The Big Six and Big Seven of Reverse Mathematics

Sam Sanders (jww Dag Normann)
RUB Bochum, Institute for Philosophy II

Cuc seminar, Barcelona
March 17, 2021

In a nutshell

We provide an introduction to Reverse Mathematics (RM hereafter), in particular the 'Big Five' systems.

In a nutshell

We provide an introduction to Reverse Mathematics (RM hereafter), in particular the 'Big Five' systems.

We show that the associated 'coding practise' of RM based on second-order arithmetic is fundamentally flawed.

In a nutshell

We provide an introduction to Reverse Mathematics (RM hereafter), in particular the 'Big Five' systems.

We show that the associated 'coding practise' of RM based on second-order arithmetic is fundamentally flawed.

Working in Kohlenbach's higher-order RM, we identify two new 'Big' systems.

In a nutshell

We provide an introduction to Reverse Mathematics (RM hereafter), in particular the 'Big Five' systems.

We show that the associated 'coding practise' of RM based on second-order arithmetic is fundamentally flawed.

Working in Kohlenbach's higher-order RM, we identify two new 'Big' systems.

This is part of my joint project with Dag Normann to investigate the logical and computational properties of the uncountable.
https://arxiv.org/abs/2102.04787

Friedman-Simpson Reverse Mathematics

Friedman-Simpson Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}

Friedman-Simpson Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}

- \mathcal{T} is a theorem of ordinary (=non-set theoretic) mathematics

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}

- \mathcal{T} is a theorem of ordinary (=non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM).

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T} $=$ finding the minimal axioms \mathcal{A} such that RCA_{0} proves $(\mathcal{A} \rightarrow \mathcal{T})$.

- \mathcal{T} is a theorem of ordinary ($=$ non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM$)$.

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T} $=$ finding the minimal axioms \mathcal{A} such that RCA_{0} proves $(\mathcal{A} \rightarrow \mathcal{T})$.

- \mathcal{T} is a theorem of ordinary (=non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM$)$.
- Axioms \mathcal{A} state the existence of non-computable sets.

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T} $=$ finding the minimal axioms \mathcal{A} such that RCA_{0} proves $(\mathcal{A} \rightarrow \mathcal{T})$.

- \mathcal{T} is a theorem of ordinary (=non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM$)$.
- Axioms \mathcal{A} state the existence of non-computable sets.
- Reversal in many cases: RCA A_{0} proves $(\mathcal{A} \leftrightarrow \mathcal{T})$

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T} $=$ finding the minimal axioms \mathcal{A} such that RCA_{0} proves $(\mathcal{A} \rightarrow \mathcal{T})$.

- \mathcal{T} is a theorem of ordinary ($=$ non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM$)$.
- Axioms \mathcal{A} state the existence of non-computable sets.
- Reversal in many cases: RCA A_{0} proves $(\mathcal{A} \leftrightarrow \mathcal{T})$
- Big Five: $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

Introducing Reverse Mathematics

Reverse Mathematics

$=$ finding the minimal axioms \mathcal{A} needed to prove a theorem \mathcal{T}
$=$ finding the minimal axioms \mathcal{A} such that RCA_{0} proves $(\mathcal{A} \rightarrow \mathcal{T})$.

- \mathcal{T} is a theorem of ordinary (=non-set theoretic) mathematics
- The proof takes place in $\mathrm{RCA}_{0}(\approx$ idealized computer, TM).
- Axioms \mathcal{A} state the existence of non-computable sets.
- Reversal in many cases: RCA A_{0} proves $(\mathcal{A} \leftrightarrow \mathcal{T})$
- Big Five: $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}, \mathrm{ACA}_{0}, \mathrm{ATR}_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$

Most theorems of 'ordinary' mathematics are either provable in $R C A_{0}$ or equivalent to one of the 'Big Five' theories.

Computable mathematics in the base theory RCA_{0}

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem:

$$
(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0)) .
$$

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem:

$$
(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0))
$$

(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem:

$$
(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0)) .
$$

(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.
(9) Existence of algebraic closure of countable fields (not uniqueness).

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem:

$$
(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0)) .
$$

(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.
(9) Existence of algebraic closure of countable fields (not uniqueness).
(3) Soundness theorem: If a set X of formulas has a model, then X does not prove $0=1$.

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem:

$$
(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0)) .
$$

(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.
(9) Existence of algebraic closure of countable fields (not uniqueness).
(3) Soundness theorem: If a set X of formulas has a model, then X does not prove $0=1$.
(0) Banach/Steinhaus uniform boundedness principle.

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem: $(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0))$.
(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.
(9) Existence of algebraic closure of countable fields (not uniqueness).
(5) Soundness theorem: If a set X of formulas has a model, then X does not prove $0=1$.
(0) Banach/Steinhaus uniform boundedness principle.
(3) Recursive Comprehension Axiom: the set $\{n \in \mathbb{N}: f(n)=0\}$ for computable $f: \mathbb{N} \rightarrow \mathbb{N}$ exists.

Computable mathematics in the base theory RCA_{0}

The following theorems can be proved in RCA_{0} :
(1) Basic properties of reals, fields, functions, etc
(2) Intermediate value theorem: $(\forall f \in C[0,1])(f(0) f(1)<0 \rightarrow(\exists x \in[0,1])(f(x)=0))$.
(3) Picard's theorem for $y^{\prime}=f(x, y)$ with f Lifschitz-continuous.
(9) Existence of algebraic closure of countable fields (not uniqueness).
(5) Soundness theorem: If a set X of formulas has a model, then X does not prove $0=1$.
(0) Banach/Steinhaus uniform boundedness principle.
(1) Recursive Comprehension Axiom: the set $\{n \in \mathbb{N}: f(n)=0\}$ for computable $f: \mathbb{N} \rightarrow \mathbb{N}$ exists.

Intuitively, RCA_{0} can do computable mathematics (with restricted induction).

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.
(2) Heine A continuous function on $[0,1]$ is uniformly continuous.

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.
(2) Heine A continuous function on $[0,1]$ is uniformly continuous.
(3) A continuous function on $[0,1]$ is Riemann integrable.

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.
(2) Heine A continuous function on $[0,1]$ is uniformly continuous.
(3) A continuous function on $[0,1]$ is Riemann integrable.
(9) Weierstraß a continuous function on $[0,1]$ attains a maximum.
(5) Peano's theorem for differential equations $y^{\prime}=f(x, y)$.

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.
(2) Heine A continuous function on $[0,1]$ is uniformly continuous.
(3) A continuous function on $[0,1]$ is Riemann integrable.
(9) Weierstraß a continuous function on $[0,1]$ attains a maximum.
(3) Peano's theorem for differential equations $y^{\prime}=f(x, y)$.

Definitely ordinary mathematics: first-year calculus!

Reverse Mathematics for WKL_{0}

Central principle:

Principle (Weak König's Lemma)

Every infinite binary tree has an infinite path.
Assuming the base theory RCA_{0}, WKL is equivalent to
(1) Heine-Borel Every countable open covering of $[0,1]$ has a finite sub-covering.
(2) Heine A continuous function on $[0,1]$ is uniformly continuous.
(3) A continuous function on $[0,1]$ is Riemann integrable.
(9) Weierstraß a continuous function on $[0,1]$ attains a maximum.
(3) Peano's theorem for differential equations $y^{\prime}=f(x, y)$.

