
Model-checking in the Foundations of Algorithmic Law
and the Case of Regulation 561

Moritz Müller1 and Joost J. Joosten2

1Passau University
2University of Barcelona

September 6, 2023

Abstract

We discuss model-checking problems as formal models of algorithmic law. Specifi-
cally, we ask for an algorithmically tractable general purpose model-checking problem
that naturally models the European transport Regulation 561 ([50]), and discuss the
reaches and limits of a version of discrete time stopwatch automata.

1 Model-checking and algorithmic law

Should legal practice be enforced by software? This is a subtle and difficult question
that we shall not address in this paper. The matter of fact is, our society has evolved
in such a way that legal practice is currently enforced by software in various situations.

In this paper we will study how model checking can help in such situations. Our
leading case study will be the European Traffic Regulation 561 [50]. Notwithstanding,
our general approach aims at a more general panorama.

So, we do not enter the discussion whether software should be used to enforce the
law. Rather we make the point that if it is so used, it better be done in a right fashion
as to increase transparency, fairness and as to eradicate possible errors. We hope that
the current paper contributes to these aims.

1.1 Computational problems in algorithmic law

The European transport Regulation 561 [50] concerns activities of truck drivers as
recorded by tachographs. A tachograph recording determines for each time unit the
activity of the driver which can be driving, resting or doing other work. Regulation
561 is a complex set of articles that limits driving and work time by prescribing various
types of rest periods. The regulation prescribes that the time units are minutes, so a
tachograph recording of 2 months determines a sequence of activities of length 87840.

1

It is clear that the legality of such a recording can only be judged with the help of an
algorithm.

We think that algorithmic law-enforcement can only make sense in case there are
no discretionary powers to be implemented. But our meaning is irrelevant here since
legal practice uses automated law enforcement and we will consider such an example.
In this paper we shall see that formalising a law typically leads to choices to be made
to disambiguate or even repair the written law. A programmer is not entitled nor
knowledgeable to do so, hence we observe that such a disambiguation stage should
involve both legal and computer science scholars.

By the application of a law to a case we mean the decision whether the case is legal
according to that law or not. By an algorithmic law we mean a law whose application to
a case is (necessarily or intended/suggested to be) executed by an algorithm. Instead
of designing one algorithm per law we are interested in general purpose algorithms:
these take as input both a case from a set of cases of interest, and a law from a set of
laws of interest, and decide whether the given case is legal according to the given law
or not. In order to present cases and laws of interest as inputs to an algorithm, both
have to be suitably formalized.

For Regulation 561, we make the choice that a case is naturally formalized as a
word over the alphabet Σ ∶= {d, r,w}: e.g., the word dddwrr ∈ Σ6 is the activity
sequence consisting of 3 minutes driving, followed by 1 minute other work, followed by
2 minutes resting.1 With this choice, cases whose legality have to be decided by the
law will be words of letters like the string dddwrr above. In mathematical logic it is
a straightforward and widely applied technique to conceive a word as a mathematical
structure K (see e.g. [36, Example 4.11]). So, generally, we formalize a set of cases by
a class of finite structures K.

In this setting, a generic formalization of a law is given by translating the law to
a sentence ϕ of a formal language, in the context of a logic L. Thus, the sentence
expressing the law will impose requirements on the cases and that a particular case K
is legal according to the law ϕ then formally means that K ⊧ ϕ, i.e., K satisfies ϕ,
where the structure K formalises our case from the allowed class of structures K. We
arrive at what is the central computational problem of algorithmic law:

Model-checking The model-checking problem (for L over K) is a formal model for
a family of algorithmic laws where laws are formalized by sentences of L and cases are
formalized by structures in K.

MC(K, L)
Input: K ∈ K and ϕ ∈ L.
Problem: K ⊧ ϕ ?

A model-checker (for L over K) is an algorithm deciding MC(K, L). This is a gen-
eral purpose algorithm as asked for above.

1Some tachograph readers will work with other formats like activity-change lists which is a list of moments
in time where the driver’s activity changes. This could beg for another formalisation and we leave this
discussion outside the scope of this paper.

2

We consider two more computational problems associated to algorithmic law.

Consistency-checking A minimal requirement for law design is that it should be
possible to comply with the law. This sounds like a void academic requirement but
inconsistent regulations are abundant (see e.g. [33], [24], [31] or Remark 14).

For laws governing activity sequences consisteny means that there should be at
least one such sequence (or equivalently, structure K) that is legal according to the
law. In case that we can indeed find a particular case K that satisfies the law, we say
that the law is consistent.

A related question of interest is whether a certain type of behaviour can be legal.
This is tantamount to ask whether the artificial law augmented by demanding the type
of behaviour is consistent.

This is formally modeled by the consistency problem (for L over K):

Con(K, L)
Input: ϕ ∈ L.
Problem: does there exist some K ∈ K such that K ⊧ ϕ ?

Scheduling Assume a truck driver has to schedule next week’s driving, working and
resting and is interested to drive as long as possible. A week has 10080 minutes, so
the driver faces the computational optimization problem to compute a length 10080
extension of the word given by the current tachograph recording that is legal according
to Regulation 561 and that maximizes driving time.

Consider laws governing activity sequences, that is, K is the (set of structures
corresponding to the) set of finite words Σ∗ over some alphabet Σ. For a word w =
a0⋯an−1 ∈ Σn (the ai are letters that represent the corresponding activities) and a
letter a ∈ Σ, let #a(w) denote the number of times the letter a appears in w, i.e.,

#a(w) ∶= ∣{i < n ∣ ai = a}∣.

The scheduling problem (for L over K = Σ∗) is:

Scheduling(K, L)
Input: ϕ ∈ L, w ∈ Σ∗, a ∈ Σ and n ∈ N.
Problem: if there is no v ∈ Σn such that wv ⊧ ϕ, then output “illegal”;

otherwise output some v ∈ Σn such that

#a(wv) = max{#a(wv) ∣ v ∈ Σn,wv ⊧ ϕ}.

1.2 Model-checking as a formal model

There is a vast amount of research concerning model-checking problems MC(K, L).
The two main interpretational perspectives stem from database theory and from system
verification. In database theory [47], K is viewed as a set of databases, and L a set
of Boolean queries. In system verification [7], K is as a set of transition systems
or certain automata that formalize concurrent systems or parallel programs, and L
formalizes correctness specifications of the system, that is, properties all executions

3

of the system should have. We add a third interpretational perspective on model-
checking problems as formal models for families of algorithmic laws. We highlight
three conflicting requirements on such a formal model.

Tractability requirement The first and foremost constraint for a model MC(K, L)
of a family of algorithmic laws is its computational complexity. For the existence of
a practically useful general purpose model-checker the problem MC(K, L) should be
tractable. We argue that the notion of tractability here cannot just mean PTIME, a
more fine-grained complexity analysis of MC(K, L) is required.

Classical computational complexity theory tells us that already extremely simple
pairs (K, L) have intractable model-checking problems. An important example from
database theory is that MC(K, L) is NP-complete for L the set of conjunctive queries
and K the set of graphs (or the single binary word 01) [18]. An important example [52]
from system verification is that MC(K, L) is PSPACE-complete for L equal to linear
time temporal logic LTL and K the class of finite automata [54].

However, the mentioned PSPACE-completeness result is largely irrelevant because
this model-checking problem is fixed-parameter tractable (fpt), that is, it is decidable
in time f(k) ⋅ nO(1) for some computable function f ∶ N → N where n is the total
input size and k ∶= ∥ϕ∥ the size of (a reasonable binary encoding of) the input LTL
formula ϕ. In fact, we have parameter dependence f(k) ⩽ 2O(k). Informally speaking,
we are mainly interested in inputs with k ≪ n, so this can be considered tractable. In
other words, the computational hardness relies on uninteresting inputs with relatively
large k. In contrast, model-checking conjunctive queries over graphs is likely not fixed-
parameter tractable: this is equivalent to FPT ≠ W[1], the central hardness hypothesis
of parameterized complexity theory .2 Most people indeed somehow believe that FPT ≠
W[1] in a sense similar to that most people believe that PTIME ≠ NP.

The focus on inputs with k ≪ n is common in model-checking and it is an often
repeated point that a reasonable complexity analysis must take this asymmetry of
the input into account; [49] is an early reference addressing both perspectives from
database theory and system verification. The theoretical framework for such a fine-
grained complexity analysis is parameterized complexity theory [36, 27, 28] whose
central tractability notion is fixed-parameter tractability.3

To sum up, judging he tractability of MC(K, L) should be based on a fine-grained
complexity analysis that measures the computational complexity with respect to vari-
ous input aspects n, k,4 The quality of the model MC(K, L) depends on the “right”
identification of relevant aspects in its complexity analysis.

Expressivity requirement Recall thate we ask for a general purpose model-
checker that solves a model-checking problem MC(K, L) modeling a family L of algo-

2Grohe [39] (refined in [21, 22]) gives a quite complete understanding of which conjunctive queries are
tractable.

3This paper does not require familiarity with parameterized complexity theory. Only Section 9.3 requires
some results of this theory and will recall what is needed.

4Formally, an aspect could be defined as a parameterization, possibly viewed as a size measure as in [36,
p.418f]. However, we don’t need a definition and use the term informally.

4

rithmic laws instead of single-purpose model-checkers deciding MC(K,{ϕ}), one per
algorithmic law ϕ. From a theoretical perspective we expect insight on which laws can
possibly be algorithmic.

From a practical perspective, this avoids the costly production of many algorithms,
their updates following law reforms and their validation for legal use. It is thus desirable
to find tractable MC(K, L) for as rich as possible classes K and L. In particular, for
laws governing sequences of activities (i.e., K = Σ∗) we ask for an as expressive as
possible logic L. Of course, this is in tension with the tractability requirement.

Naturality requirement From an algorithmic perspective it is not only the ex-
pressivity of L that matters, but also its succinctness. Typically, model-checking com-
plexity grows fast with the size of the sentence ϕ formalizing the law, so logics allowing
for shorter formalizations are preferable. E.g., it is well-known that the expressive
power of LTL is not increased when adding past modalities but their use can lead to
exponentially shorter sentences.

Crucially, the complexity of model-checking (over finite automata) is not substan-
tially increased. Moving to a more succinct logic is not necessarily an improvement.
E.g. further adding a now-modality again increases succinctness exponentially but
apparently also the model-checking complexity [44].

Furthermore, it is one thing to model a law application by a model-checking instance
(K,ϕ) any old how and another to do so by somehow typical members of K and L.
E.g., in case the formalization of actual laws uses only special artificial members of K
(semantic overkill) or L (syntactic overkill), one would want to trade the richness of K
and L for a faster model-checker.

Very long or contrived formalizations of laws are also prohibitive for legal practice
which requires the law to be readable and understandable by humans. This is vital also
for the validation of their formalization, i.e., their translation from the typically am-
biguous natural language into a formal language able to be algorithmically processed.
Without attempting a definition of this vague term, we thus informally require that
the (formalization given by the) model MC(K, L) must be natural.

Other requirements We focus on the above three requirements but, of course,
there are more whose discussion we omit. An important one is trust in the output of
model-checkers. For example, even if the mathematical model is correct, its translation
to an executable computer program may be flawed. This issue could call for formally
verified implementations of the software and we refer to [1] for an example.

Additionally, algorithmic outputs should be transparent and explainable to be used
in legal practice and it is unclear what this exactly means. Further requirements
on the model might come from ethical or political considerations - e.g., the required
transparency can be in conflict with intellectual property rights and there can be more
general issues concerning the involvement of the private sector in law execution.

Often, automated law enforcement has been considered to violate the legal principle
of contestability : citizens can hardly contest to a legal judgement if it is a computer
program that made that judgement. A human expert and a computer program may
be equally unintelligible for a citizen. However, there is one important fundamental

5

difference and this is that the citizen can enter in a dialogue with the human officer
where such a dialogue is generally simply precluded from computerised interactions.
The model-checking approach does however naturally allow for such a dialogue. Recall
that a case M satisfying a law λ would be casted in the model-checking framework as
M ⊧ λ. Let π be a property of a law λ. For example that the law acts equally on all
citizens disregarding if they hold one or two passports5. Asking if the law λ satisfies
the property π can be casted as ⊧ λ→ π in the model checking framework.

We focus on laws governing temporal sequences of activities, that is, laws concerning
cases that can readily be formalized by words over some finite alphabet Σ, i.e., K = Σ∗.
This paper is about the quest for a logic/language L such that MC(K, L) is a good
model for such laws. To judge expressivity and naturality we use European Regulation
561 [50] as a test case, that is, we want L to naturally formalize Regulation 561. Given
the complexity of this regulation, this is an ambitious goal and we expect success to
result in a model that encompasses a broad family of laws concerning sequences of
activities.

1.3 Contributions and outline of this paper

In our paper we suggest (a version of) discrete time stopwatch automata SWA as an
answer to our central question, that is, we propose MC(Σ∗,SWA) as a model for
algorithmic laws concerning sequences of activities.6

In the next section, Section 2 we first revisit basic notions for classical theory for
model checking. We also mention the main ingredients that lead to our particular
choice of SWAs in this paper. A fuller theoretical motivational discussion of our choice
is postponed to Section 10 after we have seen SWAs in action and have proven various
of its computational properties. In Section 3 we give our basic definition on Stop-
watch automata that we shall work with in this paper. Naturally, we also define the
corresponding notion of computations of SWAs. Since we will have to quantify the
computational and runtime behavior of our SWAs, we also say some words on concrete
formalised SWAs and their sizes.

After having defined our notion of SWA we test our informal criterion of naturality
for this notion. We do so by showing in Sections 4 and 5 how the complex European
trafic regulation 561 can naturally be formalised using our notion of SWAs.

From Section 6 on, we start exploring the theoretical and computational properties
of SWAs. In particular, in Section 6 we observe that SWA has the same expressive
power as MSO over finite words. Furthermore, we showcase the robustness of our
definition by exhibiting a definitorial equivalent variation.

In Section 7 we show that the model-checking-complexity for the notion of SWAs
that we defined is rather tame and likewise for consitency checking. This relative
tameness is expressed by the main theorem from Section 7 where we prove the following

5Asking this to the Dutch Syri Risk Indication System could have revealed its bias before its devastating
impact on various often vulnerable families in The Netherlands.

6In the notation of Section 1.1 we define w ⊧ A for a finite word w and a stopwatch automaton A to mean
that A accepts w.

