷)〈x � E〉 : (X ` β : B)

X ` µβ.(÷)〈x � E〉 : B
µ

{

E : A ` Y

X ` µβ.(÷)〈x � E〉 : B
�

For the combinations of µ∗, µ̃∗ and µ, µ̃, this results in the focus shifting rules
below. We leave it to the reader to add the terms.

18 Proofs nets and the categorial flow of information

A ` Y

X ` B
�

X′ ` A

X ` B
⇀⇁

X ` A

B ` Y

A ` Y′

B ` Y
↼↽

(11)

Example 5. We illustrate the effect of the focusing regime with some alternative
ways of assigning a polarity bias to atomic formulas with a simple Subject-
Transitive Verb-Object sentence. Examples with lexical material filled in would
be ‘everyone seeks/finds a unicorn’.

(np/n ⊗ n) · ⊗ · ((np\s)/np · ⊗ · (np/n · ⊗ · n)) ` s (12)

For the Object we have a Determiner-Noun combination. For the Subject, we
take a product type (np/n)⊗n, so that we have a chance to illustrate the working
of the asynchronous phase of the derivation. In the discussion of Figure 12, we
saw that (12) has multiple proofs in the unfocused sequent calculus, but only
one proof net, i.e. one way of matching the premise and conclusion atoms.

What about the focused calculus fLG? Before answering this question, we
have to decide on the polarization of the atomic types. Suppose we give them
uniform negative bias. There is only one focused proof then, with proof term
(13): ‘goal driven’, top-down, to use parsing terminology. In the proof term,
we write tv for the transitive verb; det for the object determiner; noun for the
object common noun; subj for the subject noun phrase.

µβ.(
y z

subj
.〈 tv � ((Q \ β) /Q′) 〉) with

Q : µγ.〈 y � (γ / µγ′.〈 z � γ′〉)〉 , Q′ : µα.〈 det � (α / µα′.〈 noun � α′〉)〉
(13)

As an alternative, suppose basic type s keeps its negative bias, resetting the
sentence continuation for each clausal domain, but the other basic types are
assigned positive bias. We now have two focused derivations: ‘data driven’,
bottom-up. To make sense of this difference, we will have to look at the CPS
translation of these proofs, to be introduced below.

µα.(
x′ z
subj

.〈 x′ � (µ̃x.〈 det � (µ̃y.〈 tv � ((x \ α) / y) 〉 / noun) 〉 / z) 〉) (14)

µα.(
x′ z
subj

.〈 det � (µ̃y.〈 x′ � (µ̃x.〈 tv � ((x \ α) / y) 〉 / z) 〉 / noun) 〉) (15)

Moortgat and Moot 19

Table 1: CPS translation: non-atomic types

pol(·)

A B dA ⊗ Be dA/Be dB\Ae dA ⊕ Be dA � Be dB ; Ae

− − dAe⊥ ⊗ dBe⊥ dAe ⊗ dBe⊥ dBe⊥ ⊗ dAe dAe ⊗ dBe dAe⊥ ⊗ dBe dBe ⊗ dAe⊥

− + dAe⊥ ⊗ dBe dAe ⊗ dBe dBe ⊗ dAe dAe ⊗ dBe⊥ dAe⊥ ⊗ dBe⊥ dBe⊥ ⊗ dAe⊥

+ − dAe ⊗ dBe⊥ dAe⊥ ⊗ dBe⊥ dBe⊥ ⊗ dAe⊥ dAe⊥ ⊗ dBe dAe ⊗ dBe dBe ⊗ dAe

+ + dAe ⊗ dBe dAe⊥ ⊗ dBe dBe ⊗ dAe⊥ dAe⊥ ⊗ dBe⊥ dAe ⊗ dBe⊥ dBe⊥ ⊗ dAe

CPS translation Let us turn then to the translation that associates the proofs
of the multiple-conclusion source logic fLG with a constructive interpretation,
i.e. a linear lambda term of the target logic MILL/LP. CPS translations for LG
were introduced in Bernardi and Moortgat (2007; 2010), who adapt the call-by-
value and call-by-name regimes of Curien and Herbelin (2000) to a directional
environment. The translation of Bastenhof (2011) (following Girard (1991)) is
an improvement in that it avoids the ‘administrative redexes’ of the earlier
approaches: the image of LG source derivations, under the mapping from
Bastenhof (2011) that we present below, are normal LP terms.