Definitely ordinary mathematics: first-year calculus!
Nonetheless, such maxima and infinite paths are not computable.
(8) Gödel's completeness/compactness theorem.
(B) Gödel's completeness/compactness theorem.
(9) A countable commutative ring has a prime ideal.
(8) Gödel's completeness/compactness theorem.
(9) A countable commutative ring has a prime ideal.
(10) A countable formally real field is orderable.
(1) A countable formally real field has a (unique) closure.
(8) Gödel's completeness/compactness theorem.
(1) A countable commutative ring has a prime ideal.
(10) A countable formally real field is orderable.
(1) A countable formally real field has a (unique) closure.
(12) Brouwer's fixed point theorem A continuous function from $[0,1]^{n}$ to $[0,1]^{n}$ has a fixed point.
(3) Hahn-Banach theorem for separable spaces.
(4.) A continuous function on $[0,1]$ can be approximated by (Bernstein) polynomials.
(8) Gödel's completeness/compactness theorem.
(1) A countable commutative ring has a prime ideal.
(10) A countable formally real field is orderable.
(1) A countable formally real field has a (unique) closure.
(12) Brouwer's fixed point theorem A continuous function from $[0,1]^{n}$ to $[0,1]^{n}$ has a fixed point.
(B3) Hahn-Banach theorem for separable spaces.
(4.) A continuous function on $[0,1]$ can be approximated by (Bernstein) polynomials.
Algebra, analysis, logic, topology, transdisciplinary equivalences.
(8) Gödel's completeness/compactness theorem.
(1) A countable commutative ring has a prime ideal.
(10) A countable formally real field is orderable.
(1) A countable formally real field has a (unique) closure.
(12) Brouwer's fixed point theorem A continuous function from $[0,1]^{n}$ to $[0,1]^{n}$ has a fixed point.
(3) Hahn-Banach theorem for separable spaces.
(4.) A continuous function on $[0,1]$ can be approximated by (Bernstein) polynomials.
Algebra, analysis, logic, topology, . . . : transdisciplinary equivalences.
Intuitively speaking, WKL 0 can do (Heine-Borel) compactness arguments.
(8) Gödel's completeness/compactness theorem.
(1) A countable commutative ring has a prime ideal.
(10) A countable formally real field is orderable.
(1) A countable formally real field has a (unique) closure.
(12) Brouwer's fixed point theorem A continuous function from $[0,1]^{n}$ to $[0,1]^{n}$ has a fixed point.
(3) Hahn-Banach theorem for separable spaces.
(4.) A continuous function on $[0,1]$ can be approximated by (Bernstein) polynomials.
Algebra, analysis, logic, topology, . . . : transdisciplinary equivalences.
Intuitively speaking, WKL 0 can do (Heine-Borel) compactness arguments.

Simpson: connection to Hilbert's program for the FOM...

Reverse mathematics of ACA_{0}

A formula is arithmetical if it only contains quantifiers $\exists n \in \mathbb{N}$ and $\forall m \in \mathbb{N}$.

Reverse mathematics of ACA_{0}

A formula is arithmetical if it only contains quantifiers $\exists n \in \mathbb{N}$ and $\forall m \in \mathbb{N}$. Central principle:

Principle (Arithmetical comprehension axiom)

For every arithmetical $A(n)$, the set $\{n \in \mathbb{N}: A(n)\}$ exists.

Reverse mathematics of ACA_{0}

A formula is arithmetical if it only contains quantifiers $\exists n \in \mathbb{N}$ and $\forall m \in \mathbb{N}$. Central principle:

Principle (Arithmetical comprehension axiom)

For every arithmetical $A(n)$, the set $\{n \in \mathbb{N}: A(n)\}$ exists.
Assuming the base theory $\mathrm{RCA}_{0}, \mathrm{ACA}$ is equivalent to
(1) Turing's Halting problem (with parameters).

Reverse mathematics of ACA_{0}

A formula is arithmetical if it only contains quantifiers $\exists n \in \mathbb{N}$ and $\forall m \in \mathbb{N}$. Central principle:

Principle (Arithmetical comprehension axiom)

For every arithmetical $A(n)$, the set $\{n \in \mathbb{N}: A(n)\}$ exists.
Assuming the base theory $\mathrm{RCA}_{0}, \mathrm{ACA}$ is equivalent to
(1) Turing's Halting problem (with parameters).
(2) Bolzano-Weierstraß theorem Every bounded real sequence has a convergent subsequence.

Reverse mathematics of ACA_{0}

A formula is arithmetical if it only contains quantifiers $\exists n \in \mathbb{N}$ and $\forall m \in \mathbb{N}$. Central principle:

Principle (Arithmetical comprehension axiom)

For every arithmetical $A(n)$, the set $\{n \in \mathbb{N}: A(n)\}$ exists.
Assuming the base theory $\mathrm{RCA}_{0}, \mathrm{ACA}$ is equivalent to
(1) Turing's Halting problem (with parameters).
(2) Bolzano-Weierstraß theorem Every bounded real sequence has a convergent subsequence.
(3) Ascoli-Arzela theorem: Every bounded equicontinuous sequence of real- valued continuous functions on a bounded interval has a uniformly convergent subsequence.
(4) Every countable commutative ring has a maximal ideal.

Reverse mathematics of ACA_{0}

(3) Every countable vector space has a basis.

Reverse mathematics of ACA_{0}

(3) Every countable vector space has a basis. (No AC needed)

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.

Reverse mathematics of ACA_{0}

(3) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(1) Ramsey's Theorem(s) (combinatorics, graph colouring etc)

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(1) Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
((Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.
(0) Monotone convergence theorem for $[0,1]$.

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(1) Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.
(0) Monotone convergence theorem for $[0,1]$.
(10) Every countable Abelian group has a unique divisible closure.

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(3) Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.
(0) Monotone convergence theorem for $[0,1]$.
(10) Every countable Abelian group has a unique divisible closure.

Again, definitely ordinary mathematics!

Reverse mathematics of ACA_{0}

(3) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(3) Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.
(0) Monotone convergence theorem for $[0,1]$.
(10) Every countable Abelian group has a unique divisible closure.

Again, definitely ordinary mathematics!
Intuitively speaking, ACA_{0} can do sequential compactness arguments.

Reverse mathematics of ACA_{0}

(5) Every countable vector space has a basis. (No AC needed)
(0) Every countable field (of char. 0) has a transcendence basis.
(1) Ramsey's Theorem(s) (combinatorics, graph colouring etc)
(8) Koenig's lemma: Every infinite, finitely branching tree has an infinite path.
(0) Monotone convergence theorem for $[0,1]$.
(10) Every countable Abelian group has a unique divisible closure.

Again, definitely ordinary mathematics!
Intuitively speaking, ACA_{0} can do sequential compactness arguments.

Similar equivalences for ATR $_{0}$ and $\Pi_{1}^{1}-\mathrm{CA}_{0}$, though some set theory comes to the fore already.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

A $\Pi_{1}^{1}-\mathrm{CA}_{0}$
$-\mathrm{ATR}_{0}$
$-\mathrm{ACA}_{0}$
$-\mathrm{WKL}_{0}$
$-\mathrm{RCA}_{0}$

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

廊RCA proves Interm. value thm, Soundness thm, Existence of alg. clos. ...

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$ RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$
WKL $_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$
RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos. ...

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$
WKL $_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$
RCA_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

圭 Π_{1}^{1}-CA $A_{0} \leftrightarrow$ Cantor-Bendixson \leftrightarrow Silver \leftrightarrow Baire space Det. \leftrightarrow Menger $\leftrightarrow \ldots$ ATR $0 \leftrightarrow$ UIm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$

ACA ${ }_{0} \leftrightarrow$ Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey ($k \geq 3$)
\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$
WKL $L_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

RCA A_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

圭 Π_{1}^{1}-CA $A_{0} \leftrightarrow$ Cantor-Bendixson \leftrightarrow Silver \leftrightarrow Baire space Det. \leftrightarrow Menger $\leftrightarrow \ldots$ ATR $0 \leftrightarrow$ UIm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$

ACA $A_{0} \leftrightarrow$ Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey ($k \geq 3$)
\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$
WKL $L_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$
$R C A_{0}$ proves Interm. value thm, Soundness thm, Existence of alg. clos.
(Not Absolute: exceptions are in Dzhafarov's RM zoo)

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

圭 Π_{1}^{1}-CA $A_{0} \leftrightarrow$ Cantor-Bendixson \leftrightarrow Silver \leftrightarrow Baire space Det. \leftrightarrow Menger $\leftrightarrow \ldots$ ATR ${ }_{0} \leftrightarrow$ UIm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$

ACA $A_{0} \leftrightarrow$ Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey $(k \geq 3)$
\leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$
WKL $L_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

RCA A_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos.
Distinction between logical formula with mathematical meaning and 'purely logical' formula, i.e. between subject (math) and formalization (logic).

The Big Five picture of RM

$=$ Mathematical theorems seem to 'cluster' around the Big Five, while 'sparse' everywhere else.