6

upper bound on the complexity of MC(Σ∗,SWA):

Theorem 1. There is an algorithm that given a stopwatch automaton A with size ∥A∥
and a word w with length ∣w∣ decides whether A accepts w in time

O(∥A∥2 ⋅ tcAA ⋅ ∣w∣).

Let us briefly comment on what the other symbols from this theorem denote. Our
stopwatches have bounds on the possible largest value that they can register, and their
bounds correspond to time constants mentioned in laws. We let cA denote the number
of stopwatches and tA the largest stopwatch bound of a stopwatch automaton A.

We stress that the aspect tA does not appear in the exponent, so this overcomes
a bottle-neck of various model-checkers designed in system verification which will be
discussed in Section 10.2.

In Section 8 we prove in Theorem 31 that, surprisingly, scheduling is not much
harder than model checking in our setting.

Section 9 discusses our model MC(Σ∗,SWA) following the criteria of Section 1.2,
and gives a critical examination of the factor tcAA in the runtime of our model-checker.
Intuitively, typical inputs have small cA and large tA, and it would be desirable to

replace this factor by, e.g., 2O(cA) ⋅ tO(1)
A . We show this is unlikely to be possible by

relating a hypothetical such algorithm to an unproven assumption from computational
complexity that most computer scientists believe to hold true: FPT ≠ W[1]. Using this
Complexity Theoretical assumption, our Theorem 38 implies:

Theorem 2. Assume FPT ≠ W[1] and let f ∶ N → N be a computable function. Then
there does not exist an algorithm that given a stopwatch automaton A and a word w
decides whether A accepts w in time

(∥A∥ ⋅ f(cA) ⋅ tA ⋅ ∣w∣)O(1)
.

We present a proof of this theorem that does not require any particular knowledge
on the mentioned classes and just work with a particular representative from them.

Finally, in Section 10 we motivate the choices we made to work with our definition
of bounded stopwatch automata. This motivation should be placed in the context of
the larger landscape of literature on model checking and temporal logics.

2 Finite Automata

As mentioned before, the imperative constraint to find the right notion of formalising
laws that should be enforced in an automated fasion is the tractability of MC(K, L). In
secion 10 we survey7 the relevant literature on model-checking and discuss shortcomings
of known model-checkers. Thereby we motivate what the right input aspects are, i.e.,
those relevant to calibrate the computational complexity of MC(K, L) and to judge its
tractability.

7This survey mentions many logics and automata and we shall not assume familiarity with these concepts
later on.

7

In this section we merely mention what our main model choices have been and indi-
cate the considerations that played a role arriving to this definition. Before doing so, we
first recall the basic definitions and properties of our starting point: non-deterministic
finite automata.

2.1 Regulation 561 and Büchi’s theorem

We recall Büchi’s theorem and, to fix some notation, the definitions of regular languages
and finite automata. To start, we use the standard notation to denote strings over a
finite alphabet.

An alphabet Σ is a non-empty finite set of letters, Σ∗ = ⋃n∈N Σn denotes the set of
(finite) words. A word w = a0⋯an−1 ∈ Σn (the ai are letters) has length ∣w∣ ∶= n.

Definition 3. A (non-deterministic) finite automaton B is given by a finite set of states
Q, an alphabet Σ, sets of initial and final states I,F ⊆ Q, and a set ∆ ⊆ Q ×Σ ×Q of
transitions.

Computation of an automaton B are defined in terms of sequences of transitions as
usual.

Definition 4. A computation of B on w = a0⋯an−1 ∈ Σn is a sequence q0⋯qn of states
such that (qi, ai, qi+1) ∈ ∆ for every i < n. The computation is initial if q0 ∈ I and
accepting if qn ∈ F . The language L(B) of B is the set of words w ∈ Σ∗ such that B
accepts w, i.e., there exists an initial accepting computation of B on w.

A language (i.e., subset of words over Σ) is regular if it equals L(B) for some finite
automaton B. We refer to [55] for a definition of Monadic second order definable
(MSO-definable) languages and a proof of Theorem 5. This theorem basically says
that regular languages are quite expressive.

Theorem 5 (Büchi). A language is MSO-definable on words if and only if it is regular.

Although this theorem shows the strong expressive power of regular languages, the
so-called Pumping Lemma can be seen as showing a limit to the expressive power:
finite automata on very long computations will either terminate or enter a loop at
some time and this loop is reflected in repetitions of patters inside words that are in
the language.

Theorem 6 (Pumping Lemma). For any regular language L there is a constant c ∈ N
such that every word w ∈ L of length ∣w∣ ⩾ c can be written as xyz for words x, y, z with
∣xy∣ ⩽ c and ∣y∣ > 0 such that xynz ∈ L for every n ∈ N.

Moreover, this constant c can be taken to be the number of states of an automaton
accepting L.

Büchi’s theorem can be extended to infinite words and trees using various types
of automata – we refer to [30] for a monograph on the subject. The proof of Büchi’s
theorem is effective in that there is a computable function that computes for every MSO-
sentence ϕ and automaton Bϕ that accepts a word w if and only if w ⊧ ϕ. It follows

8

that MC(Σ∗,MSO) is fixed-parameter tractable: given an input (w,ϕ), compute Bϕ

and check if Bϕ accepts w. This takes time8 f(∣ϕ∣) ⋅ ∣w∣ for some computable function
f ∶ N → N. It also follows that Con(Σ∗,MSO) is decidable because finite automata
have decidable emptiness: there is an (even linear time) algorithm that, given a finite
automaton A, decides whether L(A) = ∅.

MSO is a very expressive logic. In [24] it is argued that Regulation 561 can be
formalized in MSO, and naturally so. Thus, in a sense MC(Σ∗,MSO) is tractable,
expressive and natural, so a good answer to our central question. The starting point
of this work was the question for a better model, namely improving its tractability.
The problem with the running time f(∣ϕ∣) ⋅ ∣w∣ of Büchi’s model-checker is that the
parameter dependence f(k) grows extremely fast: it is non-elementary in the sense

that it cannot be bounded by 22⋰
2k

for any fixed height tower of 2’s.

2.2 Model checking tailored for law

The non-elementary parameter dependence in Büchi’s Theorem is bad in terms of
feasible model checkers. There are other logics that have better parameter dependences
and Linear Temporal Logic LTL is one of them. However, it is known that the price
to pay is that various properties that we do want to express in law become too long to
write down and we gave precise examples and references later on.

To conclude, MSO gives the wrong model because it does not allow sufficiently fast
model-checkers, and LTL is the wrong model because it is not sufficiently (expressive
nor) succinct, hence not natural. It can be expected that, like Regulation 561, many
algorithmic laws concerning sequences of activities state lower and upper bounds on
the duration of certain activities or types of activities. The constants used to state
these bounds are not necessarily small, and this is an important aspect to take into
account when analyzing the model-checking complexity.

Various model checking for timed automata have the explicit time bounds t in
the exponent. From the perspective of algorithmic laws, t is not typically small and
runtimes exponential in t = 56h = 3360 min are thus prohibitive. Tamer runtimes
with t moved out of the exponent have been found for a certain natural MITL-fragment
MITL0,∞ both over discrete and continuous time – see [41, 5].

Automata for temporal law should find a balanced and somewhat feasible way to
speak about durations which seems to be a central notion in Regulation 561 and alike.
Stopwatches are a right tool to speak of durations but they lead to undecidability. We
choose to work therefore with bounded stopwatch automata which blocks the venom of
undecidability and in our case arguably scales reasonably well with the parameters.

3 Stopwatch automata

Before giving our definition we informally describe the working of a stopwatch au-
tomaton SWA. A stopwatch automaton is an extension of a finite automaton whose

8This is not true for the empty word w. We trust the reader’s common sense to interpret this and similar
statements reasonably.

9

computations happen in discrete time: the automaton can stay for some amount of
time in some state and then take an instantaneous transition to another state.

There are constraints on which transitions can be taken at a given point of time
as follows. Time is recorded by a set of stopwatches X, every stopwatch x ∈ X has a
bound β(x), a maximal time it can record. Every stopwatch is active or not in a given
state.

During a run that stays in a given state for a certain amount of time, the value
of the active stopwatches increases by this amount of time (up to their bounds) while
the inactive stopwatches do not change their value. Transitions between states are
labeled with a guard and an action. The guard is a condition on the values of the
stopwatches that has to be satisfied for the transition to be taken, usually requiring
upper or lower bounds on certain stopwatch values. The action modifies stopwatch
values, for example, resets some of the stopwatches to value 0.

In classical automata like the one we presented in Subsection 2.1, typically it are
the transitions between states that are labeled by letters of the alphabet. In our stop-
watch automata instead it will be the states that are labeled by letters. A stopwatch
automaton accepts a given word over an alphabet Σ if there exists a computation that
reads the word, that is, it starts in a special state start and ends in a special state
accept. During the computation, for example, staying in a state for 5 time units means
reading 5 copies of the letter labelling the state.

3.1 Abstract stopwatch automata

We now give the definitions that have been anticipated by the informal description
above.

Definition 7. An abstract stopwatch automaton is a tuple A = (Q,Σ,X,λ, β, ζ,∆)
where

– Q is a finite set of states containing the states start and accept;

– Σ is a finite alphabet;

– X is a finite set of stopwatches;

– λ ∶ Q→ Σ;

– β ∶X → N maps every stopwatch x ∈X to its bound β(x) ∈ N;

– ζ ∶ X → P (Q) maps every stopwatch x ∈ X to the set ζ(x) ⊆ Q of states where
the stopwatch x is active in;

– ∆ ⊆ Q × G ×A ×Q is a set of transitions.

Here, G is the set of abstract guards (for A), namely sets of assignments, and A is the
set of abstract actions (for A), namely functions from assignments to assignments. An
assignment (for A) is a function ξ ∶ X → N such that ξ(x) ⩽ β(x) for all x ∈ X. To
be precise, we should speak of a β-assignment but the β will always be clear from the
context. We define the bound of A to be

BA ∶= ∏
x∈X

(β(x) + 1)

understanding that the empty product is 1 so that ∏x∈∅(β(x) + 1) ∶= 1.

10

It is easy to see that the bound BA of A is the cardinality of the set of assign-
ments (for A) and we can identify an assignment with a point in the product space

∏x∈X(β(x) + 1). We say that a transition (q, g,α, q′) ∈ ∆ is from q, and to q′, and
has abstract guard g and abstract action α. Computations of stopwatch automata are
defined in terms of their corresponding transition systems.

Definition 8. Let A = (Q,Σ,X,λ, β, ζ,∆) be an abstract stopwatch automaton. The
transition system TS(A) of A is given by a set of nodes and labeled edges: a node (of
TS(A)) is a pair (q, ξ) of a state q ∈ Q and an assignment ξ; a labeled edge (of TS(A))
is a triple ((q, ξ), t, (q′, ξ′)) for nodes (q, ξ), (q′, ξ′) and t ∈ N such that either:

– t = 0 and (q, g,α, q′) ∈ ∆ for an abstract guard g and an abstract action α such
that ξ ∈ g and α(ξ) = ξ′,

or,

– t > 0 and q = q′ and ξ′ is the assignment given by

ξ′(x) = { min{ξ(x) + t, β(x)} if q ∈ ζ(x),
ξ(x) else.

We will speak of instantaneous transitions and duration transitions respectively.

For t ∈ N we let
t→ be the binary relation that contains those pairs ((q, ξ), (q′, ξ′)) of

nodes such that ((q, ξ), t, (q′, ξ′)) is a labeled edge. As announced before, computations
of stopwatch automata are defined through the corresponding transition systems.

Definition 9. A (finite) computation of A is a finite walk in TS(A), i.e., for some
` ∈ N a sequence

(((qi, ξi), ti, (qi+1, ξi+1)))
i<`

of directed edges of TS(A) such that qi ≠ accept for all i < `; we write this as

(q0, ξ0)
t0→ (q1, ξ1)

t1→ (q2, ξ2)
t2→ ⋯ t`−1→ (q`, ξ`).

In this case, we say that the computation is from (q0, ξ0) and to (q`, ξ`); it is initial if
ξ0 is constantly 0 and q0 = start ; it is accepting if q` = accept. The computation reads
the word

λ(q0)t0λ(q1)t1⋯λ(q`−1)t`−1 .

We understand that σ0 denotes the empty string for every letter σ in the alphabet
Σ and juxtaposition of strings corresponds to concatenation. Through computations,
we define strings and languages accepted by a Stopwatch automaton.

Definition 10. The automaton A accepts w ∈ Σ∗ if there is an initial accepting com-
putation of A that reads w. The set of these words is the language L(A) of A.

11

The requirement qi ≠ accept for all i < ` in the definition of computations9 means
that we interpret accept as a halting state; it implies that the label λ(accept) as well
as transitions from accept are irrelevant. In our applications, the bound of a stopwatch
x typically exceeds the maximal guard value occurring for x by one. As such, we can
distinguish between all clock values that went over this maximal guard and the ones
not exceeding it. Furthermore, we observe that a duration transition can typically be
split into smaller consecutive duration transitions without altering the word that is
being accepted.

Remark 11. Stopwatch automata are straightforwardly explained for continuous time
R⩾0 where they read timed words, and bounds β(x) =∞. Stopwatch automata accord-
ing to [26, 42] are such automata where guards are Boolean combinations of x ⩾ c (for
x ∈ X and c ∈ N), and actions are resets (to 0 of some stopwatches). The emptiness
problem for those automata is undecidable [42].

So-called timed automata additionally require stopwatches to be active in all states,
and have decidable emptiness [4]. The model allowing x ⩾ c+ y (for x, y ∈X and c ∈ N)
in guards still has decidable emptiness and is exponentially more succinct than guards
with just Boolean combinations of x ⩾ c ([14]). Allowing more actions is subtle, e.g.,
emptiness becomes undecidable when x ∶= x � 1 or when x ∶= 2x is allowed; see [16] for
a detailed study.

3.2 Specific stopwatch automata

To consider an abstract stopwatch automata as an input to an algorithm, we must agree
on how to specify the guards and actions, i.e., properties and functions on assignments.
This is a somewhat annoying issue because on the one hand our upper bounds on the
model-checking complexity turn out to be robust with respect to the choice of this
specification in the sense that they scale well with the complexity of computing guards
and actions, so a very general definition is affordable. On the other hand, for natural
stopwatch automata including the one we are going to present for the European Traffic
Regulation 561, we expect guards and actions to be simple properties and functions.