The target language, on the type level, has the same atoms as the source
language, and in addition a distinguished atom⊥, the response type. Complex
types are linear products − ⊗ − and a defined negation A⊥ .

= A (⊥. The CPS
translation d·e maps fLG source types, sequents and their proof terms to the
target types and terms in Curry-Howard correspondence with normal natural
deduction proofs.

Types For positive atoms, dpe = p, for negative atoms dpe = p⊥. For complex
types, the value of d·e depends on the polarities of the subtypes as shown in
Table 1.

Terms The action of d·e on terms is given in (16). We write x̃, α̃ for the target
variables corresponding to source x, α. The (de)focusing rules correspond to
application/abstraction in the target language. Non-invertible (two premise)
rules are mapped to linear pair terms; invertible rewrite rules to the matching
deconstructor, the case construct (φ,ψ, ξmetavariables for the the (co)variables
involved).

20 Proofs nets and the categorial flow of information

(co)var dxe = x̃ ; dαe = α̃

linear application d〈x � E〉e = (x̃ dEe) ; d〈V � α〉e = (α̃ dVe)

linear abstraction dµ̃x.Ce = λx̃.dCe ; dµα.Ce = λα̃.dCe

linear pair dφ#ψe = 〈dφe, dψe〉 (# ∈ {⊗, /, \,⊕,�,;})

case d
φ ψ
ξ .Ce = case ξ̃ of 〈φ̃, ψ̃〉.dCe

(16)

Sequents For sequent hypotheses/conclusions, we have

pol(A) dx : Ae dα : Ae

+ x̃ : dAe α̃ : dAe⊥

− x̃ : dAe⊥ α̃ : dAe

(17)

Table 1 then specifies how the translation extends to sequents (replace logical
connectives by their structural counterparts, and target ⊗ by the comma for
multiset union).

dC : (X ` Y)e = dXe, dYe `LP dCe :⊥⌈
X ` v : A

⌉
= dXe `LP dve : dAe⌈

e : A ` Y
⌉

= dYe `LP dee : dAe⊥
(18)

Illustrations We return to our sample derivations. In (19) one finds the CPS
image of the source types for transitive verb and determiner under the different
assignments of bias to the atomic subformulas, and the composition with ·`,
assuming np` = e (entities), s` =⊥`= t (truth values) and n` = e → t (sets of
entities). For the lexical constants of the illustration, Table 2 gives ·` translations
compatible with the typing. In Table 3, these lexical recipes are substituted for
the parameters of the CPS translation.

LG d·e
⊥ (d·e⊥)`

a. (np+
\s−)/np+ ((np ⊗ s⊥) ⊗ np)⊥ ((e × (tt)) × e)→ t

b. np+/n+ (np⊥ ⊗ n)⊥ ((et) × (et))→ t

c. (np−\s−)/np− ((np⊥⊥ ⊗ s⊥) ⊗ np⊥⊥)⊥ ((((et)t) × (tt)) × ((et)t))→ t

d. np−/n− (np⊥ ⊗ n⊥⊥)⊥ ((et) × (((et)t)t))→ t

(19)

Moortgat and Moot 21

Table 2: Constants: lexical translations

(np+
\s−)/np+ finds λ〈〈x, c〉, y〉.(c (findeet y x))

(np+/n+) ⊗ n+ everyone 〈λ〈x, y〉.(∀ λz.(⇒ (y z) (x z))), personet
〉

np+/n+ some λ〈x, y〉.(∃ λz.(∧ (y z) (x z)))

n+ unicorn unicornet

(np−\s−)/np− needs λ〈〈q, c〉, q′〉.(q λx.(need((et)t)et q′ x))