圭 Π_{1}^{1}-CA $A_{0} \leftrightarrow$ Cantor-Bendixson \leftrightarrow Silver \leftrightarrow Baire space Det. \leftrightarrow Menger $\leftrightarrow \ldots$ ATR $0 \leftrightarrow$ UIm \leftrightarrow Lusin \leftrightarrow Perfect Set \leftrightarrow Baire space Ramsey $\leftrightarrow \ldots$

ACA $A_{0} \leftrightarrow$ Bolzano-Weierstraß \leftrightarrow Ascoli-Arzela \leftrightarrow Köning \leftrightarrow Ramsey ($k \geq 3$) \leftrightarrow Countable Basis \leftrightarrow Countable Max. Ideal $\leftrightarrow \ldots$

WKL $L_{0} \leftrightarrow$ Peano exist. \leftrightarrow Weierstraß approx. \leftrightarrow Weierstraß max. \leftrightarrow HahnBanach \leftrightarrow Heine-Borel \leftrightarrow Brouwer fixp. \leftrightarrow Gödel compl. $\leftrightarrow \ldots$

RCA A_{0} proves Interm. value thm, Soundness thm, Existence of alg. clos. Our best, most fine-grained foundation of ordinary math?

Representations

Higher-order objects (functions on \mathbb{R}, topologies, metric spaces, etc) are studied via second-order representations/codes in L_{2}.

Representations

Higher-order objects (functions on \mathbb{R}, topologies, metric spaces, etc) are studied via second-order representations/codes in L_{2}.
L_{2} has variables ' $n \in \mathbb{N}$ ' and ' $X \subset \mathbb{N}$ '.

Representations

Higher-order objects (functions on \mathbb{R}, topologies, metric spaces, etc) are studied via second-order representations/codes in L_{2}.
L_{2} has variables ' $n \in \mathbb{N}$ ' and ' $X \subset \mathbb{N}$ '.
Any formalisation of math involves representations/codes.

Representations

Higher-order objects (functions on \mathbb{R}, topologies, metric spaces, etc) are studied via second-order representations/codes in L_{2}.
L_{2} has variables ' $n \in \mathbb{N}$ ' and ' $X \subset \mathbb{N}$ '.
Any formalisation of math involves representations/codes. BUT:
This situation has prompted [Bishop/Bridges] to build a modulus of uniform continuity into their definitions of continuous function. Such a procedure may be appropriate for Bishop since his goal is to replace ordinary mathematical theorems by their "constructive" counterparts. However, as explained in chapter I, our goal is quite different. Namely, we seek to draw out the set existence assumptions which are implicit in the ordinary mathematical theorems as they stand. (S. Simpson, SOSOA)

Representations

Higher-order objects (functions on \mathbb{R}, topologies, metric spaces, etc) are studied via second-order representations/codes in L_{2}.
L_{2} has variables ' $n \in \mathbb{N}$ ' and ' $X \subset \mathbb{N}$ '.
Any formalisation of math involves representations/codes. BUT:
This situation has prompted [Bishop/Bridges] to build a modulus of uniform continuity into their definitions of continuous function. Such a procedure may be appropriate for Bishop since his goal is to replace ordinary mathematical theorems by their "constructive" counterparts. However, as explained in chapter I, our goal is quite different. Namely, we seek to draw out the set existence assumptions which are implicit in the ordinary mathematical theorems as they stand. (S. Simpson, SOSOA)

Prime Directive: if one wants to classify theorems as they stand, coding should not change the logical strength of these theorems.

The Good: coding continuous functions

$\varepsilon-\delta$-continuity for $f:[0,1] \rightarrow \mathbb{R}$ is defined as follows:

$$
(\forall \varepsilon>0, x \in[0,1])(\exists \delta>0)(\forall y \in[0,1])(|x-y|<\delta \rightarrow|f(x)-f(y)|<\varepsilon) .
$$

The Good: coding continuous functions

$\varepsilon-\delta$-continuity for $f:[0,1] \rightarrow \mathbb{R}$ is defined as follows:
$(\forall \varepsilon>0, x \in[0,1])(\exists \delta>0)(\forall y \in[0,1])(|x-y|<\delta \rightarrow|f(x)-f(y)|<\varepsilon)$.
'continuity-via-codes' is defined in L_{2} as follows:

II.6. Continuous Functions

[^0]
The Good: coding continuous functions

$\varepsilon-\delta$-continuity for $f:[0,1] \rightarrow \mathbb{R}$ is defined as follows:
$(\forall \varepsilon>0, x \in[0,1])(\exists \delta>0)(\forall y \in[0,1])(|x-y|<\delta \rightarrow|f(x)-f(y)|<\varepsilon)$.
'continuity-via-codes' is defined in L_{2} as follows:

II.6. Continuous Functions

85> Definition II.6.1 (continuous functions). Within RCA ${ }_{0}$, let \widehat{A} and \widehat{B} be complete separable metric spaces. A (code for a) continuous partial function ϕ from \widehat{A} to \widehat{B} is a set of quintuples $\Phi \subseteq \mathbb{N} \times A \times \mathbb{Q}^{+} \times B \times \mathbb{Q}^{+}$ which is required to have certain properties. We write $(a, r) \Phi(b, s)$ as an abbreviation for $\exists n((n, a, r, b, s) \in \Phi)$. The properties which we require are:
> 1. if $(a, r) \Phi(b, s)$ and $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$, then $d\left(b, b^{\prime}\right) \leq s+s^{\prime}$;
> 2. if $(a, r) \Phi(b, s)$ and $\left(a^{\prime}, r^{\prime}\right)<(a, r)$, then $\left(a^{\prime}, r^{\prime}\right) \Phi(b, s)$;
> 3. if $(a, r) \Phi(b, s)$ and $(b, s)<\left(b^{\prime}, s^{\prime}\right)$, then $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$;
> where the notation $\left(a^{\prime}, r^{\prime}\right)<(a, r)$ means that $d\left(a, a^{\prime}\right)+r^{\prime}<r$.

These two definitions are equivalent in a weak higher-order system based on WKL (Kohlenbach/Kleene).

The Good: coding continuous functions

ε - δ-continuity for $f:[0,1] \rightarrow \mathbb{R}$ is defined as follows:
$(\forall \varepsilon>0, x \in[0,1])(\exists \delta>0)(\forall y \in[0,1])(|x-y|<\delta \rightarrow|f(x)-f(y)|<\varepsilon)$.
'continuity-via-codes' is defined in L_{2} as follows:

II.6. Continuous Functions

85> Definition II. 6.1 (continuous functions). Within RCA_{0}, let \widehat{A} and \widehat{B} be complete separable metric spaces. A (code for a) continuous partial function ϕ from \widehat{A} to \widehat{B} is a set of quintuples $\Phi \subseteq \mathbb{N} \times A \times \mathbb{Q}^{+} \times B \times \mathbb{Q}^{+}$ which is required to have certain properties. We write $(a, r) \Phi(b, s)$ as an abbreviation for $\exists n((n, a, r, b, s) \in \Phi)$. The properties which we require are:
> 1. if $(a, r) \Phi(b, s)$ and $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$, then $d\left(b, b^{\prime}\right) \leq s+s^{\prime}$;
> 2. if $(a, r) \Phi(b, s)$ and $\left(a^{\prime}, r^{\prime}\right)<(a, r)$, then $\left(a^{\prime}, r^{\prime}\right) \Phi(b, s)$;
> 3. if $(a, r) \Phi(b, s)$ and $(b, s)<\left(b^{\prime}, s^{\prime}\right)$, then $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$;
> where the notation $\left(a^{\prime}, r^{\prime}\right)<(a, r)$ means that $d\left(a, a^{\prime}\right)+r^{\prime}<r$.

These two definitions are equivalent in a weak higher-order system based on WKL (Kohlenbach/Kleene).
Hence, coding does not change the logical strength of theorems about continuous functions (assuming WKL is available).

The Bad: coding Riemann integrable functions

Around 1850, Riemann's Habilschrift introduces his integral and forces discontinuous functions into mainstream math.