As mentioned, typically guards mainly compare certain stopwatch values with con-
stants or other values, and actions do simple re-assignments of values like setting some
values to 0.

Hence our choice on how to specify guards and actions is somewhat arbitrary. To
stress the robustness part, we use a general model of computation: Boolean circuits .
In natural automata, we expect these circuits to be small.

An assignment determines for each stopwatch x ∈X its bounded value and as such
can be specified by

bA ∶= ∑
x∈X

⌈log(β(x) + 1)⌉

many bits. We think of the collection of bA bits as being composed of blocks, with a
block of ⌈log(β(x) + 1)⌉ bits corresponding to the binary representation of the value

9As additional motivation for this choice we mention that allowing computations to pass more often
through accept will have undesired side-effects: any accepted word wa ending on some letter a would lead
to any word w(a)n to be also accepted for any n − 1 ∈ N.

12

of stopwatch x ∈ X under the assignment. Below, in our definitions of specific guards
and actions we should be careful that the amount of bA bits to represent assignments
may yield in values exceeding the specified clock bounds β(x) for clock x.

A specific guard is a Boolean circuit with one output gate and bA many input
gates. The output gate flags whether or not a particular assignment satisfies the guard.
The fact that the Boolean circuit may also be defined on values exceeding bounds is
irrelevant as long as it behaves properly on the bounded values. Clearly, a specific
guard determines an abstract guard in the obvious way.

A specific action is a Boolean circuit with bA many output gates and bA many input
gates. On input an assignment, for each clock x ∈X, it computes the binary represen-
tation of a value vx ∈ N in the block of ⌈log(β(x) + 1)⌉ output gates corresponding to
x. Again, the fact that the Boolean circuit may also be defined on values exceeding
bounds is irrelevant as long as it behaves properly on the bounded values. Further-
more, we agree that the assignment computed by the circuit maps x to min{vx, β(x)}
thereby mapping assignments to assignments. A specific action determines an abstract
one in the obvious way.

A specific stopwatch automaton is defined like an abstract one but with specific
guards and actions replacing abstract ones. A specific stopwatch automaton determines
an abstract one taking the abstract guards and actions as those determined by the
specific ones. Computations of specific stopwatch automata and the language they
accept are defined as those of the corresponding abstract one.

We shall only be concerned with specific stopwatch automata and shall mostly
omit the qualification ‘specific’. But once we have specific stopwatch automata, we
can speak about their size and the size of their representation/coding. The size of the
representation/coding of an automaton A shall be denoted by ∥A∥.

It is with specific automata that we can compare size of automata and estimate
time durations of constructions on automata. For example, we can compare automata
and their transition systems in a quantitative fashion.

Lemma 12. Give a SWA A, we can obtain TS(A) of size and in time O(∥A∥2 ⋅B2
A).

The easy proof follows from direct inspection of Definition 8. Since the value of BA
is typically exponential in terms of ∥A∥, we observe that likewise the size of TS(A) is
exponential in terms of ∥A∥. We shall later see in Proposition 24 that this exponential
factor is essential.

4 A stopwatch automaton for Regulation 561

Aside expressivity and tractability, we stressed naturality as a criterion of models for
algorithmic law. In this section and the next section we make the point for stopwatch
automata by implementing Regulation 561.

4.1 General considerations

As already mentioned, Regulation 561 is a complex set of articles concerning sequences
of activities of truck drivers. Possible activities are driving, resting or other work. The

13

activities over time are recorded by tachographs and formally understood as words over
the alphabet Σ ∶= {d, r,w}. In the real world time units are minutes. Regulation 561
limits driving and work times by demanding breaks, daily rest periods and weekly rest
periods, both of which can be regular or reduced under various conditions.

Remark 13. Regulation 561 contains a few laws concerning multi-manning that gives
rise to an additional activity available and a distinction between breaks and rests. This
is omitted in our treatment.

Furthermore, we will assume that the data we work with has the right format, is
consistent and is free of errors. From [31] it is clear that this is a far cry from being
close to reality. Moreover, Regulation 561 prescribes working in UTC and it is known
that no tachograph actually records in UTC. In [24] it is shown that the change from
non-UTC to UTC data format actually can lead to erroneous interpretations. In theory
it is possible to drive from Barcelona to Passau straight without any rests so that if
you record the activities using UTC the driver gets no fine but if you record using UTC
the driver will be imprisoned. All these complications will not be considered in this
paper.

We construct a stopwatch automaton that accepts precisely the words over Σ that
represent activity sequences that are legal according to Regulation 561. The states Q
of the automaton are:

drive, break, other work,

reduced daily, regular daily, reduced weekly, regular weekly,

compensate1, compensate2, week, start, accept.

The states in the first row have the obvious meaning. The second row collects states
representing different kinds of rest periods. The function λ labels other work by w,
drive by d and all other states by r. The states compensate1 and compensate2 are used
for the most complicated part of Regulation 561 that demands certain compensating
rest periods whenever a weekly rest period is reduced. The state week is auxiliary, and
accepting computations spend 0 time in it. The same is true for start. So, the λ-labels
of start and week do not matter.

We construct the automaton stepwise implementing one article after the next, in-
troducing stopwatches along the way. For each stopwatch x we state its bound β(x)
and the states in which it is active, whence specifying the ζ-label of the stopwatch. We
shall refer to stopwatches that are nowhere active as counters or registers, depending
on their informal usage; a bit is a counter with bound 1.

We describe a transition (q, g,α, q′) saying that there is a transition from q to q′

with guard g and action α. We specify guards by a list of expressions of the form
z ⩽ r or z + z′ > r or the like for r ∈ N; this is shorthand for a circuit that checks the
conjunction of these conditions. We specify actions by lists of expressions of the form
z ∶= r or z ∶= z′ + r or the like for z, z′ ∈ X and r ∈ N; this is shorthand for the action
that carries out the stated re-assignments of values in the order given by the list.

These lists are also described stepwise treating one article after the next. As a mode
of speech, when treating a particular law, we shall say that a given transition has this
or that action or guard: what we mean is that the actions or guards of the transition

14

of the final automaton is given by the lists of these statements in order of appearance
(mostly the order won’t matter).

We illustrate this mode of speech by describing the automaton around start: let xstart
be a stopwatch with bound 1 and active at start; there are no transitions to start and
transitions from start to all other states except week; these transitions have guard
xstart = 0.

Later these transitions shall get more guards and also some actions. These stipu-
lations mean more precisely the following: the bound β satisfies β(xstart) = 1; the set
∆ contains for any state q ∉ {week, start} the transition (start, g, α, q) where the guard
g checks the conjunction of xstart = 0 and the other guards introduced later, and the
action α carries out the assignments and re-assignments as specified later; the function
ζ satisfies that xstart ∈ ζ(q) if and only if q = start.

4.2 The result of a lengthy description

We concluded the last subsection by introducing some stopwatches and describing
corresponding bounds and actions. In the next section we will follow article by article
and translate this to our automaton. Thus, from each piece of text, possibly, new
stopwatches, new states, actions, constraints and bounds are defined.

The final result will be a complex automaton with 12 states and numerous tran-
sitions. We include here in Figure 1 an image of a high level representation of the
resulting automaton.

Figure 1: Schematic bird-eye view of our Regulation 561 automaton

The figure includes all states except start and accept and per state it indicates the
main stopwatches active in it (without the corresponding bounds). Also, the transitions
are depicted but without the corresponding guards and actions. For an earlier version
of this paper we collected all the describes attributes of the transitions and a long table.
To get an idea of the implicitly defined transition table, we refer the reader to a poster
that includes this table at https://www.ub.edu/prooftheory/event/lawdesign/.

15

https://www.ub.edu/prooftheory/event/lawdesign/

5 A stopwatch automaton for Regulation 561:

details

We loosely divide Regulation 561 into daily and weekly demands. We first describe
how to implement the daily demands using the first 5 states and daily driving and
accept. The other states will be used to implement the weekly demands.

During the construction we shall explicitly collect the constants appearing in the
articles and denote them by t0, . . . , t16. Our construction is such that these constants
determine all guards, actions and bounds in an obvious way. Knowing this will be
useful for the discussion in later sections.

5.1 Daily demands

We use the first 3 states to implement the the law about continuous driving:

Article 7 (1st part): After a driving period of four and a half hours a driver shall
take an uninterrupted break of not less than 45 minutes, unless he takes a rest
period.

First we shall address the scenario of a driving period without not a single minute
of interruption in between. Next we shall consider the scenario where intertwined
rest-minutes are allowed.

We use a stopwatch xcd with bound 4.5h + 1 = 271 that is active in drive. Further,
we use a stopwatch xbreak with bound 9h that is active in break. For the law under
consideration we could use the bound of 4.5h + 1, the reason we use 9h will become
clear later when implementing Article 8.7.

There are transitions back and forth between any two of the states break, drive
and other work. The transitions from break to both drive and other work have guard
xbreak ⩾ 45 and action xbreak ∶= 0; xcd ∶= 0. All transitions leaving drive have guard
xcd ⩽ 4.5h. This ensures that a computation staying in drive for more than 4.5h will
not be able to leave this state, so cannot be accepting.

Transitions to regular daily and reduced daily have action xcd ∶= 0: this ensures
the “unless. . . ” statement in Article 7 (transitions to weekly rest periods described
below will also have this action). The first part of this Article 7 uses constants
t0 ∶= 4.5h = 270; t1 ∶= 45 (the constant 9h is denominated later by t16).

Article 7 of Regulation 561 allows to divide the demanded break into two shorter ones:

Article 7 (2nd part): This break may be replaced by a break of at least 15
minutes followed by a break of at least 30 minutes each distributed over the
period in such a way as to comply with the provisions of the first paragraph.

To implement this possibility, we use a bit brb that, intuitively, indicates a reduced
break. We add transitions from break to other work and drive with guard 15 ⩽ xbreak < 45
and action brb ∶= 1; xbreak ∶= 0. We note that these transitions do not have action
xcd ∶= 0. We also observe that this transition is also allowed when brb = 1 in which case
setting brb to one will have simply no effect.

16

We add transitions10 from break to other work and drive with guards brb = 1 and
30 ⩽ xbreak and action brb ∶= 0; xcd ∶= 0; xbreak ∶= 0. Transitions to states representing
daily or weekly rests introduced below all get action brb ∶= 0. The second part of Article
7 uses the constant t2 ∶= 15; we do not introduce a name for 30 but view this constant
as equal to t1 − t2 = 45 − 15.

Remark 14. We observe that Article 7.2 strictly speaking is inconsistent
in the following sense. The second part of Art. 7.2 describes a situation
which is in conflict with the first paragraph but allowed by way of excep-
tion. So far so good, but then it says ”in such a way as to comply with
the provisions of the first paragraph” which we observed is impossible.
This is an innocuous inconsistency because everyone will simply tacitly
understand that this last phrase should simply be ignored. However, it
is a decision that needs to be made to consistently interpret the law and
in a sense, it is a free choice up to the programmer or modeller. More
subtle examples of the modeller taking essential interpretational decisions
are dealt with in [24, 31].

So far, the automaton does not allow to rest for e.g. 5 minutes. To allow this we add
transitions back and forth between break and other work, drive where the transitions
from break have guard xbreak < 15 and action xbreak ∶= 0.

Remark 15. Actually, the concept of continuous driving is underspecified
in the regulation. The interpretation that we have chosen here seems a
natural one. However, according to our interpretation, as far as Artricle
7 is concerned, it is legal for a driver to spend 9 hours straight spending
two minutes driving followed by two minutes of rest to generate the word
(ddrr)135. It seems doubtful that this is in line with the spirit of the law.
As a matter of fact, there is another European regulation ((EU) 2016/799)
that implies that drd cannot happen and any minute of rest between two
minutes of driving will be considered as driving. However, alternating
periods of two minutes is not considered by this regulation.

10We observe that the transitions that we define here involving the bit brb actually subsume the previously
defined transitions in the following sense. A driving period of 4.5h straight followed by a 45m break can lead
to an accepting computation also if the automaton leaves the driving state after 4.5h to move to the break
state to stay there 15m, then move to driving setting brb ∶= 1 to immediately move back to the break state
and stay there for another 30m. However, the purpose of this section is not to provide a minimal or optimal
automaton. Rather are we interested in conveying the expressive power of the SWA formalism which allows
for an implementation of the law, article by article.

17

Remark 16. An important problem with the formal ontology of contin-
uous driving is that it is not a physical observable like speed. Neither
does it seem to be defined in an unambiguous way in terms of physical
observables. Consequently we run into troubles as, for example, the one
mentioned in Remark 5.1

The part of the automaton defined so far that only involves the states drive, break
and other work is depicted in Figure 2. We shall no longer graphically represent the
defined transitions with corresponding guards and actions but encourage the reader to
do so while reading the remainder of this section.

drive
xcd

other
work

break
xbreak

xcd ⩽ 270
xbreak ∶= 0

xbreak ⩾ 45
xcd ∶= 0

xbreak ⩾ 45
xcd ∶= 0

xbreak ∶= 0

xcd ⩽ 270

Figure 2: Illustration of Article 7 (first part); stopwatches xcd, xbreak are shown at the states
where they are active.

Article 4.(k) defines ‘daily driving time’ as the accumulated driving time between
two daily rest periods.

Remark 17. There is a degenerate boundary case that is problematic to
this Definition 4.(k). Namely when a driver is new to the office. According
to just this regulation, his corresponding driver card will not have any
(daily) rest period yet so there cannot be any daily driving time either.
Of course, there is an easy and natural way to deal with this academic
anomaly. But again, this is an example of a (straightforward in this case)
decision left to the programmer/modeler.

According to Article 4.(g) daily rest periods can be regular or reduced, the former

18

meaning at least 11h of rest, the latter means less than 11h but at least 9h of rest.
These are represented by the states regular daily and reduced daily.

Article 8.1: A driver shall take daily and weekly rest periods.

Article 8.2: Within each period of 24 hours after the end of the previous daily
rest period or weekly rest period a driver shall have taken a new daily rest
period. If the portion of the daily rest period which falls within that 24 hour
period is at least nine hours but less than 11 hours, then the daily rest period
in question shall be regarded as a reduced daily rest period.