(np−/n−) ⊗ n− everyone 〈λ〈x,w〉.(∀ λz.(⇒ (w λy.(y z)) (x z))), λk.(k personet)〉

np−/n− some λ〈x,w〉.(∃ λz.(∧ (w λy.(y z)) (x z)))

n− unicorn λk.(k unicornet)

Table 3: Compositional translations

d(13)e = λβ̃.(case subj` of 〈ỹ, z̃〉.(tv` 〈〈λγ̃.(ỹ 〈γ̃, λγ̃′.(̃z γ̃′)〉), β̃〉, λα̃.(det` 〈α̃, λα̃′.(noun` α̃′)〉)〉))

d(13)e` = λc.(∀ λx.((⇒ (person x)) (c ((needs λw.(∃ λy.((∧ (unicorn y)) (w y)))) x))))

d(14)e = λα̃.(case subj` of 〈x̃′, z̃〉.(x̃′ 〈λx̃.(det` 〈λỹ.(tv` 〈〈x̃, α̃〉, ỹ〉),noun`〉), z̃〉))

d(14)e` = λc.(∀ λx.((⇒ (person x)) (∃ λy.((∧ (unicorn y)) (c ((likes y) x))))))

d(15)e = λα̃.(case subj` of 〈x̃′, z̃〉.(det` 〈λỹ.(x̃′ 〈λx̃.(tv` 〈〈x̃, α̃〉, ỹ〉), z̃〉),noun`〉))

d(15)e` = λc.(∃ λy.((∧ (unicorn y)) (∀ λx.((⇒ (person x)) (c ((likes y) x))))))

3.2 Proof nets and focusing

We saw in §3.1 that fLG may allow multiple derivations from one and the same
set of (co)axiom judgements. These derivations would be identified under
the proof net perspective of §2.2. To establish the correspondence with fLG
derivations, we introduce term-labeled proof nets, and show how a proof term
can be read off from the composition graph associated with a net.

Our approach is comparable to the algorithm of de Groote and Retoré (1996),
which computes a linear lambda term from a traversal of the dynamic graph
associated with a proof net for a derivation in the Lambek calculus L. For single-
conclusion L, the term associated with a given proof net is unique; in the case of

22 Proofs nets and the categorial flow of information

multiple-conclusion LG the term computation algorithm may associate more
than one term with a proof net. These multiple results will then be shown to
correspond to the derivational ambiguity of focused proof search.

Reduction tree In order to analyse the structure of a conversion sequence in
more detail, we introduce the notion of a proof net component:

Definition 3.1. Given a proof net P, a component C of P is a maximal subnet of
P containing only tensor links.

From a proof net, we can obtain its components by simply erasing all coten-
sor links. The components will be the connected components (in the graph-
theoretic sense) of the resulting graph. To simplify the following discussion,
unless otherwise indicated, we will use the word component to refer only to
components containing at least one tensor link.

When P is a proof net (and therefore converts to a tensor tree using a se-
quence ρ of conversions and contractions) the components of P can bee seen as
a parallel representation of the synchronous phases in sequent proof search. In
ρ, all interaction rules operate in one component C, the cotensor rules and the
corresponding contractions join two different components (though the compo-
nent connected to the main vertex can be trivial here). When multiple cotensor
links have both active tentacles attached to a single component (Figure 10 shows
an example), we apply all contractions simultaneously, repeating this process
until no further contractions apply.

So instead of seeing ρ as a sequence of reductions, we can see it as a rooted tree
of reductions: the initial components are its leaves (synchronous phases) and
the contractions, which join components, are its branches (the branches from
the active components to their parents correspond to asynchronous phases)
and the final tree — a single component — is its root (we will see an example
in Figure 19 below). Note that this same observation is essential to the cut
elimination proof of Moot and Puite (2002).