The Bad: coding Riemann integrable functions

Around 1850, Riemann's Habilschrift introduces his integral and forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let $f_{n}:([0,1] \times \mathbb{N}) \rightarrow \mathbb{R}$ be a sequence such that
(1) Each f_{n} is Riemann integrable on $[0,1]$.
(2) There is $M>0$ such that $(\forall n \in \mathbb{N}, x \in[0,1])\left(\left|f_{n}(x)\right| \leq M\right)$.
(3) $\lim _{n \rightarrow \infty} f_{n}=f$ exists and is Riemann integrable.

Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.

The Bad: coding Riemann integrable functions

Around 1850, Riemann's Habilschrift introduces his integral and forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let $f_{n}:([0,1] \times \mathbb{N}) \rightarrow \mathbb{R}$ be a sequence such that
(1) Each f_{n} is Riemann integrable on $[0,1]$.
(2) There is $M>0$ such that $(\forall n \in \mathbb{N}, x \in[0,1])\left(\left|f_{n}(x)\right| \leq M\right)$.
(3) $\lim _{n \rightarrow \infty} f_{n}=f$ exists and is Riemann integrable.

Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.
Formulated with codes in L_{2}, this theorem is provable in $W K L_{0}$.

The Bad: coding Riemann integrable functions

Around 1850, Riemann's Habilschrift introduces his integral and forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let $f_{n}:([0,1] \times \mathbb{N}) \rightarrow \mathbb{R}$ be a sequence such that
(1) Each f_{n} is Riemann integrable on $[0,1]$.
(2) There is $M>0$ such that $(\forall n \in \mathbb{N}, x \in[0,1])\left(\left|f_{n}(x)\right| \leq M\right)$.
(3) $\lim _{n \rightarrow \infty} f_{n}=f$ exists and is Riemann integrable.

Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.
Formulated with codes in L_{2}, this theorem is provable in $W K L_{0}$.
Formulated without codes, this theorem is classified near Z_{2}, far beyond $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and the usual range of RM.

The Bad: coding Riemann integrable functions

Around 1850, Riemann's Habilschrift introduces his integral and forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let $f_{n}:([0,1] \times \mathbb{N}) \rightarrow \mathbb{R}$ be a sequence such that
(1) Each f_{n} is Riemann integrable on $[0,1]$.
(2) There is $M>0$ such that $(\forall n \in \mathbb{N}, x \in[0,1])\left(\left|f_{n}(x)\right| \leq M\right)$.
(3) $\lim _{n \rightarrow \infty} f_{n}=f$ exists and is Riemann integrable.

Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.
Formulated with codes in L_{2}, this theorem is provable in $W K L_{0}$.
Formulated without codes, this theorem is classified near Z_{2}, far beyond $\Pi_{1}^{1}-\mathrm{CA}_{0}$ and the usual range of RM.
Massive change of logical strength for a basic theorem about functions that are continuous almost everywhere.

The coding catastrophe

The ugly: rewriting history

The ugly: rewriting history

The Heine-Borel theorem for countable coverings features in RM from the beginning.

The ugly: rewriting history

The Heine-Borel theorem for countable coverings features in RM from the beginning.
countable covering is $\cup_{n \in \mathbb{N}}\left(a_{n}, b_{n}\right)$ for two sequences of reals $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$.

The ugly: rewriting history

The Heine-Borel theorem for countable coverings features in RM from the beginning.
countable covering is $\cup_{n \in \mathbb{N}}\left(a_{n}, b_{n}\right)$ for two sequences of reals $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$.

Borel (PhD Thesis, 1899) formulates the Heine-Borel theorem for countable coverings where 'countable' means 'bijection to \mathbb{N} '.

The ugly: rewriting history

The Heine-Borel theorem for countable coverings features in RM from the beginning.
countable covering is $\cup_{n \in \mathbb{N}}\left(a_{n}, b_{n}\right)$ for two sequences of reals $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$.

Borel (PhD Thesis, 1899) formulates the Heine-Borel theorem for countable coverings where 'countable' means 'bijection to \mathbb{N} '.

Similar for other countable objects: they are given by sequences in RM although the original is formulated using sets that are countable (Cantor, König, Ramsey, etc).

The coding catastrophe

Solution

Solution

Kohlenbach's higher-order RM, introduced in RM2001.

Solution

Kohlenbach's higher-order RM, introduced in RM2001.

The language of all finite types L_{ω} has variables for:

$$
n \in \mathbb{N}, X \subset \mathbb{N}, F: \mathbb{R} \rightarrow \mathbb{R}, \Theta:(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{R}, \ldots
$$

The base theory $R C A_{0}^{\omega}$ proves the same L_{2} sentences as $R C A_{0}$.

The coding catastrophe

Higher-order counterparts of the Big Five

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{2}
\end{align*}
$$

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{2}
\end{align*}
$$

Recall: WKL_{0} and ACA_{0} corresponds to (countable) Heine-Borel and sequential compactness.

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} \tag{2}
\end{align*}
$$

Recall: WKL_{0} and ACA_{0} corresponds to (countable) Heine-Borel and sequential compactness.
Similarly: HBT and BOOT corresponds to uncountable Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900)

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{2}
\end{align*}
$$

Recall: WKL_{0} and ACA_{0} corresponds to (countable) Heine-Borel and sequential compactness.
Similarly: HBT and BOOT corresponds to uncountable Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900) Systems in (2) proves the same L_{2}-sentences as systems in (1).

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \tag{2}\\
& \cdots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} .
\end{align*}
$$

Recall: $W K L_{0}$ and $A C A_{0}$ corresponds to (countable) Heine-Borel and sequential compactness.
Similarly: HBT and BOOT corresponds to uncountable Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900) Systems in (2) proves the same L_{2}-sentences as systems in (1). Moreover, the ECF-translation also converts BOOT and HBT to $A C A_{0}$ and $W K L L_{0}$.

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \tag{2}\\
& \cdots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} .
\end{align*}
$$

Recall: $W K L_{0}$ and $A C A_{0}$ corresponds to (countable) Heine-Borel and sequential compactness.
Similarly: HBT and BOOT corresponds to uncountable Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900) Systems in (2) proves the same L_{2}-sentences as systems in (1). Moreover, the ECF-translation also converts BOOT and HBT to ACA_{0} and $W K L_{0}$. Same for equivalences!

Higher-order counterparts of the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{1}\\
& \tag{2}\\
& \cdots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \mathrm{RCA}_{0}^{\omega} .
\end{align*}
$$

Recall: $W K L_{0}$ and $A C A_{0}$ corresponds to (countable) Heine-Borel and sequential compactness.
Similarly: HBT and BOOT corresponds to uncountable Heine-Borel (1895, Cousin) and net compactness (Moore ca 1900) Systems in (2) proves the same L_{2}-sentences as systems in (1). Moreover, the ECF-translation also converts BOOT and HBT to ACA_{0} and WKL_{0}. Same for equivalences!
ECF replaces third-order and higher objects by RM-codes (CMTT).

The coding catastrophe

Beyond the Big Five

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{gather*}
\quad \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
\ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{4}
\end{gather*}
$$

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{gather*}
\quad \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
\ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{4}
\end{gather*}
$$

Why there be something in (4)?

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{4}
\end{align*}
$$

Why there be something in (4)?
Because: $\mathrm{RCA}_{0}^{\omega}$ is a weak system: Brouwer's theorem, given as all functions on \mathbb{R} are continuous, yields a conservative extension.

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{gather*}
\quad \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
\ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{4}
\end{gather*}
$$

Why there be something in (4)?
Because: $\mathrm{RCA}_{0}^{\omega}$ is a weak system: Brouwer's theorem, given as all functions on \mathbb{R} are continuous, yields a conservative extension.
If all functions on \mathbb{R} are continuous, then countable sets in \mathbb{R} (formulated with injections/bijections to \mathbb{N}) are at most singletons.

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{gather*}
\quad \cdots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
\ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} . \tag{4}
\end{gather*}
$$

Why there be something in (4)?
Because: $\mathrm{RCA}_{0}^{\omega}$ is a weak system: Brouwer's theorem, given as all functions on \mathbb{R} are continuous, yields a conservative extension.
If all functions on \mathbb{R} are continuous, then countable sets in \mathbb{R} (formulated with injections/bijections to \mathbb{N}) are at most singletons. Hence, if all functions on \mathbb{R} are continuous, then theorems about countable sets in \mathbb{R} (injections/bijections to \mathbb{N}) are trivially true.