Weekly rest periods are treated in the next subsection. We use a stopwatch xday with
bound 24h+1 which is active in all states except accept and start, and a stopwatch xdr
with bound 11h active in reduced daily and regular daily. We have transitions back and
forth between the states break, drive, other work and the states regular daily, reduced
daily. The transitions to regular daily are guarded by xday ⩽ 24h − 11h = 780; brb = 0;
transitions to reduced daily are guarded by xday ⩽ 24h−9h = 900; brb = 0. The transitions
from regular daily are guarded by xdr ⩾ 11h, and the transitions from reduced daily are
guarded by 11h > xdr ⩾ 9h – later we shall refer to these guards as definitorial for the
states regular daily and reduced daily. Transitions from regular daily, reduced daily have
action xdr ∶= 0, xday ∶= 0.

All transitions to accept get guard xday ⩽ 24h. Note that an accepting computation
cannot involve an assignment satisfying xday > 24h, so eventually has to visit and leave
regular daily, reduced daily (or their weekly counterparts, see below). This ensures
Article 8.1 for daily rest periods. These laws use constants t3 ∶= 24h = 1440, t4 ∶= 11h =
660, t5 ∶= 9h = 540.

Actually the definition of regular daily rest periods in Article 4.(g) is more compli-
cated:

‘regular daily rest period’ means any period of rest of at least 11 hours. Alter-
natively, this regular daily rest period may be taken in two periods, the first of
which must be an uninterrupted period of at least 3 hours and the second an
uninterrupted period of at least nine hours,

To implement this we use a bit bdr indicating that a 3h part of a regular daily rest
period has been taken. We duplicate the transitions from regular daily but replace the
guard xdr ⩾ 11h by xdr ⩾ 9h, bdr = 1. To add the possibility of taking a partial regular
daily rest period of at least 3h we add transitions from regular daily to drive and other
work with guards bdr = 0,3h ⩽ xdr < 11h and action bdr ∶= 1; note these transitions do
not have action xday ∶= 0. All transitions with action xday ∶= 0 also get action bdr ∶= 0,
including those modeling weekly rest periods described below. This uses the constants
t6 = 3h = 180, t7 ∶= 9h = 540.

Article 6.1: The daily driving time shall not exceed nine hours. However, the
daily driving time may be extended to at most 10 hours not more than twice
during the week.

19

Remark 18. We recall that daily driving times are periods that are de-
limited by daily rest periods and as such a single daily driving time can
very well be spread over two different calendar days. The week however is
defined as calendar week starting at Monday 00:00. Now, what happens
if a driver has a daily driving period of 10 hours starting on a Sunday
and ending on a Monday? This is an extended daily driving time. Should
it be counted to the week staring on that Monday or to the week ending
on that Sunday? The law seems underspecified here. We shall see that
our model will disambiguate by assigning it to the week that starts on
Monday. Various tachograph readers make differenct choices and, for ex-
ample, the sofware Police Controller has an option to fix your choices or
to choose the distribution as to minimize the fine.

To implement Article 6.1 we use a stopwatch xdd active at drive with bound 10h+1
to measure the daily driving time. Additionally, we use a counter cdd with bound 3. As
described later, this counter will be reset to 0 when the week changes. Duplicate the
transitions to regular daily and reduced daily: one gets guard xdd ⩽ 9h, the other guard
9h < xdd ⩽ 10h and action cdd ∶= cdd + 1. Transitions from regular daily and reduced
daily get guard cdd ⩽ 2.

5.2 Weekly demands

While Regulation 561 has a concept of a day determined by daily rest periods, its
concept of week is that of the calendar (Article 4.(i)).

Remark 19. Actually, the noun week is technically defined as a calendar
week, starting on a Monday at 00:00 and ending at Sunday at 24:00. The
regulation does not explicitly mention what should be done a leap second
is added at Sunday so that the moment 24:00:01 exists.
In addition, it is clear from the regulation that the adjective weekly does
not refer to the technical definition of calendar week. For example, Article
8.9 says

A weekly rest period that falls in two weeks may be counted in
either week, but not in both.

This is an example of misleading nomenclature.

Our formalization of real tachograph recordings by timed words replaces the (al-
legedly UTC) time-points of tachograph recordings by numbers starting from 0. Hence
time is shifted and the information of the beginning of weeks is lost. A possibility to
remedy this is to use timed words where the beginnings of weeks are marked, or at
least the first of them. For simplicity, we restrict attention to tachograph recordings

20

starting at the beginning of a week, that is, we pretend that time-point 0 starts a week.
We then leave it to the automaton to determine the time-points when weeks change.

To this end11, we use the auxiliary state week and a stopwatch xweek with bound
7 ⋅ 24h + 1 = 168h + 1 that is active at all states except accept and start. All transitions
to accept are guarded by xweek ⩽ 168h. The state week has incoming transitions from
all states except accept and transitions to all states except start. All these incoming
transitions are guarded by xweek = 168h. The outgoing transitions have guard xweek =
168h − 1 actions xweek ∶= 0 and cdd ∶= 0 (see the implementation of Article 6.1 above).
This ensures that every accepting computation of A enters week for 0 time units exactly
every week, i.e., every 168h.

Additionally, we want the automaton to switch from week back to the state it came
from. To this end we introduce a bit bq for each state q ≠ accept with a transition to
week. We give the transition from State q to week the action bq ∶= 1, and the transition
from week to State q the guard bq = 1 and the action bq ∶= 0. The transition from week
to accept has no guard involving the bits bq. This uses the constant t10 ∶= 168h = 10080.

Much of the following implementation work is done by adding guards and actions
to the transitions from and to week. For example, we can readily implement

Article 6.2: The weekly driving time shall not exceed 56 hours and shall not
result in the maximum weekly working time laid down in Directive 2002/15/EC
being exceeded.

Article 6.3: The total accumulated driving time during any two consecutive
weeks shall not exceed 90 hours.

The time laid down by Directive 2002/15/EC is 60h. Use a stopwatch xww with
bound 60h + 1 that is active at drive and other work. Use a stopwatch xdw with
bound 56h + 1 active at drive. To implement Article 6.2, the transitions to week
and accept have guard xdw ⩽ 56h,xww ⩽ 60h, and the transitions from week have
action xdw ∶= 0, xww ∶= 0. Note that accepting computations contain only nodes with
assignments satisfying xdw ⩽ 56h and xww ⩽ 60h. This implements Article 6.2.

To implement Article 6.3 we have to remember the value xdw of the previous week.
We use a register x′dw with the same bound as xdw and give the transitions from week
the action x′dw ∶= xdw. Note x′dw functions like a register in that it just stores a value.
We then guard all transitions to accept by x′dw+xdw ⩽ 90h. These articles use constants
t11 ∶= 56h = 3360, t12 ∶= 60h = 3600 and t13 ∶= 90h = 5400.

We now treat the articles concerning weekly rest periods (again, these have little
to do with the formal definition of calendar week). According to Article 4.(h), weekly
rest periods can be regular or reduced, the former meaning at least 45h of rest, the
latter means less than 45h but at least 24h of rest. These rest periods are represented
by the states regular weekly and reduced weekly.

To implement their definition we use a stopwatch xwr with bound 45h active in
these two states to record the resting time. For the two states we add transitions
from and to drive and other work and transitions to accept: those from regular weekly
have guard xwr ⩾ 45h and action xwr ∶= 0, and those from reduced weekly have guards

11Alternatively, the week-status could be coded in the raw data by preprocessing it, thereby avoiding this
large constant.

21

45h > xwr ⩾ 24h and action xwr ∶= 0. Later we shall refer to these guards as definitorial
guards for regular weekly and reduced weekly, respectively. This uses the constants
t14 ∶= 45h = 2700, t15 ∶= 24h = 1440.

We start with some easy implementations:

Article 8.6 (3rd part): A weekly rest period shall start no later than at the end
of six 24-hour periods from the end of the previous weekly rest period.

Article 8.3: A daily rest period may be extended to make a regular weekly rest
period or a reduced weekly rest period.

Article 8.4: A driver may have at most three reduced daily rest periods between
any two weekly rest periods.

Article 8.6 (3rd part) is implemented by adding the guard xweek ⩽ 6 ⋅ 24h to the
transitions to regular weekly and reduced weekly. This law uses constant t16 ∶= 6 ⋅ 24h =
8640.

To implement Article 8.3 we simply copy the guards and actions of the transitions
from drive and other work to regular daily to the corresponding transitions to both
regular weekly and reduced weekly. Below we shall add more guards and actions. For
Article 8.4 we use a counter crd with bound 4. We add guard crd ⩽ 2 and action
crd ∶= crd+1 to the transitions to reduced daily and the action crd ∶= 0 to the transitions
from reduced weekly and regular weekly.

We still have to implement Article 8.1 for weekly rest periods, and additionally

Article 8.9: A weekly rest period that falls in two weeks may be counted in
either week, but not in both.

We use two bits bwr, bused meant to indicate whether a weekly rest period has been
taken in the current week, and whether the current weekly rest period is used for
this. The transitions from drive or other work to reduced weekly or regular weekly are
duplicated: one gets guard bwr = 0 and action bused ∶= 1; bwr ∶= 1, the other gets no
further guards and actions. Transitions from reduced weekly or regular weekly get action
bused ∶= 0. The transitions to week get guard bwr = 1.

Each transition from week to reduced weekly or regular weekly is triplicated: the
first gets additional guard bused = 1 and action bused ∶= 0; bwr ∶= 0, the second gets
guard bused = 0 and action bwr ∶= 0, and the third gets guard bused = 0 and action
bused ∶= 1; bwr ∶= 1. This means that when the week changes during a weekly rest
period and this rest period is not used, it can be used for the next week.

The most complicated part of Regulation 561 are the rules governing reductions of
weekly rest periods. The regulation starts as follows:

Article 8.6 (1st part): In any two consecutive weeks a driver shall take at
least two regular weekly rest periods, or one regular weekly rest period and one
reduced weekly rest period of at least 24 hours.

We use a bit brw indicating whether the previous weekly rest period was reduced:
transitions to reduced weekly have guard brw = 0 and action brw ∶= 1. Transitions to
regular weekly have action brw ∶= 0.

The regulation continues as follows:

22

Article 8.6 (2nd part): However, the reduction shall be compensated by an
equivalent period of rest taken en bloc before the end of the third week following
the week in question.

Remark 20. Article 8.6 introduces much combinatoric complexity and it
is not clear if this was intended when Regulation 561 was first formulated.
In [25] and [24] it is shown that the legality of a given week may depend on
what happens during weeks that are arbitrary far in time removed from
it.

The next article reads:

Article 8.7: Any rest taken as compensation for a reduced weekly rest period
shall be attached to another rest period of at least nine hours.

We introduce two registers xc1, xc2 with bounds 45h−24h. We shall use the following
informal mode of speech for the discussion: a reduced weekly rest period creates a
‘compensation obligation’, namely an additional resting time xc1 > 0 or xc2 > 1. The
obligations are ‘fulfilled’ by setting these registers back to 0. Note that compensation
obligations are created by reduced weekly rest periods and, by Article 8.6 (1st part),
this can happen at most every other week. As obligations have to be fulfilled within 3
weeks, at any given time a legal driver can have at most two obligations.

We now give the implementation. Obligations are produced by transitions from
reduced weekly (recall xwr records the resting time in reduced weekly): duplicate each
such transition, give one guard xc1 = 0 and action xc1 ∶= 45h−xwr, and the other guard
xc1 > 0; xc2 = 0 and action xc2 ∶= 45h−xwr. The 3 week deadline to fulfill the obligations
is implemented by two counters cc1, cc2 with bound 4. These counters are increased
by transitions from week but only if some obligation is actually recorded: transitions
from week get action cc1 ∶= cc1 + sgn(xc1); cc2 ∶= cc2 + sgn(xc2). To ensure the deadline,
transitions to week get guard cc1 ⩽ 3; cc2 ⩽ 3.

We now implement the way obligations can be fulfilled, i.e., how to set xc1 and
xc2 back to 0. This is done with the states compensate1 and compensate2 whose λ-
label is r. We use a stopwatch xcr with bound 45h − 24h active at these states. We
describe the transitions involving compensate1. It receives transitions from the states
with λ-label r, that is, regular daily, reduced daily, regular weekly, reduced weekly and
break. The transition from break has guard xbreak ⩾ 9h, the others have their respective
definitorial guards (e.g., the one from regular weekly has guard xwr ⩾ 45h). Transitions
from compensate1 go to drive, other work and accept. These have guard xcr ⩾ xc1 and
action xc1 ∶= 0 ∶ cc1 ∶= 0. Additionally, we already introduced transitions from and
to week: the transition to week is duplicated, one gets guard xcr < xc1, the other gets
guard xcr ⩾ xc1 and action xc1 ∶= 0. Thus, when the week changes during compensation
and at a time-point when the obligation is fulfilled, the counter is not increased.

The transitions from and to compensate2 are analogous with xc2, cc2 replacing
xc1, cc1. These laws use the constant t16 ∶= 9h = 540; the bound 45h − 24h = 1560
equals t14 − t15.

This finishes the definition of our automaton.

23

6 Expressivity of Stopwatch Automata

In this section we will gauge the expressivity of Stopwatch automata and see an equiv-
alent alternative definition for SWAs.

6.1 Regularity

The next lemma establishes an easy lower-bound on the expressibility of stopwatch
automata. In a sense, we can consider non-deterministic finite automata as a special
case of stopwatch automata.

Lemma 21. Every regular language is the language of some stopwatch automaton.

Proof. Given a non-deterministic finite automaton B = (S,Σ, I, F,Γ) as described in
Subsection 2.1, we will define the stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) so that
a word is in L(B) if and only if it is accepted by A.

To this end we define the states Q of A to be start and accept together with {(s, a) ∣
∃ s′∈S (s, a, s′) ∈ Γ} so that the old transition symbol a is hardwired in a state of A in
the sense that we define λ((s, a)) ∶= a (the labelling on start and accept is irrelevant
by construction). In the case I ∩F ≠ ∅12 we add a transition from start to accept with
condition nor action.

To mimic the behaviour of B we will use a single clock x that is active everywhere
so that X = {x} and ζ(x) = Q. We use the stopwatch x to force each computation
to stay exactly one time unit in states (s, a) ∈ Q. Thus, a bound of β(x) ∶= 2 suffices
and we define that each transition from some (s, a) to (s′, a′) has condition x = 1 and
action x ∶= 0. We only allow those transitions from (s, a) to (s′, a′) when (s, a, s′) ∈ Γ.
This fixes ∆ when the states are not start or accept. We further define ∆ by stipulating
that there is a transition from start to any (s, a) ∈ Q so that s ∈ I with guard x = 0
and action x ∶= 0. Likewise, we complete the definition of ∆ by stipulating that there
is a transition from any (s, a) ∈ Q so that s ∈ F to accept with guard x = 0 and action
x ∶= 0.