Nets and term labeling When assigning a term label to a proof net, our
algorithms will assign labels to larger and larger subnets of a given proof net,
until we have computed a term for the complete proof net. Like in the sequent
calculus, we distinguish between subnets which are commands, contexts and
values. Figure 13 shows how we will distinguish these visually: the main
formula of a subnet is drawn white, other formulas are drawn in light gray,
values are drawn inside a rectangle, contexts inside an oval.

Moortgat and Moot 23

x : A y : B

α : C β : D

c

Command

x : A e : B

α : C β : D

Context

x : A y : B

v : C β : D

Value

Figure 13: Proof nets with term labels: commands, context and values

Figure 14 gives the term-labeled version of the proof net links corresponding
to the logical rules of the sequent calculus. The flow of information is shown
by the arrows: information flow is always from the active formulas to the main
formula of a link, and as a consequence the complex term can be assigned either
to a conclusion or to a premise of the link. This is the crucial difference with term
labeling for the single-conclusion Lambek calculus, where the complex term is
always assigned to a conclusion. The cotensor rules, operating on commands,
indicate the prefix for the command corresponding to the term assignment for
the rule (we will see later how commands are formed).

The proof term of an LG derivation is computed on the basis of the compo-
sition graph associated with its proof net.

Definition 3.2. Given a proof net P, the associated composition graph cg(P) is
obtained as follows.

1. all vertices of P with formula label A are expanded into axiom links: edges
connecting two vertices with formula label A; all links are replaced by the
corresponding links of Figure 14;

2. all vertices in this new structure are assigned atomic terms of the cor-
rect type (variable or covariable) and the terms for the tensor rules are
propagated from the active formulas to the main formula;

3. all axiom links connecting terms of the same type (value or context) are
collapsed.

Figure 15 gives an example of the composition graph associated with a net.
In all, the expansion stage gives rise to four types of axiom links, depending
on the type of the term assigned to the A premise and the A conclusion. These
cases are summarized in Figure 16. The substitution links are collapsed in the
final stage of the construction of the composition graph (shown on the right of
Figure 15; the command and µ/µ̃ cases are the ones that remain.

24 Proofs nets and the categorial flow of information

L/ L⊗ L \

v : A

e : B

e / v : B / A

x : A y : B

z : A ⊗ B

x y
z

v : A

e : B

v \ e : A \ B

R/ R⊗ R \

γ : B / A x : A

β : B

βx
γ

v1 : A v2 : B

v1 ⊗ v2 : A ⊗ B x : A

β : B

γ : A \ B

xβ
γ

L� L ⊕ L;

α : A

x : B

z : B � A
xα
z

e1 : A e2 : B

e1 ⊕ e2 : A ⊕ B α : A

x : B

z : A ; B
αx
z

R � R ⊕ R ;

e : A

v : B

v � e : B � A

α : A β : B

γ : A ⊕ B

αβ

γ

e : A

v : B

e ; v : A ; B

Figure 14: LG links with term labeling

Given the composition graph cg(P) associated with a proof net P, we com-
pute terms for it as follows.

1. we compute all maximal subnets of cg(P), which consist of a set of tensor
links with a single main formula, marking all these links as visited;

2. while cg(P) contains unvisited links do the following:

Moortgat and Moot 25

A

A / B B

(A / B) ⊗ B

α / y : A / B y : B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

z : (A / B) ⊗ B

x y
z

α / y : A / B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

Figure 15: Proof net, initial composition graph, reduced composition graph.

Substitution

v

v

Substitution

e

e

Command

e

x

〈x � e〉

α

v

〈v � α〉

µ/µ̃

µα.c

α

µ

µ̃x.c

x

µ̃

Figure 16: Types of axiom links

(a) follow an unvisited command link attached to a previously calcu-
lated maximal subnet, forming a correct command subnet; like be-
fore, we restrict to active subnets which do not contain (or allow us
to reach through an axiom) the main formula of a negative link;

(b) for each negative link with both active formulas attached to the
current command subnet, pass to the main formula of the negative
link, forming a new command, repeat this step until no such negative
links remain attached;

(c) follow a µ or µ̃ link to a new vertex, forming a larger value or context
subnet and replacing the variable previously assigned to the newly
visited vertex by the µ value or µ̃ context.