Beyond the Big Five

Each of the 'Big Five' has a higher-order counterpart; we concentrate on the weakest.

$$
\begin{align*}
& \quad \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \mathrm{RCA}_{0} \tag{3}\\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \tag{4}
\end{align*} \underbrace{}_{\text {Here be something! }} \rightarrow \mathrm{RCA}_{0}^{\omega} .
$$

Why there be something in (4)?
Because: $\mathrm{RCA}_{0}^{\omega}$ is a weak system: Brouwer's theorem, given as all functions on \mathbb{R} are continuous, yields a conservative extension.
If all functions on \mathbb{R} are continuous, then countable sets in \mathbb{R} (formulated with injections/bijections to \mathbb{N}) are at most singletons. Hence, if all functions on \mathbb{R} are continuous, then theorems about countable sets in \mathbb{R} (injections/bijections to \mathbb{N}) are trivially true. Thus, theorems about countable sets (injections/bijections to \mathbb{N}) have the same first-order strength as $R C A_{0}^{\omega}$.

The coding catastrophe

Beyond the Big Five

Beyond the Big Five

The following picture emerges:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\operatorname{cocode}_{0} \rightarrow \text { cocode }_{1}}_{\text {Big Six and Big Seven. }} \rightarrow \mathrm{RCA}_{0}^{\omega}
\end{aligned}
$$

Beyond the Big Five

The following picture emerges:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } \rightarrow \text { cocode }_{1}}_{\text {Big Six and Big Seven. }} \rightarrow \mathrm{RCA}_{0}^{\omega} .
\end{aligned}
$$

cocode e_{0} expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.

Beyond the Big Five

The following picture emerges:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } \rightarrow \text { cocode }}_{\text {Big Six and Big Seven. }} \rightarrow
\end{aligned} \rightarrow \mathrm{RCA}_{0}^{\omega} . .
$$

cocode $_{0}$ expresses that a countable ($=$ injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode $_{1}$ in his 1899 PhD thesis.

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode $_{1}$ in his 1899 PhD thesis.

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode $_{1}$ in his 1899 PhD thesis.
Sociology: textbooks use cocode ${ }_{i}$ all the time: when proving a set to be countabe, one (only) provides an injection or bijection; when a countable set is given, an enumeration is immediately assumed.

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode ${ }_{1}$ in his 1899 PhD thesis.
Sociology: textbooks use cocode ${ }_{j}$ all the time: when proving a set to be countabe, one (only) provides an injection or bijection; when a countable set is given, an enumeration is immediately assumed.

Coolness: cocode ${ }_{0}$ is explosive: $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\omega}+$ cocode $_{0}$ proves $\Pi_{2}^{1}-\mathrm{CA}_{0}$. (RM of topology, dwarves, chasm, abyss)

Why study cocode ${ }_{i}$?

cocode $_{0}$ expresses that a countable (=injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

History: Borel explicitly states cocode $_{1}$ in his 1899 PhD thesis.
Sociology: textbooks use cocode ${ }_{j}$ all the time: when proving a set to be countabe, one (only) provides an injection or bijection; when a countable set is given, an enumeration is immediately assumed.

Coolness: cocode ${ }_{0}$ is explosive: $\Pi_{1}^{1}-\mathrm{CA}_{0}^{\omega}+$ cocode $_{0}$ proves $\Pi_{2}^{1}-\mathrm{CA}_{0}$. (RM of topology, dwarves, chasm, abyss)

Hyper: ACA $_{0}^{\omega}+$ cocode $_{1}$ lives as the level of hyperarithmetical analysis. Associated second-order systems are 'rather logical'

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions.

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions. This ensures compatibility with second-order RM, where open/closed sets have continuous characteristic functions.

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions. This ensures compatibility with second-order RM, where open/closed sets have continuous characteristic functions.
Most of the below results go through for any notion of set.

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions. This ensures compatibility with second-order RM, where open/closed sets have continuous characteristic functions.
Most of the below results go through for any notion of set.

Definition

$A \subset \mathbb{R}$ is countable if there is $Y: \mathbb{R} \rightarrow \mathbb{N}$ which is injective on A.

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions. This ensures compatibility with second-order RM, where open/closed sets have continuous characteristic functions.
Most of the below results go through for any notion of set.

Definition

$A \subset \mathbb{R}$ is countable if there is $Y: \mathbb{R} \rightarrow \mathbb{N}$ which is injective on A.

Definition

$A \subset \mathbb{R}$ is strongly countable if there is $Y: \mathbb{R} \rightarrow \mathbb{N}$ which is injective and surjective on A.

Some definitions

We assume sets are given by (possibly discontinuous) characteristic functions. This ensures compatibility with second-order RM, where open/closed sets have continuous characteristic functions.
Most of the below results go through for any notion of set.

Definition

$A \subset \mathbb{R}$ is countable if there is $Y: \mathbb{R} \rightarrow \mathbb{N}$ which is injective on A.

Definition

$A \subset \mathbb{R}$ is strongly countable if there is $Y: \mathbb{R} \rightarrow \mathbb{N}$ which is injective and surjective on A.

Principle (cocode 0)

A countable set in $[0,1]$ can be enumerated.

Bolzano-Weierstrass

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum $\sup A$.

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.
- BWC_{0} for the pointwise ordering (rather than LEX).

Bolzano-Weierstrass

Let $B W C_{0}$ be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.
- BWC_{0} for the pointwise ordering (rather than LEX).
- BWC_{0} expressing that $\sup _{f \in A} F(A)$ exists for $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$.

Bolzano-Weierstrass

Let $B W C_{0}$ be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.
- BWC_{0} for the pointwise ordering (rather than LEX).
- BWC_{0} expressing that $\sup _{f \in A} F(A)$ exists for $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$.
- monotone convergence thm for nets with countable index sets.

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum sup A. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.
- BWC_{0} for the pointwise ordering (rather than LEX).
- BWC_{0} expressing that $\sup _{f \in A} F(A)$ exists for $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$.
- monotone convergence thm for nets with countable index sets.
- BOOT_{C}^{-}: BOOT with 'at most one' condition.

Bolzano-Weierstrass

Let BWC_{0} be the following Bolzano-Weierstrass theorem: any countable $A \subset 2^{\mathbb{N}}$ has a supremum $\sup A$. TFAE:

- cocodeo
- BWC_{0} plus a little bit of induction.
- BWC_{0} with a sequence in A converging to sup A.
- BWC_{0} for the pointwise ordering (rather than LEX).
- BWC_{0} expressing that $\sup _{f \in A} F(A)$ exists for $F: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$.
- monotone convergence thm for nets with countable index sets.
- BOOT_{C}^{-}: BOOT with 'at most one' condition.
- many of the above for $[0,1]$.
- ...

We observe a certain robustness!

Limit points

The Cantor-Bendixson theorem is studied in second-order RM (via codes). The original theorem readily implies item (b).

Limit points

The Cantor-Bendixson theorem is studied in second-order RM (via codes). The original theorem readily implies item (b). TFAE:
(c) cocode 0
(1) a non-enumerable closed set in \mathbb{R} has a limit point,
(a non-enumerable set in \mathbb{R} contains a limit point,
(1) a collection of disjoint open intervals in \mathbb{R} is enumerable.

Limit points

The Cantor-Bendixson theorem is studied in second-order RM (via codes). The original theorem readily implies item (b). TFAE:
© cocode 0
(1) a non-enumerable closed set in \mathbb{R} has a limit point,
(a non-enumerable set in \mathbb{R} contains a limit point,
(1) a collection of disjoint open intervals in \mathbb{R} is enumerable. NOTE: cocode ${ }_{0}$ is formulated using injections, while the other items are NOT.

Limit points

The Cantor-Bendixson theorem is studied in second-order RM (via codes). The original theorem readily implies item (b). TFAE:
© cocode 0
(1) a non-enumerable closed set in \mathbb{R} has a limit point,
(a non-enumerable set in \mathbb{R} contains a limit point,
(0) a collection of disjoint open intervals in \mathbb{R} is enumerable.