It is now easy to see that L(A) ⊆ L(B) and the other inclusion could have only
failed in case I ∩ F ≠ ∅ which is why we added an extra transition in this case.

We shall now see in Theorem 23 below that the converse of this lemma is also true
and that any language recognised by a SWA is regular. The construction to go from a
SWA A to an equivalent finite automata B(A) is given by the following defintion.

Definition 22. Given a stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆), we define the
following finite automaton B(A) = (S,Σ, I, F,Γ). For S we take the set of nodes of
TS(A); we let I ∶= {(start , ξ0)} where ξ0 is constantly 0, and F contain the nodes

(q, ξ) of TS(A) such that (q, ξ) 0∗→ (accept, ξ′) for some assignment ξ′. Here,
0∗→ denotes

the transitive and reflexive closure of
0→. We let Γ contain ((q, ξ), a, (q′, ξ′)) if λ(q′) = a

and there is ξ′′ such that (q, ξ) 0∗→ (q′, ξ′′) 1→ (q′, ξ′).
12For example, the minimal automaton B with L(B) = {λ}. I ∩ F ≠ ∅ can be replaced by requiring that

I ∩ F contains isolated points.

24

With this construction we now gauge the expressivity of Stopwatch Automata.

Theorem 23. A language is regular if and only if it is the language of some stopwatch
automaton.

Proof. One direction follows from Lemma 21. Conversely, given a language that is
recognised by some SWA A we easily see that L(A) = L(B(A)) where B(A) is as in
Definition 22. That L(B(A)) ⊆ L(A) is immediate and for L(A) ⊆ L(B(A)) we observe
that a step in TS(A) of duration n can be obtained by n consecutive steps of duration
1.

The proof of Lemma 21 gives a polynomial time computable function mapping every
finite automaton to an equivalent stopwatch automaton. There is no such function for
the converse translation, in fact, stopwatch automata are exponentially more succinct
than finite automata.

Proposition 24. For every k there is a stopwatch automaton Ak of size O(log k) such
that every finite automaton accepting L(Ak) has size at least k.

We defer the proof to the end of Section 8.2.

6.2 A definitorial variation

To showcase the robustness of our definition and for later use, we mention a natural
variation of our definition and show it is inessential.

Define a P (Σ)-labeled (specific) stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) like
a (specific) stopwatch automaton but with λ ∶ Q→ P (Σ) ∖ {∅}. A computation

(q0, ξ0)
t0→ (q1, ξ1)

t1→ (q2, ξ2)
t2→ ⋯ t`−1→ (q`, ξ`). (1)

is said to read any word at00 ⋯a
t`−1
`−1 with ai ∈ λ(qi) for every i < `. The language L(A)

of A is defined as before.
A stopwatch automaton can be seen as a P (Σ)-labeled stopwatch automaton whose

state labels are singletons. Conversely, given a P (Σ)-labeled stopwatch automaton
A = (Q,Σ,X,λ, β, ζ,∆) we define a stopwatch automaton A′ = (Q′,Σ,X,λ′, β, ζ ′,∆′)
as follows: its states Q′ consist of start, accept and of pairs (q, a) such that a ∈ λ(q). No
stopwatches are active in start, nor in any of the states (accept , a) with a ∈ λ(accept).
The λ′-label of such a state (q, a) is a and stopwatch x ∈ X is active (according ζ ′)
in (q, a) if and only if it is active in q (according ζ). We let ∆′ contain a transition
((q, a), g, α, (q̃, ã)) if and only if (q, a), (q̃, ã) ∈ Q′ and (q, g,α, q̃) ∈ ∆.

Given a computation of A as above, choose any ai ∈ λ(qi) for every i < `. Then

((q0, a0), ξ0)
t0→ ((q1, a1), ξ1)

t1→ ((q2, a2), ξ2)
t2→ ⋯ t`−1→ ((q`, a`), ξ`). (2)

is a computation of A′. The choice of the ai can be made so that this computation
reads the same word as the computation (1). Conversely, if (2) is a computation of A′,
then (1) is a computation of A that reads the same word. To sum up we now have:

Proposition 25. There is a polynomial time computable function that maps every
P (Σ)-labeled stopwatch automaton A to a stopwatch automaton A′ with BA = BA′ and
L(A) = L(A′).

25

7 Model checking for Stopwatch Automata

In this section we see how the classical automata problems behave for SWAs: consis-
tency checking and validity checking.

7.1 Consistency-checking

By Theorem 23 we know that the languages accepted by SWAs are exactly the regular
languages. In particular we know that those languages are closed under intersections.
Since we will need explicit bounds on a SWA that computes the intersection of two
languages, we will now provide and analyse a construction for such an automaton.

The idea is that the product automaton can allocate simultaneous computations of
the respective automata. An additional fresh clock variable is used to flag when the
two automata computations start to differ.

Definition 26. For A = (Q,Σ,X,λ, β, ζ,∆) and A′ = (Q′,Σ,X ′, λ′, β′, ζ ′,∆′). We
define the product automaton A⊗A′ as follows.

Without loss of generality we can assume that

– X and X ′ are disjoint;

– both A and A′ have distinct start and accept states;

– neither A nor A′ contains transitions from its accept state.

Let y be a fresh clock variable not yet in X ∪X ′. We define

A⊗A′ ∶= (Q ×Q′,Σ,X ∪X ′ ∪ {y}, λ⊗, β⊗, ζ⊗,∆⊗),

where

– the start state is the pair of the start states of A and A′ and the accept state is
the pair of accept states of A and A′;

– λ⊗ maps (q, q′) ∈ Q ×Q′ to λ(q);
– β⊗ extends β ∪ β′ with β⊗(y) = 1;

– ζ⊗ maps x ∈X to ζ(x) ×Q′ and x ∈X ′ to Q × ζ ′(x) and ζ⊗(y) = Q ×Q′;

– ∆⊗ contains ((q0, q
′

0), g∗, α∗, (q1, q
′

1)) iff one of the following holds

• For some guards g, g′ and actions α,α′ we have that (q0, g, α, q1) ∈ ∆ and
(q′0, g′, α′, q′1) ∈ ∆′ and α∗ executes α and α′ in parallel setting the value of
y to zero. If λ(q) = λ(q′), then g∗ simply computes the conjunction of g and
g′, and in case λ(q) ≠ λ(q′), then g∗ computes the conjunction of g, g′ and
the requirement that y = 0;

• For some guard g and action α we have that (q0, g, α, q1) ∈ ∆ and q′0 = q′1 and
α∗ executes α in parallel with the identity map on X ′ and sets α∗(y) = 0.
If λ(q) = λ(q′), then the guard g∗ only checks g. If λ(q) ≠ λ(q′), then the
guard g∗ checks g in conjunction with y = 0;

• For some guard g′ and action α′ we have that q0 = q1 and (q′0, g′, α′, q′1) ∈ ∆′

and α∗ executes the identity map on X in parallel with α′ and sets α∗(y) = 0.
If λ(q) = λ(q′), then the guard g∗ only checks g′. If λ(q) ≠ λ(q′), then the
guard g∗ checks g′ in conjunction with y = 0.

26

It is an elementary exercise to see that the thus defined product automaton possesses
the required behaviour.

Lemma 27. Given stopwatch automata A,A′ with bounds BA,BA′ one can compute
in time O(∥A∥ ⋅ ∥A′∥) the stopwatch automaton A ⊗ A′ with bound BA ⋅ B′

A such that
L(A⊗A′) = L(A) ∩L(A′).

Proof. Note that computations of A⊗A′ cannot leave a state (q, q′) where one of q, q′

is the accept state of A or A′. Hence an initial accepting computation of A⊗A′ visits
such a state exactly in its last step. It follows that such computations correspond to
pairs of initial accepting computations of A and A′. However, the two computations
in this pair need not read the same word. We have that the words in L(A)∩L(A′) are
precisely the words accepted by A⊗A′ via accepting computations that do not reside
for a positive amount of time in a bad state (q, q′) with λ(q) ≠ λ′(q′).

However, the new clock variable y was declared active in every state (q, q′) ∈ Q×Q′

and all actions set y to 0. Moreover each guard of a transition from a bad state check
that y = 0. Thus indeed, no computation can leave a bad state after having resided in
it for a positive amount of time. We note that A⊗A′ has size O(∥A∥ ⋅ ∥A′∥) and bound
BA⊗A′ = BA ⋅BA′ . Clearly, A⊗A′ can be computed from A and A′ in time linear in the
size of A⊗A′, that is, linear in O(∥A∥ ⋅ ∥A′∥).

The following algorithm can be used to check if the intersection of two languages is
empty or not. Informally, we can perceive this as an algorithm that checks whether a
certain type of behaviour is illegal according to a law when both the type of behaviour
and the law are specified by stopwatch automata.

Theorem 28. There is an algorithm that given stopwatch automata A,A′ with bounds
BA,BA′, respectively, decides whether L(A) ∩L(A′) ≠ ∅ in time

O(∥A∥3 ⋅ ∥A′∥3 ⋅B2
A ⋅B2

A′).

Proof. The algorithm first computes the product automaton A⊗A′ from Definition 26.
Next, the algorithm computes the finite automaton B(A⊗A′) = (S,Σ, I, F,Γ) as given
in Definition 22. Note ∣S∣ ⩽ ∣Q∣ ⋅ ∣Q′∣ ⋅BA⊗A′ .

To compute Γ we first compute the graph on S with edges
0→: cycle through all

(q, ξ) ∈ S and transitions in ∆⊗ and evaluate its guard and action on ξ. Each evaluation
can be done in time linear in the size of the circuits, so in time O(∥A⊗∥). Thus, the
graph can be computed in time O(∣S∣ ⋅ ∣∆⊗∣ ⋅ ∥A⊗∥).

Linear time in the size of this graph suffices to compute
0∗→, i.e., to determine for

each pair of vertices whether the second is reachable from the first. Each of the at

most ∣S∣∗ edges in
0∗→ determines a transition in Γ. Thus B(A ⊗A′) can be computed

in time O(∣S∣ ⋅ ∣∆⊗∣ ⋅ ∥A⊗∥ + ∣S∣2) ⩽ O((∥A∥ ⋅ ∥A′∥)3 ⋅B2
A ⋅B2

A′).
Observe L(B(A⊗A′)) ≠ ∅ if and only if some final state is reachable from the initial

state. Checking this takes linear time in the size of the automaton.

The algorithm solves the consistency problem for stopwatch automata by fixing
input A′ to some stopwatch automaton with L(A′) = Σ∗.

27

Corollary 29. There is an algorithm that given a stopwatch automaton A with bound BA,
decides whether L(A) ≠ ∅ in time

O(∥A∥3 ⋅B2
A).

7.2 Model-checking

By Theorems 23 and 5, stopwatch automata are as expressive as MSO over finite words.
In this section we verify that its model-checking complexity is comparatively tame.

In fact, the algorithm of Theorem 28 can be used to solve the model-checking
problem: note w ∈ L(A) if and only if L(Bw) ∩ L(A) ≠ ∅ for a suitable size O(∣w∣)
automaton Bw with L(Bw) = {w}. A more direct model-checking algorithm achieves a
somewhat better time complexity, in particular, linear in BA:

Theorem 30. There is an algorithm that given a word w and a stopwatch automaton A
with bound BA decides whether w ∈ L(A) in time

O(∥A∥2 ⋅BA ⋅ ∣w∣).

Proof. Let A = (Q,Σ,X,λ, β, ζ,∆) have bound BA. Let G = (V,E) be the directed
graph whose vertices V are the nodes of TS(A) and whose directed edges E are given

by
0→. Note ∣V ∣ = ∣Q∣ ⋅BA and ∣E∣ ⩽ BA ⋅ ∣∆∣. Let w be a word over Σ, say of length t.

We define a directed graph with vertices {0, . . . , t} × V and the following edges. Edges
within each copy {i}×V are copies of E. So these account for at most (t+ 1) ⋅BA ⋅ ∣∆∣
many edges, each determined by evaluating guards and actions in time O(∥A∥). Further
edges lead from vertices in the i-th copy {i}×V to vertices in the (i+1)th copy {i+1}×V ,
namely from (i, (q, ξ)) to (i + 1, (q, ξ′)) if

(q, ξ) 1→ (q, ξ′) and q ≠ accept and λ(q) = wi. (3)

There are at most t⋅∣Q∣⋅BA such edges between copies. This graph has size O(t⋅∥A∥⋅BA)
and can be computed in time O(t ⋅ ∥A∥2 ⋅BA).

It is clear that w ∈ L(A) if and only if (t, (accept, ξ′)) for some assignment ξ′ is
reachable in the sense that there is a path from (0, (start , ξ0)) with ξ0 constantly 0 to
it. Checking this takes time linear in the size of the graph.

This theorem tells us that temporal algorithmic laws that can be represented as
SWA (in the above theorem A) have relatively good behaviour to check whether a
data-set (above w) is legal according to the law.

8 Pushing the limits for Stopwatch Automata

Oftentimes scheduling a future record is computationally harder than checking legality
of a given record. In this section that this is not the case for our Regulation 561
implementation where scheduling is not much harder than checking legality. And this
holds for SWAs in general. We also see how our SWAs can be generalised in a natural
fasion so that we remain decidable yet go beyond regular languages.

28

8.1 Scheduling

We strengthen the model-checker of Theorem 30 to solve the scheduling problem: the
model-checker treats the special case for inputs with n = 0.

Theorem 31. There is an algorithm that given a stopwatch automaton A with bound
BA and alphabet Σ, a word w ∈ Σ∗, a letter a ∈ Σ and n ∈ N, rejects if there does not
exist a word v over Σ of length n such that wv ∈ L(A) and otherwise computes such a
word v with maximal #a(v). It runs in time

O(∥A∥2 ⋅BA ⋅ (∣w∣ + n)).

Proof. Consider the graph constructed in the poof of Theorem 30 but with t+n instead
of t and the following modification: in (3) for t ⩽ i < t+n drop the condition λ(q) = wi

for edges between the i-th and the (i + 1)-th copy.
In the resulting graph there is a reachable vertex (t + n, (accept, ξ′)) for some as-

signment ξ′ if and only if there exists a length n word v such that wv ∈ L(A). We now
show how to compute the maximum value #a(v) for such v.