The algorithm stays quite close to the focused derivations of the previous

26 Proofs nets and the categorial flow of information

section: the maximal subnets of step 1 are rooted versions of the components
we have used before, with the directions of the arrows potentially splitting
components into multiple rooted components (Figure 18 will give an example)
and the asynchronous phases, which consisted of one or more contractions for
cotensor links, will now consist of a passage through a command link, followed
by zero or more cotensor links, followed by either aµ or a µ̃ link, the result being
a new, larger subnet. The term assignment algorithm is a way to enumerate the
non-equivalent proof terms of a net. Given that these terms are isomorphic to
focused sequent proofs, it is no coincidence that the computation of the proof
terms looks a lot like the sequentialisation algorithm.4

Lemma 1. If P is a proof net (with a pairing of command and µ/µ̃ links) and v is a term
calculated for P using this pairing then there is a sequent proof π which is assigned v
as well.

This lemma is easily proved by induction on the depth of the tree: it holds
trivially for the leaves (which are rooted components), and, inductively, each
command, cotensor, µ/µ̃ sequence will produce a sequent proof of the same
term: in fact each such step corresponds exactly to the derived inference rules
for focus shifting discussed in §3.1.

To summarize, the difference between computing terms for proof nets in
the Lambek calculus L and in LG can be characterized as follows:

L: the (potential) terms are given through a bijection between premise and
conclusion atomic formulas (ie. a complete matching of the axioms),

LG: the (potential) terms are given through a bijection between premise and
conclusion atomic formulas plus a bijection between command and µ/µ̃
axioms.

We speak of potential terms, since in the case of the Lambek calculus only
proof nets can be assigned a term, whereas in the LG case we need proof nets
plus a coherent bijection between command and µ/µ̃ axioms, where the µ or µ̃
rule is applied to one of the free variables of the command c.

Illustrations Figure 17 shows how to compute the term for the example proof
net of Figure 15, starting from the composition graph (on the right). We first
look for the components (step 1). Since there is only a single tensor link, this is

4The connection between proof net sequentialisation and focusing for linear logic is explored in
Andreoli and Maieli (1999)

Moortgat and Moot 27

α / y : A / B

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

〈x � α / y〉

α : A

v : A

x : A / B y : B

z : (A / B) ⊗ B

x y
z

x y
z 〈x � α / y〉

α : A

v : A

z : (A / B) ⊗ B

Figure 17: Computing the proof term from a composition graph

simple. Figure 17 shows, on the left, the context subnet corresponding to this
link.

Now, there is only one command to follow from here (step 2a), which pro-
duces the command shown in the middle of Figure 17. Applying the cotensor
link (step 2b) produces the figure shown on the right. The final µ link (step 2c,
not shown) produces the completed term for this proof net.

v = µα.
x y
z
〈x � α / y〉

Some remarks about this example. First, some of the axioms can be traversed
in only one of the two possible directions: in cut-free proof nets, command
links move either towards the active formulas of cotensor links or towards
“dead ends”: hypotheses or conclusions of the proof net. And since we want
to compute the value of v for the example proof net, it only makes sense to
apply a µ rule to compute this value: we always “exit” the proof net from a
designated conclusion. With a slight modification to the algorithm that reads
off terms from a composition graph, we could also compute commands for proof
nets, or compute the context for a designated premise of the net.

Figure 18 returns to our “subj tv det noun” example. On the left we see the
composition graph for the example of Figure 12.

The only cotensor link in the figure has the node subj : (np / n) ⊗ n as its
main formula. When we compute the rooted components, we see that there are
three, shown on the right of the figure.