NOTE: cocode ${ }_{0}$ is formulated using injections, while the other items are NOT.

Item (d) is called the countable chain condition, first formulated by Cantor.

Limit points II

TFAE

(a) cocode $_{0}$
(D) a non-enumerable closed set in \mathbb{R} has a limit point,
(c) a non-enumerable set in \mathbb{R} contains a limit point,
(a) a collection of disjoint open intervals in \mathbb{R} is enumerable.
(c) cocode 1 plus: a collection of disjoint open intervals in \mathbb{R} is strongly countable.

Limit points II

TFAE

© cocode $_{0}$
(1) a non-enumerable closed set in \mathbb{R} has a limit point,
(a non-enumerable set in \mathbb{R} contains a limit point,
(1) a collection of disjoint open intervals in \mathbb{R} is enumerable.
(cocode ${ }_{1}$ plus: a collection of disjoint open intervals in \mathbb{R} is strongly countable.
NOTE: cocode ${ }_{0}$ is formulated using injections, while items (b)-(d) are NOT.

Limit points II

TFAE

© cocode $_{0}$
(1) a non-enumerable closed set in \mathbb{R} has a limit point,
(a non-enumerable set in \mathbb{R} contains a limit point,
(1) a collection of disjoint open intervals in \mathbb{R} is enumerable.
(e) cocode $_{1}$ plus: a collection of disjoint open intervals in \mathbb{R} is strongly countable.
NOTE: cocodeo is formulated using injections, while items (b)-(d) are NOT.

Item (e) is formulated with bijections ONLY.

Cantor-Bernstein theorem

Cantor-Bernstein theorem: given injections $f: A \rightarrow B$ and $g: A \rightarrow B$, there is a bijection $h: A: \rightarrow B$.

Cantor-Bernstein theorem

Cantor-Bernstein theorem: given injections $f: A \rightarrow B$ and $g: A \rightarrow B$, there is a bijection $h: A: \rightarrow B$.

CBN is the above for $B=\mathbb{N}$ and $A \subset \mathbb{R}$.

Cantor-Bernstein theorem

Cantor-Bernstein theorem: given injections $f: A \rightarrow B$ and $g: A \rightarrow B$, there is a bijection $h: A: \rightarrow B$.
$C B \mathbb{N}$ is the above for $B=\mathbb{N}$ and $A \subset \mathbb{R}$.
cocode $_{0} \leftrightarrow$ [cocode $_{1}+\mathrm{CBN}$], and the disjuncts are independent.

Cantor-Bernstein theorem

Cantor-Bernstein theorem: given injections $f: A \rightarrow B$ and $g: A \rightarrow B$, there is a bijection $h: A: \rightarrow B$.
$C B N$ is the above for $B=\mathbb{N}$ and $A \subset \mathbb{R}$.
cocode $_{0} \leftrightarrow\left[\right.$ cocode $\left._{1}+\mathrm{CBN}\right]$, and the disjuncts are independent.
$\mathrm{CBN}^{+} \leftrightarrow$ cocode $_{0}$, where the former expresses that h is locally either f or the inverse of g.

Heine-Borel theorem

Heine-Borel theorem

We do not know whether HBC_{0} is equivalent to cocode ${ }_{0}$:

Principle (HBC_{0})

For countable $A \subset \mathbb{R}^{2}$ with $(\forall x \in I)(\exists(a, b) \in A)(x \in(a, b))$, there is $\left(a_{0}, b_{0}\right), \ldots\left(a_{k}, b_{k}\right) \in A$ with $(\forall x \in I)(\exists i \leq k)\left(x \in\left(a_{i}, b_{i}\right)\right)$.

Heine-Borel theorem

We do not know whether HBC_{0} is equivalent to cocode ${ }_{0}$:

Principle (HBC_{0})

For countable $A \subset \mathbb{R}^{2}$ with $(\forall x \in I)(\exists(a, b) \in A)(x \in(a, b))$, there is $\left(a_{0}, b_{0}\right), \ldots\left(a_{k}, b_{k}\right) \in A$ with $(\forall x \in I)(\exists i \leq k)\left(x \in\left(a_{i}, b_{i}\right)\right)$.

The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ is equivalent to cocode ${ }_{0}$.

Heine-Borel theorem

We do not know whether HBC_{0} is equivalent to cocode ${ }_{0}$:

Principle (HBC_{0})

For countable $A \subset \mathbb{R}^{2}$ with $(\forall x \in I)(\exists(a, b) \in A)(x \in(a, b))$, there is $\left(a_{0}, b_{0}\right), \ldots\left(a_{k}, b_{k}\right) \in A$ with $(\forall x \in I)(\exists i \leq k)\left(x \in\left(a_{i}, b_{i}\right)\right)$.

The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ is equivalent to cocode ${ }_{0}$.
The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ expresses the existence of a sequence of finite sub-coverings for a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets as in HBC_{0}.

Heine-Borel theorem

We do not know whether HBC_{0} is equivalent to cocode ${ }_{0}$:

Principle (HBC_{0})

For countable $A \subset \mathbb{R}^{2}$ with $(\forall x \in I)(\exists(a, b) \in A)(x \in(a, b))$, there is $\left(a_{0}, b_{0}\right), \ldots\left(a_{k}, b_{k}\right) \in A$ with $(\forall x \in I)(\exists i \leq k)\left(x \in\left(a_{i}, b_{i}\right)\right)$.

The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ is equivalent to cocode ${ }_{0}$.
The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ expresses the existence of a sequence of finite sub-coverings for a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets as in HBC_{0}. Sequential thms are well-studied in RM.

Heine-Borel theorem

We do not know whether HBC_{0} is equivalent to cocode ${ }_{0}$:

Principle (HBC_{0})

For countable $A \subset \mathbb{R}^{2}$ with $(\forall x \in I)(\exists(a, b) \in A)(x \in(a, b))$, there is $\left(a_{0}, b_{0}\right), \ldots\left(a_{k}, b_{k}\right) \in A$ with $(\forall x \in I)(\exists i \leq k)\left(x \in\left(a_{i}, b_{i}\right)\right)$.

The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ is equivalent to cocode ${ }_{0}$.
The 'sequential version' $\mathrm{HBC}_{0}^{\text {seq }}$ expresses the existence of a sequence of finite sub-coverings for a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of sets as in HBC_{0}. Sequential thms are well-studied in RM.

Same for many sequential versions, like e.g. sequential ADS, RT22, KL. ...

Separation

The separation axiom as follows

$$
\begin{gathered}
(\forall n \in \mathbb{N})(\neg A(n) \vee \neg B(n)) \\
\downarrow \\
(\exists Z \subset \mathbb{N})(\forall n \in \mathbb{N})(A(n) \rightarrow n \in Z \wedge B(n) \rightarrow n \notin Z) .
\end{gathered}
$$

Separation

The separation axiom as follows

$$
\begin{gathered}
(\forall n \in \mathbb{N})(\neg A(n) \vee \neg B(n)) \\
\downarrow \\
(\exists Z \subset \mathbb{N})(\forall n \in \mathbb{N})(A(n) \rightarrow n \in Z \wedge B(n) \rightarrow n \notin Z) .
\end{gathered}
$$

provides equivalent formulations for $W K L_{0}$ and $A T R_{0}$ when restricted to Σ_{1}^{0} and Σ_{1}^{1}-formulas

Separation

The separation axiom as follows

$$
\begin{gathered}
(\forall n \in \mathbb{N})(\neg A(n) \vee \neg B(n)) \\
\downarrow \\
(\exists Z \subset \mathbb{N})(\forall n \in \mathbb{N})(A(n) \rightarrow n \in Z \wedge B(n) \rightarrow n \notin Z) .
\end{gathered}
$$

provides equivalent formulations for $W K L_{0}$ and $A T R_{0}$ when restricted to Σ_{1}^{0} and Σ_{1}^{1}-formulas
Allowing third-order parameters, there are versions equivalent to HBT and cocode ${ }^{\text {for }} i=0,1$.