Successively for i = 0, . . . , n compute a label Vi(q, ξ) for each vertex (t + i, (q, ξ)) in
the (t + i)-th copy. For i = 0 all these labels are #a(w). For i > 0 label (t + i, (q, ξ))
with the maximum value

{ Vi−1(q, ξ′) + 1 if λ(q) = a,
Vi−1(q, ξ′) else

taken over ξ′ such that there is an edge from (t + i − 1, (q, ξ′)) to (t + i, (q, ξ)). Then
the desired maximum value #a(v) is the maximum label Vn(q, ξ) such that q = accept
and (t + n, (q, ξ)) is reachable.

Additionally we are asked to compute a word v witnessing this value. To do so
the labeling algorithm computes a set of directed edges, namely for each (t + i, (q, i))
with i > 0 to a vertex (t + i − 1, (q, ξ′)) witnessing the maximum value above. This set
of edges defines a partial function that, for each i > 0, maps vertices in the (t + i)-th
copy to vertices in the (t + i − 1)-th copy. To compute v as desired start at a vertex
(t + n, (qn, ξn)) witnessing the maximal value #a(v) and iterate this partial function
to get a sequence of vertices (t + i, (qi, ξi)). Then v ∶= λ(q1)⋯λ(qn) is as desired.

It is clear that all this can be done in time linear in the size of the graph.

8.2 Model-checking beyond regularity

A straightforward generalization of bounded stopwatch automata allows β to take
value ∞. An unbounded stopwatch automaton is a stopwatch automaton where β is
the function constantly ∞.

We shall now prove that model-checking is undecidable already for simple such
automata (see [16, Proposition 1] for a similar proof). These simple automata use two
stopwatches x, y that are nowhere active (i.e., ζ is constantly ∅), all guards check z = 0
or z ≠ 0, and all actions are either z ∶= z + 1 or z ∶= z−̇1 = min{∣z − 1∣, z} for some
z ∈ {x, y}.

29

Proposition 32. There is no algorithm that given a simple unbounded stopwatch au-
tomaton decides whether it accepts the empty word.

Proof. Recall, a two counter machine operates two variables x, y called counters and
is given by a finite non-empty sequence (π0, . . . , π`) of instructions πi, namely, either
z ∶= z + 1, z ∶= z−̇1, “Halt” or “if z = 0, then goto j, else goto k” where z ∈ {x, y}
and j, k ⩽ `; exactly π` is “Halt”. The computation (without input) of the machine is
straightforwardly explained. It is long known that it is undecidable whether a given
two counter machine halts or not.

Given such a machine (π0, . . . , π`) it is easy to construct a simple automaton that
accepts the empty word if and only if the two counter machine halts. It has states
Q = {0,1, . . . , `} understanding start = 0 and ` = accept ; Σ and λ are unimportant, and
∆ is defined as follows. If πi is the instruction z ∶= z+1, then add the edge (i, g, α, i+1)
where g is trivial and α changes z to z + 1. If πi is the instruction z ∶= z−̇1, proceed
similarly. If πi is “if z = 0, then goto j, else goto k” add edges (i, g, α, j), (i, g′, α, k)
where g checks z = 0 and g′ checks z ≠ 0 and α computes the identity.

What seems to be a middle ground between unbounded stopwatches and stop-
watches with a constant bound is to let the bound grow with the length of the input
word.

The definition of a bounded stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) can be
generalized letting β ∶ X ×N → N be monotone in the sense that β(x,n) ⩽ β(x,n′) for
all x ∈ X, n,n′ ∈ N with n ⩽ n′. We call this a β-bounded stopwatch automaton and
call BA ∶ N→ N defined by

BA(n) ∶= ∏
x∈X

(β(x,n) + 1)

the bound of A. For each n ∈ N we have a stopwatch automaton A(n) ∶= (Q,Σ,X, βn, ζ, λ,∆)
where βn ∶X → N maps x ∈X to β(x,n); note BA(n) = BA(n).

The language L(A) accepted by a β-bounded stopwatch automaton A contains a
word w over Σ if and only if w ∈ L(A(∣w∣)).

Proposition 33. A language is accepted by some stopwatch automaton if and only if
it is accepted by some β-bounded stopwatch automaton with bounded β.

Proof. Let A be a β-bounded stopwatch automaton for bounded β. There is n0 ∈ N
such that β(x,n) = β(x,n0) for all x ∈ X and n ⩾ n0. Hence L(A(n0)) and L(A)
contain the same words of length at least n0. Since there are only finitely many shorter
words, and L(A(n0)) is regular by Theorem 23, also L(A) is regular.

Theorem 30 on feasible model checking generalizes:

Corollary 34. Let X be a finite set and assume β ∶X ×N→ N is such that β(x,n) is
computable from (x,n) ∈ X ×N in time O(n). Then there is an algorithm that given
a word w and a β-bounded stopwatch automaton A with bound BA ∶ N → N decides
whether w ∈ L(A) in time

O(∥A∥2 ⋅BA(∣w∣) ⋅ ∣w∣).

30

The interesting feature is that if the bounds are allowed to grow, then we can
recognise non-regular languages. Even if the growth is extremely slow. In a sense, if
β(x,n) grows slowly in n this can be considered tractable.

Proposition 35. Let f ∶ N→ N be an unbounded function. Then there is a β-bounded
stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) with β(x,n) = f(n) for all x ∈X and all
n ∈ N such that L(A) is not regular.

Proof. Let Σ be the three letter alphabet {a, b, c}, and let L contain a length t word
over Σ if it has the form asbsc∗ for some s < f(t). Since f is unbounded, L contains
such words for arbitrarily large s. It thus follows from the Pumping Lemma, that L is
not regular.

It suffices to define a β-bounded stopwatch automaton A such that that accepts
a word of sufficiently large length t if and only if it belong to L. The states are
start ,accept , qa, qb, qc with λ-labels a, a, a, b, c, respectively. We use stopwatches xa, ya, xb
all with bound f(t) and declare xa, ya active in qa and start, and xb active in qb. There
are transitions from start to qa, from qa to qb, from qb to qc, and from qc to accept –
described next.

The transition from start to qa has guard xa = 0 and action ya ∶= 1. For sufficiently
large t, the bound f(t) of xa is positive. Then any initial accepting computation (of

A on a word of length t) spends 0 time in start , and thus starts (start , [0,0,0]) 0→
(qa, [0,1,0]); we use a notation like [1,2,3] to denote the assignment that maps xa to
1, ya to 2, and xb to 3.

The transition from qa to qb has guard x < y and trivial action. An initial accepting
computation on a word of length t can stay in qa for some time r reaching (qa, [r, r+1,0])
for r < f(t), or reaching [f(t), f(t),0] for r ⩾ f(t) due to the bound of x, y. In the
latter case the transition to qb is disabled and accept cannot be reached. Staying in qa
for any time s < f(t) allows the transition to qb.

The transition from qb to qc has guard xa = xb and trivial action. The transition
from qc to accept has trivial guard and action.

We can now proof that stopwatch automata are exponentially more succinct than
finite automata as was expressed in Proposition 24.

Proof of Proposition 24. Consider the previous proof for the function f constantly k.
Clearly, L is regular. The constant c in the Pumping Lemma can be taken to be
the number of states of a finite automaton accepting L. It follows that every such
automaton has at least k many states. The stopwatch automaton A accepts L and
has size O(log k). Indeed, the size of a binary encoding of A is dominated by the bits
required to write down the bound k of the 2 stopwatches.

9 Discussion and a lower bound

We suggest the model-checking problem for stopwatch automata and finite words (over
some finite alphabet) as an answer to our central question in Section 1.2, the quest for
a model for algorithmic laws concerning activity sequences. This section discusses to

31

what extent this model meets the three desiderata listed in Section 1.2, and mentions
some open ends for future work.

9.1 Summary

Expressivity Stopwatch automata are highly expressive, namely, by Theorem 23,
equally expressive as MSO. In particular, [24] argued that Regulation 561 is expressible
in MSO, so it is also expressible by stopwatch automata. In Section 8.2 we showed
that a straightforward generalization of stopwatch automata can go even beyond MSO.
Future research might show whether this is useful for modeling actual laws.

Example 36. Imagine an employee who can freely schedule his work and choose among
various activities Σ to execute at any given time point. The employer favors an activity
a ∈ Σ and checks at random time-points that the employee used at least a third of his
work-time on activity a since the previous check. The set of w ∈ Σ∗ with #a(w) ⩾ ∣w∣/3
is not regular but is accepted by a simple β-bounded stopwatch automaton with one
stopwatch x and bound β(x, t) = ⌈t/3⌉.

Naturality We stressed that expressivity alone is not sufficient, natural expressivity
is required. This is an informal requirement, roughly, it means that the specification of
a law should be readable, and in particular, not too large. In particular, as emphasized
in Section 2.1, constants appearing in laws bounding durations of certain activities
should not blow up the size of the formalization (like it is the case for LTL). We
suggest that our expression of Regulation 561 by a stopwatch automaton is natural.

There is a possibility to use stopwatch automata as a law maker13: an interface that
allows to specify laws in a formally rigorous way without assuming much mathematical
education. It is envisionable to use graphical interfaces akin to the one provided by
UPPAAL14 to draw stopwatch automata. A discussion of this possibility as well as the
concept of “readability” is outside the scope of this paper.

Tractability The main constraint of a model-checking problem as a formal model
for algorithmic law is its computational tractability. In particular, the complexity of
this problem should scale well with the constants appearing in the law. This asks for a
fine-grained complexity analysis taking into account various aspects of a typical input,
and, technically, calls for a complexity analysis in the framework of parameterized com-
plexity theory. Theorem 30 gives a model-checker for stopwatch automata. Its worst
case time complexity upper bound scales transparently with the involved constants,
and, most importantly, the running time is not exponential in these constants. This
overcomes a bottleneck of model-checkers designed in the context of system verification
(see Section 10.2). Theorems 28 and 31 give similar algorithms for consistency checking
and scheduling.

13Actually, a version of a product along these lines which goes by the name LawMaker© is currently being
developed.

14https://uppaal.org/

32

https://uppaal.org/

9.2 Parameterized model-checking

We have an upper bound O(∥A∥2 ⋅ BA ⋅ ∣w∣) to the worst case runtime of our model-
checker. The troubling factor is BA: the runtime grows fast with the stopwatch bounds
of the automaton. Intuitively, these bounds stem from the constants mentioned by the
law as duration constraints on activities. At least, this is the case for Regulation 561:
we explicitly mentioned a tuple of 17 constants t̄ = (t0, . . . , t16) which determine our
automaton, specifically its bounds, guards and actions. To wit, t̄ determines the bounds
on stopwatches as follows:

xbreak xcd xday xdr xdd xweek xww xdw, x
′

dw xwr xc1, xc2
t16 t0 + 1 t3 + 1 t4 t8 + 1 t10 + 1 t12 + 1 t11 + 1 t14 t14 − t15

The other stopwatches have bounds independent of t̄ ∈ N17. For any choice of t̄ we get
an automaton A(t̄) that accepts exactly the words that represent activity sequences
that are legal according to the variants of Regulations 561 obtained by changing these
constants to t̄. It is a matter of no concern to us that not all choices for t̄ lead
to meaningful laws. We are interested in how the runtime of our model-checker for
Regulation 561 depends on these constants.

By Theorem 30 we obtain the following:

Corollary 37. There is an algorithm that given t̄ ∈ N17 and a word w decides whether
w ∈ L(A(t̄)) in time

O(t16 ⋅ t0 ⋅ t3 ⋅ t4 ⋅ t8 ⋅ t10 ⋅ t12 ⋅ t211 ⋅ t14 ⋅ (t14 − t15)2 ⋅ ∣w∣).

For the actual values of t̄ in Regulation 561 the above product of the ti’s evaluates
to the number

146002954447480927813632000000000000000.

This casts doubts whether the factor BA in our worst-case running time O(∥A∥2 ⋅BA ⋅∣w∣)
should be regarded tractable. Can we somehow improve the runtime dependence from
the constants?

For the sake of discussion, note that BA is trivially bounded by tcAA where cA is the
number of stopwatches of A and tA is the largest bound of some stopwatch of A (as
in Section 1.3). Intuitively, cA is “small” but tA is not. In the spirit of parameterized
complexity theory it is natural to ask whether the factor (BA or) tcAA can be replaced by

f(cA) ⋅ tO(1)
A for some computable function f ∶ N→ N. We now formulate this question

precisely in the framework of parameterized complexity theory.
The canonical parameterized version of our model-checking problem is

Input: a stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) and w ∈ Σ∗.
Parameter: ∥A∥.
Problem: w ∈ L(A) ?

Our model-checker of Theorem 30 witnesses that this problem is fixed-parameter tracta-
ble. Indeed, ∥A∥2 ⋅BA ⩽ f(∥A∥) for some computable f ∶ N→ N because the circuits in
A have size ≤ logBA. Intuitively, that BA is bounded in terms of the parameter ∥A∥

33

means that the parameterized problem above models instances where BA is “small”,
in particular β takes “small” values. But there are cases of interest where this is not
true: the constant t10 ∶= 10080 in Regulation 561 is not “small”15. In the situation of
such an algorithmic law, the above parameterized problem is the wrong model.

A better model parameterizes a model-checking instance (A,w) by the size of A but
discounts the stopwatch bounds. More precisely, consider the following parameterized
problem:

p-SWA
Input: a stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) and w ∈ Σ∗.
Parameter: ∣Q∣ + ∣Σ∣ + ∣X ∣ + ∣∆∣.
Problem: w ∈ L(A) ?

Note that the algorithm of Theorem 30 does not witness that this problem would
be fixed-parameter tractable. We arrive at the precise question:

Is p-SWA fixed-parameter tractable?

9.3 A lower bound

In this section we prove that the answer to the above question is likely negative in the
sense of Theorem 38 below. We would like to stress that the proof of the theorem is
self-contained and in particular, no knowledge of the mentioned complexity classes is
required.

Theorem 38. p-SWA is not fixed-parameter tractable unless every problem in the
W-hierarchy is fixed-parameter tractable.

We refer to any of the monographs [27, 36, 28] for a definition of the W-hierarchy
W[1] ⊆ W[2] ⊆ ⋯. As mentioned in Section 1.2, the central hardness hypothesis of
parameterized complexity theory is that already the first level W[1] contains problems
that are not fixed-parameter tractable. We thus consider Theorem 38 as strong evidence
that the answer to our question is negative.