There are three command axioms, one for the root node of each of the three
components, C1 to C3 on the right hand side of the figure; these are numbered c1

28 Proofs nets and the categorial flow of information

x\β : np \ s

γ : np

x : np

γ/z′ : np / n

y′ : np / n

subj : (np / n) ⊗ n

z′ : n

(x\β)/y : (np \ s)/np

tv : (np \ s)/np

y : np

α : np

α/noun : np/n

det : np/n

noun : n

β : s

x′ : s

C1

C2

C3

γ : np

x : np

γ/z′ : np / n

y′ : np / n

subj : (np / n) ⊗ n

z′ : n

(x\β)/y : (np \ s)/np

tv : (np \ s)/np

y : np

α : np

α/noun : np/n

det : np/n

noun : n

β : s

x′ : s

(µ1)

(µ2)

(µ3)

(c1)

(c3)

(c2)

Figure 18: Composition graph (left) and initial components (right) for the “subj
tv det noun” example

to c3 next to the corresponding links with the same number as the corresponding
component. There are also three µ/µ̃ links (numbered µ1 to µ3).

Figure 19 gives a schematic representation of the proof net of Figure 18. The
arrows next to the µ/µ̃ links indicate the different possibilities for traversing
the link and whether this traversal corresponds to a µ or a µ̃ link.

If both np arguments of the transitive verbs are lexically assigned a positive
bias, then we can only pass the two axioms µ2/µ̃2 and µ3/µ̃3 in the µ̃2 and µ̃3
directions, following the arrows away from component C2. Simple combina-
torics will then give us two possible terms for this proof net: c2 − µ̃3, c3 − µ̃2 and
c1 − µ1 (shown in Figure 19), producing term 20 below, and c2 − µ̃2, c1 − µ̃3 and
c3 − µ1, producing term 21.

µγ.
y′z′

subj
.〈y′ � (µ̃x.〈det � (µ̃y.〈tv � (x\β)/y〉)/noun〉)/z′〉 (20)

Moortgat and Moot 29

C1

� �
µ1

�

�
µ̃2µ2

�

�
µ3 µ̃3

��
c1

��
c2

��
c3

C2

C3

C1

C2−3 � �
µ1

�

�
µ̃2µ2

��
c1

��
c3

C1−3��
c1

� �
µ1

Figure 19: Matching: c2 − µ̃3, c3 − µ̃2, c2 − µ1. Reading: subj < det < tv.

µβ.〈det � (µ̃y.
y′z′

subj
.〈y′ � (µ̃x.〈tv � (x\β)/y〉)/z′〉)/noun〉 (21)

These are the only two readings available with positive bias for the two atomic
np arguments of the transitive verb, and, as we have seen before, this gives
the right quantifier scope possibilities for an extensional transitive verb such
as “likes” we have seen in equations (14) and (15) (apart from the variable
names, equation (21) differs from (15) in that the extended command fraction
in the latter term is at the innermost position, but the terms are equivalent up
to commutative conversions).

When we use a negative bias for the two np arguments of the transitive verb,
we obtain the following term, corresponding to equation (13).

µβ.
y′z′

subj
.〈y′ � (µ̃x.〈tv � (x\β)/(µα.〈det � α/noun〉)〉)/z′〉 (22)

4 Conclusions

The Lambek-Grishin calculus is a symmetric version of the Lambek calculus.
Together with the interaction principles, it allows for the treatment of pat-
terns beyond context-free which cannot be satisfactorily handled in the Lam-
bek calculus. We have compared two proof systems for LG: focused sequent
proofs and proof nets. Focused proofs avoid the spurious non-determinism
of backward-chaining search in the sequent calculus; they provide a natural
interface to semantic interpretation via their continuation-passing-style trans-
lation. Proof nets present the essence of a derivation in a visually appealing

30 Proofs nets and the categorial flow of information

form; they do away with the syntactic clutter of sequent proofs, and compute
the structure of the end-sequent in a data-driven manner where this structure
has to be given before one can a start backward-chaining sequent derivation.
Proof terms are read off from the composition graph associated with a net. The
computation of these terms depends both on a bijection between premise and
conclusion atomic formulas and between command and µ/µ̃ axioms. As a re-
sult, one net can be associated with multiple construction recipes (proof terms),
corresponding to multiple derivations in the focused sequent calculus.