Some set theory

The countable union theorem expresses that a countable union of countable sets is countable.

Some set theory

The countable union theorem expresses that a countable union of countable sets is countable.

This theorem is not provable in ZF. We study the following version:

Principle (CUC)

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of sets in \mathbb{R} such that for all $n \in \mathbb{N}$, there is an enumeration of A_{n}. Then there is an enumeration of $\cup_{n \in \mathbb{N}} A_{n}$.

Some set theory

The countable union theorem expresses that a countable union of countable sets is countable.

This theorem is not provable in ZF. We study the following version:

Principle (CUC)

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of sets in \mathbb{R} such that for all $n \in \mathbb{N}$, there is an enumeration of A_{n}. Then there is an enumeration of $\cup_{n \in \mathbb{N}} A_{n}$.

There are natural restrictions of CUC equivalent to cocode ${ }_{i}$.

Some set theory

The countable union theorem expresses that a countable union of countable sets is countable.

This theorem is not provable in ZF. We study the following version:

Principle (CUC)

Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of sets in \mathbb{R} such that for all $n \in \mathbb{N}$, there is an enumeration of A_{n}. Then there is an enumeration of $\cup_{n \in \mathbb{N}} A_{n}$.

There are natural restrictions of CUC equivalent to cocode ${ }_{i}$.
Related results for \mathbb{R} is not the union of countable sets.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE

- cocode 0
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE

- cocode 0
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.
(© A countable and dense linear ordering without endpoints $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to \mathbb{Q}.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE

- cocode 0
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.
(© A countable and dense linear ordering without endpoints $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to \mathbb{Q}.
(0) $\left(\mathrm{CWO}^{\omega}\right)$ For countable well-orders $(X, \preceq x)$ and ($\left.Y, \preceq_{Y}\right)$ where $X, Y \subset \mathbb{R}$, the former is order-isomorphic to the latter or an initial segment of the latter, or vice versa.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE
(c cocode $_{0}$
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.
(c) A countable and dense linear ordering without endpoints $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to \mathbb{Q}.
(0) $\left(\mathrm{CWO}^{\omega}\right)$ For countable well-orders $(X, \preceq x)$ and ($\left.Y, \preceq_{Y}\right)$ where $X, Y \subset \mathbb{R}$, the former is order-isomorphic to the latter or an initial segment of the latter, or vice versa.
These all go back to Cantor, one way or the other.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE

- cocode 0
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.
(© countable and dense linear ordering without endpoints $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to \mathbb{Q}.
(1) $\left(\mathrm{CWO}^{\omega}\right)$ For countable well-orders $(X, \preceq X)$ and $(Y, \preceq Y)$ where $X, Y \subset \mathbb{R}$, the former is order-isomorphic to the latter or an initial segment of the latter, or vice versa.
These all go back to Cantor, one way or the other.
The good people of second-order RM often talk about 'the order type η of the rationals', as though it makes sense in SOSOA.

Countable linear orders

Countable linear orders and related topics are apparently 'a big thing' in RM, studied via sequences. TFAE

- cocode 0
(0) A countable linear ordering $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to a subset of \mathbb{Q}.
(© countable and dense linear ordering without endpoints $(X, \preceq x)$ for $X \subset \mathbb{R}$ is order-isomorphic to \mathbb{Q}.
(0) $\left(\mathrm{CWO}^{\omega}\right)$ For countable well-orders $(X, \preceq X)$ and ($\left.Y, \preceq_{Y}\right)$ where $X, Y \subset \mathbb{R}$, the former is order-isomorphic to the latter or an initial segment of the latter, or vice versa.
These all go back to Cantor, one way or the other.
The good people of second-order RM often talk about 'the order type η of the rationals', as though it makes sense in SOSOA.
For this concept to make sense, one needs item (c) (and much more)....

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode ${ }_{1}$.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode $_{1}$. The proofs are often different, sometimes very.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode $_{1}$. The proofs are often different, sometimes very.
There are a couple of 'unique' equivalences. TFAE:
(1) cocode ${ }_{1}$.
(2) $\Delta-\mathrm{CA}_{C}^{-}$.
(3)!QF-AC ${ }^{0,1}$.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode $_{1}$. The proofs are often different, sometimes very.
There are a couple of 'unique' equivalences. TFAE:
(1) cocode ${ }_{1}$.
(2) $\Delta-\mathrm{CA}_{C}^{-}$.
(3)!QF-AC ${ }^{0,1}$.

Item (3) is a fragment of countable choice with a uniqueness condition.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode ${ }_{1}$. The proofs are often different, sometimes very.
There are a couple of 'unique' equivalences. TFAE:
(1) cocode ${ }_{1}$.
(2) $\Delta-\mathrm{CA}_{C}^{-}$.
(3)!QF-AC ${ }^{0,1}$.

Item (3) is a fragment of countable choice with a uniqueness
condition. Item (2) is the higher-order counterpart of Δ_{1}^{0}-comprehension.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode ${ }_{1}$. The proofs are often different, sometimes very.
There are a couple of 'unique' equivalences. TFAE:
(1) cocode $_{1}$.
(2) $\Delta-\mathrm{CA}_{C}^{-}$.
(3)!QF-AC ${ }^{0,1}$.

Item (3) is a fragment of countable choice with a uniqueness
condition. Item (2) is the higher-order counterpart of Δ_{1}^{0}-comprehension.
ACA ${ }_{0}^{\omega}+$ cocode $_{1}$ is between Σ_{1}^{1} - $A C$ and the latter with a uniqueness condition.

Similar results

Most (but not all) of the above results go through mutatis mutandis when restricted to strongly countable sets, i.e. yielding equivalences for cocode ${ }_{1}$. The proofs are often different, sometimes very.
There are a couple of 'unique' equivalences. TFAE:
(1) cocode ${ }_{1}$.
(2) $\Delta-\mathrm{CA}_{C}^{-}$.
(3)!QF-AC ${ }^{0,1}$.

Item (3) is a fragment of countable choice with a uniqueness
condition. Item (2) is the higher-order counterpart of Δ_{1}^{0}-comprehension.
$\mathrm{ACA}_{0}^{\omega}+$ cocode $_{1}$ is between $\Sigma_{1}^{1}-\mathrm{AC}$ and the latter with a uniqueness condition.
The system $\mathrm{ACA}_{0}^{\omega}+$ cocode $_{1}$ is in the range of hyperarithmetical analysis, and more natural than the known systems.

Conclusion: the Big Six and Big Seven

Conclusion: the Big Six and Big Seven

The following picture was obtained:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } \rightarrow \text { cocode }}_{\text {Big Six and Big Seven. }} \rightarrow
\end{aligned} \mathrm{RCA}_{0}^{\omega} .
$$

Conclusion: the Big Six and Big Seven

The following picture was obtained:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } 0 \rightarrow \text { cocode }_{1}}_{\text {Big Six and Big Seven. }} \rightarrow \mathrm{RCA}_{0}^{\omega} .
\end{aligned}
$$

cocode $_{0}$ expresses that a countable ($=$ injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.

Conclusion: the Big Six and Big Seven

The following picture was obtained:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } \rightarrow \text { cocode }}_{\text {Big Six and Big Seven. }} \rightarrow
\end{aligned} \rightarrow \mathrm{RCA}_{0}^{\omega} .
$$

cocode $_{0}$ expresses that a countable ($=$ injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

Conclusion: the Big Six and Big Seven

The following picture was obtained:

$$
\begin{aligned}
& \ldots \rightarrow \mathrm{ACA}_{0} \rightarrow \mathrm{WKL}_{0} \rightarrow \underbrace{}_{\text {No known 'Big' system. }} \rightarrow \mathrm{RCA}_{0} \\
& \ldots \rightarrow \mathrm{BOOT} \rightarrow \mathrm{HBT} \rightarrow \underbrace{\text { cocode } \rightarrow \text { cocode }}_{\text {Big Six and Big Seven. }} \rightarrow
\end{aligned} \rightarrow \mathrm{RCA}_{0}^{\omega} .
$$

cocode $_{0}$ expresses that a countable ($=$ injection to \mathbb{N}, Kunen, Brouwer) set of reals can be enumerated.
cocode $_{1}$ expresses that a strongly countable (=bijection to \mathbb{N}, Hrbacek-Jech) set of reals can be enumerated.