We prove Theorem 38 by a reduction from a parameterized version of the Longest
Common Subsequence Problem (LCS). This classical problem takes as inputs an alpha-
bet Σ, finitely many words w0, . . . ,wk−1 over Σ and a natural number m. The problem
is to decide whether the given words have a common subsequence of length m: such a
subsequence is a length m word a0⋯am−1 over Σ (the ai are letters from Σ) that can
be obtained from every wi, i < k, by deleting some letters. In other words, for every
i < k there are ji0 < ⋯ < jim−1 < ∣wi∣ such that for all ` < m the word wi has letter a` at
position ji`. For example, both bbaccb or bbaacb are common subsequences of abbaaccb
and bbacccacbb.

This problem received considerable attention in the literature and has several nat-
ural parameterized versions [9, 10, 8, 51]. We consider the following one:16

15Lowering the particular week constant t10 can be achieved by pre-processing the data and labelling each
Monday 0:00 with a special label, but in general, constants are of substantial size.

16In [36] the notation p-LCS refers to a different parameterization of LCS.

34

p-LCS
Input: an alphabet Σ, words w0, . . . ,wk−1 ∈ Σ∗ for some k ∈ N, and m ∈ N.
Parameter: k + ∣Σ∣.
Problem: do w0, . . . ,wk−1 have a common subsequence of length m ?

The statement that p-LCS is fixed-parameter tractable means that it can be decided
by an algorithm that on an instance (Σ,w0, . . . ,wk−1,m) runs in time

f(k + ∣Σ∣) ⋅ (∣w0∣ +⋯ + ∣wk−1∣)O(1)

for some computable function f ∶ N→ N. The existence of such an algorithm is unlikely
due to the following result:

Theorem 39 ([8]). p-LCS is not fixed-parameter tractable unless every problem in the
W-hierarchy is fixed-parameter tractable.

Proof of Theorem 38: Let (Σ,w0, . . . ,wk−1,m) be an instance of p-LCS, so Σ is an
alphabet, w0, . . . ,wk−1 ∈ Σ∗ and m ∈ N. Let w ∶= w0⋯wk−1 be the concatenation of
the given words, and consider wm, the concatenation of m copies of w. We construct
a P (Σ)-labeled stopwatch automaton A = (Q,Σ,X,λ, β, ζ,∆) that accepts wm if and
only if w0, . . . ,wk−1 have a common subsequence of length m.

An initial accepting computation of A on wm proceeds in m rounds, each round
reads a copy of w. In round ` < m the computation guesses a position within each
of the words w0, . . . ,wk−1 copied within w, and ensures they all carry the same letter.
These positions are stored in registers (i.e., nowhere active stopwatches) x0, . . . , xk−1

with bounds ∣w0∣ + 1, . . . , ∣wk−1∣ + 1, respectively. Our intention is that the value of xi
after round ` <m equals the position ji` in the definition of a common subsequence.

Our intention is that an initial accepting computation in round ` < m cycles
though k many guess parts of the automaton. Within guess part 0, the computation
reads w0 (within copy ` of w in wm), within guess part 1 the computation reads w1

and so on. The states of A are the states of the guess parts plus an an additional state
accept. Each guess part consists of a copy of the states start, end, and guess(a) for
a ∈ Σ. The λ-labels of start and end are Σ, the λ-label of guess(a) is {a}. The start
state of A is start in guess part 0.

We intend that the computation in guess part i < k spends some time t < ∣wi∣ in
start, then spends exactly one time unit in some state guess(a), and then spends time
∣wi∣ − t in end before switching to the next guess part. The position guessed is t and
stored as the value of xi. Writing momentarily wi = a0a1⋯a∣wi∣−1 the computation reads
the (possibly empty) word a0⋯at−1 in state start, then reads at in state guess(at), and
then reads the (possibly empty) word at+1⋯a∣wi∣−1 in state end.

We enforce this behavior as follows. There are transitions from start (in guess
part i) to guess(a) for every a ∈ Σ, and for every a ∈ Σ from guess(a) to end. We use a
stopwatch yi with bound ∣wi∣ + 1 active in all states of guess part i and a stopwatch z
with bound 2 active in the states guess(a), a ∈ Σ, of any guess part. It will be clear that
initial accepting computations enter guess part i with both yi and z having value 0.
The transitions from start to guess(a), a ∈ Σ, have guard checking xi < yi < ∣wi∣ and
action setting xi ∶= yi. The transitions from guess(a), a ∈ Σ, to end have guard checking

35

z = 1 and action setting z ∶= 0. The state end in guess part i < k − 1 has a transition to
start in guess part i + 1; for i = k − 1 this transition is to start in guess part 0. These
transitions have guard checking yi = ∣wi∣ and action setting yi ∶= 0.

Observe that the computation spends time ∣wi∣ in guess part i < k and increases
the value of xi. Hence the values of xi after each round form an increasing sequence
of positions < ∣wi∣. We have to ensure that the values of x0, . . . , xk−1 after a round
are positions in the words w0, . . . ,wk−1, respectively, that carry the same letter. Write
Σ = {a0, . . . , a∣Σ∣−1}. We use a register x̃ with bound ∣Σ∣− 1. In guess part 0, the action
of the transition from guess(aj) to end also sets x̃ ∶= j. In the guess parts i < k for
i ≠ 0, the guards of the transitions from start to guess(aj) check that x̃ = j.

We count rounds using a register ỹ with bound m. We let the action of the transition
from end in guess part k − 1 to start in guess part 0 set ỹ ∶= ỹ + 1. From copy 0 of start
there is a transition to accept. The guard of this transition checks ỹ =m.

This completes the construction of A.

To prove the theorem, assume p-SWA is fixed-parameter tractable, i.e., there is
an algorithm deciding p-SWA that on an instance (A,w) runs in time f(k′) ⋅ ∣w∣O(1)

where k′ is the parameter of the instance, and f ∶ N→ N is a nondecreasing computable
function. By Theorem 39 is suffices to show that p-LCS is fixed-parameter tractable.

Given an instance (Σ,w0, . . . ,wk−1,m) of p-LCS answer “no” if m > ∣w0∣. Other-
wise compute the automaton A as above and then compute an equivalent stopwatch
automaton A′ as in the construction behind Proposition 25. It is clear that (A′,wm)
is computable from (Σ,w0, . . . ,wk−1,m) in polynomial time (since m ⩽ ∣w0∣). Then
(A′,wm) is a “yes”-instance of p-SWA if and only if (Σ,w0, . . . ,wk−1,m) is a “yes”-
instance of p-LCS. Hence to decide p-LCS it suffices to run the algorithm for p-SWA
on (A′,wm). This takes time f(k′) ⋅ ∣wm∣O(1) where k′ is the parameter of (A′,wm).
By construction, it is clear that k′ ⩽ g(k + ∣Σ∣) for some computable g ∶ N → N (in
fact, k′ ⩽ (k + ∣Σ∣)O(1)). Since m ⩽ ∣w0∣, the time f(k′) ⋅ ∣wm∣O(1) is bounded by
f(g(k + ∣Σ∣)) ⋅ (∣w0∣ +⋯ + ∣wk−1∣)O(1). Thus, p-LCS is fixed-parameter tractable.

Recall, p-SWA is meant to formalize the computational problem to be solved by
general purpose model-checkers in algorithmic law. Being general purpose, the set
of activities Σ should be part of the input, it varies with the laws to be modeled.
Nevertheless one might ask whether the hardness result in Theorem 38 might be side-
stepped by restricting attention to some fixed alphabet Σ.

This is unlikely to be the case. Let p-SWA({0,1}) denote the restriction of p-SWA
to instances with Σ = {0,1}. We have the following variant of Theorem 38:

Theorem 40. p-SWA({0,1}) is not fixed-parameter tractable unless FPT = W[1].

Proof. Note that the reduction (Σ,w0, . . . ,wk−1,m) ↦ (A′,wm) (for m ⩽ ∣w0∣) in the
proof above constructs an automaton A′ over the same alphabet Σ. It is thus a re-
duction from the restriction of p-LCS to instances with Σ = {0,1} to p-SWA({0,1}).
Now, [51] showed that this restriction is W[1]-hard.

In particular, under the assumption that FPT ≠ W[1], we know that MC(Σ∗, SWA)

cannot be decided in time (∣A∣ ⋅f(x) ⋅ t ⋅ ∣w∣)O(1)
for any computable function f ∶ N→ N.

36

10 Bounded Stopwatch Automata, a motivation

As mentioned, the problem with the running time f(∥ϕ∥) ⋅ ∣w∣ of Büchi’s model-checker
is that the parameter dependence f(k) grows extremely fast: it is non-elementary in

the sense that it cannot be bounded by 22⋰
2k

for any fixed height tower of 2’s.
This is due to the fact that in general the size ∥Bϕ∥ of (a reasonable binary en-

coding of) Bϕ is non-elementary in ∥ϕ∥. Under suitable hardness hypotheses this
non-elementary parameter dependence cannot be avoided, not even when restricting
to first-order logic FO [38].

This motivates the quest for fragments of MSO or less succinct variants thereof that
allow a tamer parameter dependence. In system verification, LTL has been proposed:
an LTL formula of size k can be translated to a size 2O(k) Büchi automaton [58] or a
size O(k) alternating automaton [56].

The model-checking problem asks given a system modeled by a finite automaton
A whether all (finite or infinite) words accepted by the automaton satisfy the given
LTL-sentence ϕ. The model-checker decides emptiness of a suitable product automaton
accepting L(A) ∩L(B¬ϕ) and takes time 2O(∥ϕ∥) ⋅ ∥A∥. This is the dominant approach
to model-checking in system verification.

10.1 Linear Temporal Logic and Regulation 561

The paper [24] formalizes part of Regulation 561 in LTL. In part, these formalizations
rely on Kamp’s theorem (cf. [53]) stating that LTL and FO have the same expressive
power over Σ∗. But the translation of an FO-sentence to an LTL-sentence can involve
a non-elementary blow-up in size. Indeed, [24] proves lower bounds on the length of
LTL-sentences expressing parts of Regulation 561. Very large sentences are not natural
and lead to prohibitive model-checking times.

Example 41. To illustrate the point, consider the following law in Regulation 561:

Article 6.2: The weekly driving time shall not exceed 56 hours. . .

Restrict attention to words representing one week of activities, i.e., words of length
7 ⋅24 ⋅60 over the alphabet Σ = {d,w, r}. A straightforward formalization of Article 6.2
in LTL is (using d ∈ Σ as a propositional variable) the huge disjunction of

⋀
d⩽D

(⋀
rd⩽i<`d+1

#i¬d ∧ ⋀
`d⩽i<rd

#id)

for all D ⩽ 7 ⋅ 24 ⋅ 60 and all r0 ∶= 0 ⩽ `1 < r1 < ⋯ < `D < rD < `D+1 ∶= 7 ⋅ 24 ⋅ 60 with

∑1⩽j⩽D(rj − `j) ⩽ 56 ⋅ 60. These are > (7⋅24⋅60
56⋅60

) > 102784 many disjuncts.

To conclude, MSO gives the wrong model because it does not allow sufficiently fast
model-checkers, and LTL is the wrong model because it is not sufficiently (expressive
nor) succinct, hence not natural. It can be expected that, like Regulation 561, many
algorithmic laws concerning sequences of activities state lower and upper bounds on
the duration of certain activities or types of activities. The constants used to state
these bounds are not necessarily small, and this is an important aspect to take into
account when analyzing the model-checking complexity.

37

10.2 Regulation 561 and timed modal logics

The above motivates to look at models with built-in timing constraints: “In practice
one would want to use ‘sugared’ versions of LTL, such as metric temporal logic (MTL;
[48]) which allow for expressions such as #n+1 to be represented succinctly”[24]. MTL
has modalities like 3[5,8]ϕ expressing that ϕ holds within 5 and 8 time units from now.
Such logics have been extensively investigated in system verification. We give a brief
survey, guided by our central question to model Regulation 561.

For Regulation 561, cases are tachograph recordings which, formally, are timed
words (a0, t0) (a1, t1)⋯ where the ai are letters and the ti an increasing sequence of
time-points; intuitively, activity a0 is observed until time point t0, then a1 until t1, and
so on. Alur and Dill [4] extended finite automata to timed automata that accept sets of
timed words – see [12] for a survey. Roughly speaking, computations of such automata
happen in time and are governed by finitely many clocks: transitions from one state to
another are enabled or blocked depending on the clock values, and transitions can reset
some clocks (to value 0). Alur and Dill [4] proved that timed automata have decidable
emptiness, thus enabling the dominant model-checking paradigm.

Consequently, a wealth of timed temporal logics have been investigated – [41, 13]
are surveys. The following table lists some of the most important choices when defining
a timed temporal logic:

semantics time clocks

finite words signal-based continuous R⩾0 branching internal
infinite words event-based discrete N linear external

Let us briefly comment on some of the choices put forward by this table. A subtle
choice is between signal- or event-based semantics. It means, roughly and respectively,
that the modalities quantify over all time-points or only over the ti appearing in the
timed word; MTL is known to be less expressive in the latter semantics over finite timed
words [29]. A crucial choice is between time N or R⩾0. Internal clocks appear only on
the side of the automata, external clocks appear in sentences which reason about their
values. We briefly survey the most important results.

An early success [2] concerns the infinite word signal-based branching continuous
time logic TCTL (timed computation tree logic): over (systems modeled by) timed
automata it admits a model-checker with runtime tO(c) ⋅k ⋅n where n is the automaton
size, k the size of the input sentence, c the number of clocks, and t is the largest
time constant appearing in the input. The paper [43] extends this allowing external
clocks. However, continuous branching time is semantical and syntactical overkill for
Regulation 561.

For linear continuous time we find MTL and TPTL (timed propositional temporal
logic), a more expressive [15] extension with external clocks. Since model-checking is
undecidable for these logics [6, 5], fragments have been investigated. Surprisingly, [48]
found an FPT model-checker for MTL over event-based finite words via a translation
to alternating automata with one clock, albeit with intolerable parameter dependence
(non-primitive recursive).

Metric interval temporal logic (MITL) [5] is the fragment of MTL disallowing singu-
lar time constraints as, e.g., in 3[1,1]ϕ. The papers [34, 45] give an elegant translation

38

of MITL to timed automata and thereby a model-checker with runtime17 2O(t⋅k) ⋅ n.
Over discrete time, [6] adapts the mentioned translation of LTL to Büchi automata
and gives a model-checker for TPTL with runtime 2O(tc⋅k) ⋅ n.