Acknowledgements An extended version of this paper appears as a chapter
in C. Heunen, M. Sadrzadeh and E. Grefenstette (eds.) Compositional methods in
quantum physics and linguistics, OUP. We thank Arno Bastenhof for comments
on an earlier draft.

References

J.-M. Andreoli. Focussing and proof construction. Annals of Pure and Applied
Logic, 107(1-3):131–163, 2001.

J.-M. Andreoli and R. Maieli. Focusing and proof-nets in linear and non-
commutative logic. In International Conference on Logic for Programming and
Automated Reasoning (LPAR), volume 1581 of LNAI. Springer, 1999.

A. Bastenhof. Polarized Montagovian semantics for the Lambek-Grishin cal-
culus. CoRR, abs/1101.5757, 2011. To appear in the Proceedings of the 15th
Conference on Formal Grammar (Copenhagen, 2010), Springer LNCS.

A. Bastenhof. Polarities in logic and semantics. In M. Aloni, V. Kimmelman,
F. Roelofsen, K. Schulz, G. W. Sassoon, and M. Westera, editors, Logic Language
and Meaning, volume 7218 of LNCS, pages 230–239. Springer, 2012. 18th
Amsterdam Colloquium, December 2011. Revised selected papers.

R. Bernardi and M. Moortgat. Continuation semantics for symmetric categorial
grammar. In D. Leivant and R. de Queiros, editors, Proceedings 14th Workshop
on Logic, Language, Information and Computation (WoLLIC’07), LNCS 4576.
Springer, 2007.

R. Bernardi and M. Moortgat. Continuation semantics for the Lambek-Grishin
calculus. Information and Computation, 208(5):397–416, 2010.

Moortgat and Moot 31

J. Cockett and R. Seely. Proof theory for full intuitionistic linear logic, bilinear
logic and mix categories. In Theory and Applications of Categories 3, pages
85–131, 1996.

P. Curien and H. Herbelin. Duality of computation. In International Conference
on Functional Programming (ICFP’00), pages 233–243, 2000.

P. de Groote and C. Retoré. Semantic readings of proof nets. In G.-J. Kruijff,
G. Morrill, and D. Oehrle, editors, Formal Grammar, pages 57–70, Prague,
1996. FoLLI.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

J.-Y. Girard. A new constructive logic: classical logic. Mathematical Structures
in Computer Science, 1(3):255–296, 1991.

R. Goré. Substructural logics on display. Logic Journal of IGPL, 6(3):451–504,
1997.

V. Grishin. On a generalization of the Ajdukiewicz-Lambek system. In
A. Mikhailov, editor, Studies in Nonclassical Logics and Formal Systems, pages
315–334. Nauka, Moscow, 1983. [English translation in Abrusci and Casadio
(eds.) Proceedings 5th Roma Workshop, Bulzoni Editore, Roma, 2002].

L. Kallmeyer. Parsing Beyond Context-Free Grammars. Cognitive Technologies.
Springer, 2010. ISBN 978-3-642-14845-3.

M. Melissen. The generative capacity of the Lambek-Grishin calculus: A new
lower bound. In P. de Groote, M. Egg, and L. Kallmeyer, editors, Proceedings
14th Conference on Formal Grammar, volume 5591 of Lecture Notes in Computer
Science, pages 118–132. Springer, 2010.

M. Moortgat. Symmetric categorial grammar. Journal of Philosophical Logic, 38
(6):681–710, 2009.

R. Moot. Proof nets for display logic. Technical report, CNRS and INRIA Futurs,
2007.

R. Moot and Q. Puite. Proof nets for the multimodal Lambek calculus. Studia
Logica, 71(3):415–442, 2002.