As said, from the perspective of algorithmic laws, t is not typically small and run-
times exponential in t = 56h = 3360 min are prohibitive. Tamer runtimes with t moved
out of the exponent have been found for a certain natural MITL-fragment MITL0,∞

both over discrete and continuous time – see [41, 5].
However, “standard real-time temporal logics [. . .] do not allow us to constrain the

accumulated satisfaction time of state predicates” [3, p.414]. It seems that this is just
what is required to formalize the mentioned Article 6 (2).

There are various attempts to empower the logics with some reasoning about du-
rations. Stopwatch automata [26] are timed automata that can not only reset clocks
but also stop and activate them. However, emptiness is undecidable already for a
single stopwatch [42]. Positive results are obtained in [3] for observer stopwatches,
i.e., roughly, stopwatches not used to govern the automaton’s transitions. On the
logical side, [11] and [17] study fragments and restrictions for TCTL with (observer)
stopwatches.

On another strand, [20] puts forward the calculus of durations, but already tiny
fragments turn out undecidable [19]. For discrete time, [40] gives an fpt model-checker
via a translation to finite automata. For continuous time, [37] obtains fpt results under
certain reasonable restrictions of the semantics. A drawback is that these fpt results
have non-elementary parameter dependence.

To conclude, the extensive research on “‘sugared’ versions” of LTL in system ver-
ification does not reveil a good answer to our central question for a model-checking
problem modeling algorithmic laws concerning activity sequences. In particular, some
model-checkers in system verification, like the one for TPTL over discrete time, are too
slow in that they do not scale well with time constants mentioned in the law.

10.3 The perspective from algorithmic law

The new perspective on model-checking from algorithmic law seems orthogonal to the
dominant perspectives from database theory and system verification in the sense that
it seems to guide incomparable research directions.

In database theory there is special interest in model-checking problems for a rich
class K, formalizing a large class of databases, and possibly weak logics L formalizing
simple basic queries. In algorithmic law (concerning activity sequences) it is the other
way around, focussing on K = Σ∗.

System verification gives special interest to infinite words and continuous time
(cf. e.g. [2]) while algorithmic law focusses on finite words and discrete time. Most
importantly, system verification focusses on structures specifying sets of words: its
model-checking problem corresponds to (a generalization of) the consistency problem
in algorithmic law. In algorithmic law the consistency problem is secondary, the main
interest is in evaluating sentences over single words.

17In fact, t can be replaced by a typically smaller number, called the resolution of the formula – see [34].

39

Finally, the canonical parameterization of a model-checking problem takes the
size ∥ϕ∥ of the input sentence ϕ as the parameter. Intuitively, then parameterized
complexity analysis focusses attention on inputs of the problem where ∥ϕ∥ is relatively
small. Due to large constants on time constraints appearing in the law to be formalized
this parameterization does not seem to result in a faithful model of algorithmic law.
We shall come back to this point in Section 9.2.

Compared to system verification this shift of attention in algorithmic law opens
the possibility to use more expressive logics while retaining tractability of the resulting
model. In particular, complexity can significantly drop via the shift from continuous
time, infinite words and consistency-checking, to discrete time, finite words and model-
checking. While discrete time is well investigated in system verification, it has been
noted that both finite words and model-checking have been neglected – see [35] and [46],
respectively. To make the point: over finite words consistency-checking LTL is PSPACE-
complete but model-checking is PTIME, even for the more succinct extensions of LTL
with past- and now-modalities [46], or even finite variable FO [57].18

We have taken advantage of this possibility to use more expressive logics and have
suggested (a version of) discrete time stopwatch automata SWA as an answer to our
central question, that is, we proposed MC(Σ∗,SWA) as a model for algorithmic laws
concerning sequences of activities.

Acknowledgements

We thank Raül Espejo Boix for a critical reading of Section 5. Part of this work
has been done while the first author has been employed by Formal Vindications S.L.
The second author leads a covenant between the University of Barcelona and Formal
Vindications S.L. The second author received funding under the following schemes:
ICREA Acadèmia, projects PID2020-115774RB-I00 and PID2019-107667GB-I00 of the
Spanish Ministry of Science and Innovation, 2022 DI 051, Generalitat de Catalunya,
Departament d’Empresa i Coneixement and 2017 SGR 270 of the AGAUR.

References

[1] Ana de Almeida Borges, Mireia González Bedmar, Juan Conejero Rodŕıguez, Ed-
uardo Hermo Reyes, Joaquim Casals Buñuel, and Joost J. Joosten. FV Time: a
formally verified Coq library. arXiv:2209.14227 [cs.SE], 2022.

[2] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, 1993.

[3] Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. Computing accu-
mulated delays in real-time systems. Formal Methods in System Design, 11(2):137–
155, 1997.

183-variable (2-variable) FO has the same expressive power as (unary) LTL over finite words but is much
more succinct [32]. [23] gives a fine calibration of the parameterized complexity of finite variable FO.

40

[4] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[5] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing
punctuality. Journal of the ACM, 43(1):116–146, 1996.

[6] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the
ACM, 41(1):181–204, 1994.

[7] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

[8] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Michael T. Hallett,
and Harold T. Wareham. Parameterized complexity analysis in computational
biology. Computer Applications in the Biosciences, 11(1):49–57, 1995.

[9] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Harold T.
Wareham. The parameterized complexity of sequence alignment and consen-
sus. In Maxime Crochemore and Dan Gusfield, editors, Combinatorial Pattern
Matching, 5th Annual Symposium, CPM 94, Asilomar, California, USA, June
5-8, 1994, Proceedings, volume 807 of Lecture Notes in Computer Science, pages
15–30. Springer, 1994.

[10] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Harold T.
Wareham. The parameterized complexity of sequence alignment and consensus.
Theoretical Computer Science, 147(1&2):31–54, 1995.

[11] Ahmed Bouajjani, Rachid Echahed, and Joseph Sifakis. On model checking for
real-time properties with durations. In Proceedings of the Eighth Annual Sympo-
sium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23,
1993, pages 147–159. IEEE Computer Society, 1993.

[12] Patricia Bouyer. An introduction to timed automata. In Actes de la 4ème École
Temps-Réel (ETR’05), pages 111–123, Nancy, France, September 2005.

[13] Patricia Bouyer. Model-checking timed temporal logics. Electronic Notes in The-
oretical Computer Science, 231:323–341, 2009.

[14] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed
automata. Journal of Automata, Languages and Combinatorics, 10(4):393–405,
2005.

[15] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of
TPTL and MTL. Inf. Comput., 208(2):97–116, 2010.

[16] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Up-
datable timed automata. Theor. Comput. Sci., 321(2-3):291–345, 2004.

[17] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On model-
checking timed automata with stopwatch observers. Information and Compu-
tation, 204(3):408–433, 2006.

[18] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the Ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’77, page 77–90, New York, NY, USA,
1977. Association for Computing Machinery.

41

[19] Zhou Chaochen, Michael R. Hansen, and Peter Sestoft. Decidability and unde-
cidability results for duration calculus. In Patrice Enjalbert, Alain Finkel, and
Klaus W. Wagner, editors, STACS 93, 10th Annual Symposium on Theoretical
Aspects of Computer Science, Würzburg, Germany, February 25-27, 1993, Pro-
ceedings, volume 665 of Lecture Notes in Computer Science, pages 58–68. Springer,
1993.

[20] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

[21] Hubie Chen and Moritz Müller. The fine classification of conjunctive queries and
parameterized logarithmic space. ACM Transactions on Computation Theory,
7(2):7:1–7:27, 2015.

[22] Hubie Chen and Moritz Müller. One hierarchy spawns another: Graph deconstruc-
tions and the complexity classification of conjunctive queries. ACM Transaction
on Computational Logic, 18(4):29:1–29:37, 2017.

[23] Yijia Chen, Michael Elberfeld, and Moritz Müller. The parameterized space com-
plexity of model-checking bounded variable first-order logic. Logical Methods Com-
puter Science, 15(3), 2019.

[24] Ana de Almeida Borges, Juan José Conejero Rodŕıguez, David Fernández-Duque,
Mireia González Bedmar, and Joost J. Joosten. To drive or not to drive: A logical
and computational analysis of European transport regulations. Information and
Computation, 280:104636, 2021.

[25] J. del Castillo Tierz. When the laws of logic meet the logic of laws. Master’s
thesis, Master of Pure and Applied Logic, 2018.

[26] Catalin Dima. Timed shuffle expressions. In Mart́ın Abadi and Luca de Alfaro,
editors, CONCUR 2005 - Concurrency Theory, 16th International Conference,
CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, vol-
ume 3653 of Lecture Notes in Computer Science, pages 95–109. Springer, 2005.

[27] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer, 1999.

[28] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[29] Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of mtl in the
pointwise and continuous semantics. International Journal on Software Tools for
Technology Transfer, 9(1):1–4, 2007.

[30] Wolfgang Thomas Erich Grädel and Thomas Wilke. Automata Logics, and Infinite
Games. Lecture Notes in Computer Science. Springer, 2002.

[31] G. Errezil Alberdi. Industrial Software Homologation: Theory and case study. In-
dustrial Software Homologation: Theory and case study Analysis of the European
tachograph technology with EU transport Regulations 3821/85, 799/2016, and
561/06 and their consequences for Europeans citizens. Technical report, Formal
Vindications S.L., 2019.

42

[32] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two
variables and unary temporal logic. Information and Computation, 179(2):279–
295, 2002.

[33] David Fernández-Duque, Mireia González Bedmar, Daniel Sousa, Joost J. Joosten,
and Guillermo Errezil Alberdi. To drive or not to drive: A formal analysis of
Requirements (51) and (52) from Regulation (EU) 2016/799. In Personalidades
juŕıdicas difusas y artificiales, TransJus Working Papers, pages 159–171. Institut
de Recerca TransJus, 2019.

[34] Thomas Ferrère, Oded Maler, Dejan Nickovic, and Amir Pnueli. From real-time
logic to timed automata. Journal of the ACM, 66(3):19:1–19:31, 2019.

[35] Valeria Fionda and Gianluigi Greco. LTL on finite and process traces: Complexity
results and a practical reasoner. Journal of Artificial Intelligence Research, 63:557–
623, 2018.

[36] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006.

[37] Martin Fränzle. Model-checking dense-time duration calculus. Formal Aspects
Comput., 16(2):121–139, 2004.

[38] Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. Annals of Pure and Applied Logic, 130(1-3):3–31,
2004.

[39] Martin Grohe. The complexity of homomorphism and constraint satisfaction prob-
lems seen from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007.

[40] Michael R. Hansen. Model-checking discrete duration calculus. Formal Aspects
Comput., 6(6A):826–845, 1994.

[41] Thomas A. Henzinger. It’s about time: Real-time logics reviewed. In Davide
Sangiorgi and Robert de Simone, editors, CONCUR ’98: Concurrency Theory,
9th International Conference, Nice, France, September 8-11, 1998, Proceedings,
volume 1466 of Lecture Notes in Computer Science, pages 439–454. Springer, 1998.

[42] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? Journal of Computer and System Sciences,
57(1):94–124, 1998.

[43] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic model checking for real-time systems. Information and Computation,
111(2):193–244, 1994.

[44] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic
with forgettable past. In 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 383–
392. IEEE Computer Society, 2002.

[45] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata.
In Eugene Asarin and Patricia Bouyer, editors, Formal Modeling and Analysis of
Timed Systems, 4th International Conference, FORMATS 2006, Paris, France,

43

September 25-27, 2006, Proceedings, volume 4202 of Lecture Notes in Computer
Science, pages 274–289. Springer, 2006.

[46] Nicolas Markey and Philippe Schnoebelen. Model checking a path. In Roberto M.
Amadio and Denis Lugiez, editors, CONCUR 2003 - Concurrency Theory, 14th
International Conference, Marseille, France, September 3-5, 2003, Proceedings,
volume 2761 of Lecture Notes in Computer Science, pages 248–262. Springer, 2003.

[47] Thomas Schwentick Nicole Schweikardt and Luc Segoufin. Database theory: query
languages. In Mikhail J. Atallah and Marina Blanton, editors, Algorithms and
theory of computation handbook: special topics and techniques. Chapman and
Hall/CRC, 2010.

[48] Joël Ouaknine and James Worrell. On the decidability and complexity of metric
temporal logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

[49] Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database
queries. Journal of Computer and System Sciences, 58(3):407–427, 1999.

[50] European Parliament and Council of the European Union. Regulation (ec) no
561/2006 of the European Parliament and of the Council of 15 march 2006 on
the harmonisation of certain social legislation relating to road transport. Official
Journal of the European Union, 2006.

[51] Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet short-
est common supersequence and longest common subsequence problems. Journal
of Computer and System Sciences, 67(4):757–771, 2003.

[52] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, 1977.

[53] Alexander Rabinovich. A proof of Kamp’s theorem. Logical Methods Computer
Science, 10(1), 2014.

[54] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, July 1985.

[55] Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words,
pages 389–455. Springer, 1997.

[56] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Faron Moller and Graham M. Birtwistle, editors, Logics for Concurrency - Struc-
ture versus Automata (8th Banff Higher Order Workshop, Banff, Canada, August
27 - September 3, 1995, Proceedings), volume 1043 of Lecture Notes in Computer
Science, pages 238–266. Springer, 1995.

[57] Moshe Y. Vardi. On the complexity of bounded-variable queries. In Mihalis
Yannakakis and Serge Abiteboul, editors, Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
22-25, 1995, San Jose, California, USA, pages 266–276. ACM Press, 1995.

[58] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1–37, 1994.

44

	Model-checking and algorithmic law
	Computational problems in algorithmic law
	Model-checking as a formal model
	Contributions and outline of this paper

	Finite Automata
	Regulation 561 and Büchi's theorem
	Model checking tailored for law

	Stopwatch automata
	Abstract stopwatch automata
	Specific stopwatch automata

	A stopwatch automaton for Regulation 561
	General considerations
	The result of a lengthy description

	A stopwatch automaton for Regulation 561: details
	Daily demands
	Weekly demands

	Expressivity of Stopwatch Automata
	Regularity
	A definitorial variation

	Model checking for Stopwatch Automata
	Consistency-checking
	Model-checking

	Pushing the limits for Stopwatch Automata
	Scheduling
	Model-checking beyond regularity

	Discussion and a lower bound
	Summary
	Parameterized model-checking
	A lower bound

	Bounded Stopwatch Automata, a motivation
	Linear Temporal Logic and Regulation 561
	Regulation 561 and timed modal logics
	The perspective from algorithmic law