Many equivalences exist and many many more lie in wait.

The future: beyond Kleene and Turing

Our negative results rely on Kleene's S1-S9 computability theory (ITTMs outright compute all the stuff we wish to study).

The future: beyond Kleene and Turing

Our negative results rely on Kleene's S1-S9 computability theory (ITTMs outright compute all the stuff we wish to study).

Turing machines: computation on the reals only (coding...) but conceptually simple.

The future: beyond Kleene and Turing

Our negative results rely on Kleene's S1-S9 computability theory (ITTMs outright compute all the stuff we wish to study).

Turing machines: computation on the reals only (coding...) but conceptually simple.
Kleene S1-S9: computation on all finite types, but complicated (no T-predicate and complicated ad hoc definition)

The future: beyond Kleene and Turing

Our negative results rely on Kleene's S1-S9 computability theory (ITTMs outright compute all the stuff we wish to study).

Turing machines: computation on the reals only (coding...) but conceptually simple.
Kleene S1-S9: computation on all finite types, but complicated (no T-predicate and complicated ad hoc definition)
Turing framework/SOSOA is the dominant framework right now, for better or for worse.

The future: beyond Kleene and Turing

Our negative results rely on Kleene's S1-S9 computability theory (ITTMs outright compute all the stuff we wish to study).

Turing machines: computation on the reals only (coding...) but conceptually simple.
Kleene S1-S9: computation on all finite types, but complicated (no T-predicate and complicated ad hoc definition)
Turing framework/SOSOA is the dominant framework right now, for better or for worse.

But we can almost have the best of both worlds!

Brouwer to the rescue!

Discontinuous functions (say on $2^{\mathbb{N}}$) are truly third-order, i.e. Turing machines cannot access them in any real/direct way.

Brouwer to the rescue!

Discontinuous functions (say on $2^{\mathbb{N}}$) are truly third-order, i.e. Turing machines cannot access them in any real/direct way.

But these are the only problematic objects! Intuitively, if a theorem/object does not imply the existence of a discontinuous function (say on $2^{\mathbb{N}}$), then it is provable from a fragment of:

Brouwer to the rescue!

Discontinuous functions (say on $2^{\mathbb{N}}$) are truly third-order, i.e. Turing machines cannot access them in any real/direct way.

But these are the only problematic objects! Intuitively, if a theorem/object does not imply the existence of a discontinuous function (say on $2^{\mathbb{N}}$), then it is provable from a fragment of:

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$
\left(\forall f \in \mathbb{N}^{\mathbb{N}}\right)(\exists n \in \mathbb{N}) A(\bar{f} n) \rightarrow\left(\exists \gamma \in K_{0}\right)\left(\forall f \in \mathbb{N}^{\mathbb{N}}\right) A(\bar{f} \gamma(f)),
$$

where ' $\gamma \in K_{0}$ ' means that γ is an RM -code.
Note that $\bar{f} n$ is the finite sequence $\langle f(0), f(1), \ldots, f(n-1)\rangle$.

Brouwer to the rescue!

Discontinuous functions (say on $2^{\mathbb{N}}$) are truly third-order, i.e. Turing machines cannot access them in any real/direct way.

But these are the only problematic objects! Intuitively, if a theorem/object does not imply the existence of a discontinuous function (say on $2^{\mathbb{N}}$), then it is provable from a fragment of:

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

$$
\left(\forall f \in \mathbb{N}^{\mathbb{N}}\right)(\exists n \in \mathbb{N}) A(\bar{f} n) \rightarrow\left(\exists \gamma \in K_{0}\right)\left(\forall f \in \mathbb{N}^{\mathbb{N}}\right) A(\bar{f} \gamma(f)),
$$

where ' $\gamma \in K_{0}$ ' means that γ is an RM -code.
Note that $\bar{f} n$ is the finite sequence $\langle f(0), f(1), \ldots, f(n-1)\rangle$.
NFP is a classically equivalent alternative to comprehension from Brouwer's INT. But the ' $\gamma \in K_{0}$ ' in NFP can be fed to TMs!

Some examples

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\} .
$$

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\} .
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\} .
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion
(Net compactness) for any Y^{2}, there is a net $x_{d}: D \rightarrow[0,1]$ such that $x=\lim _{d} x_{d}$ implies $J(Y) \leq_{T} x$.

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\} .
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion
(Net compactness) for any Y^{2}, there is a net $x_{d}: D \rightarrow[0,1]$ such that $x=\lim _{d} x_{d}$ implies $J(Y) \leq_{T} x$. (and vice versa)

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\}
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion
(Net compactness) for any Y^{2}, there is a net $x_{d}: D \rightarrow[0,1]$ such that $x=\lim _{d} x_{d}$ implies $J(Y) \leq_{T} x$. (and vice versa)
(Heine-Borel thm) for any $\Psi:[0,1] \rightarrow \mathbb{R}^{+}$, there is $x_{0}, \ldots, x_{k} \in[0,1]$ such that $\cup_{i \leq k} B\left(x_{i}, \Psi\left(x_{i}\right)\right)$ is a finite sub-covering of $\cup_{x \in[0,1]} B(x, \Psi(x))$ and $x_{i} \leq{ }_{T} J(r(\Psi))$ for $i \leq k$.

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\}
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion
(Net compactness) for any Y^{2}, there is a net $x_{d}: D \rightarrow[0,1]$ such that $x=\lim _{d} x_{d}$ implies $J(Y) \leq_{T} x$. (and vice versa)
(Heine-Borel thm) for any $\Psi:[0,1] \rightarrow \mathbb{R}^{+}$, there is $x_{0}, \ldots, x_{k} \in[0,1]$ such that $\cup_{i \leq k} B\left(x_{i}, \Psi\left(x_{i}\right)\right)$ is a finite sub-covering of $\cup_{x \in[0,1]} B(x, \Psi(x))$ and $x_{i} \leq{ }_{T} J(r(\Psi))$ for $i \leq k$.
(Baire category thm) for dense open sets $\left(Y_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}, there is $x \in \cap_{n} Y_{n}$ with $x \leq_{T} J\left(t\left(\lambda n . Y_{n}, \exists^{2}\right)\right)$.

Some examples

Let ' \leq_{T} ' be Turing reducibility and define the 'higher-order jump'

$$
J(Y):=\left\{n \in \mathbb{N}:\left(\exists f \in \mathbb{N}^{\mathbb{N}}\right)(Y(f, n)=0)\right\}
$$

t, s, r are terms in Gödel's T, i.e. higher-order primitive recursion
(Net compactness) for any Y^{2}, there is a net $x_{d}: D \rightarrow[0,1]$ such that $x=\lim _{d} x_{d}$ implies $J(Y) \leq_{T} x$. (and vice versa)
(Heine-Borel thm) for any $\Psi:[0,1] \rightarrow \mathbb{R}^{+}$, there is $x_{0}, \ldots, x_{k} \in[0,1]$ such that $\cup_{i \leq k} B\left(x_{i}, \Psi\left(x_{i}\right)\right)$ is a finite sub-covering of $\cup_{x \in[0,1]} B(x, \Psi(x))$ and $x_{i} \leq{ }_{T} J(r(\Psi))$ for $i \leq k$.
(Baire category thm) for dense open sets $\left(Y_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}, there is $x \in \cap_{n} Y_{n}$ with $x \leq_{T} J\left(t\left(\lambda n . Y_{n}, \exists^{2}\right)\right)$.

Final Thoughts

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN \& CG)

Two roads diverged in a wood, and I, I took the one less traveled by. And that has made all the difference. (Robert Frost)

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN \& CG)

Two roads diverged in a wood, and I, I took the one less traveled by. And that has made all the difference. (Robert Frost)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN \& CG)

Two roads diverged in a wood, and I, I took the one less traveled by. And that has made all the difference. (Robert Frost)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have to make it fall. (AN \& CG)

Two roads diverged in a wood, and I, I took the one less traveled by. And that has made all the difference. (Robert Frost)

We thank DFG, TU Darmstadt, John Templeton Foundation, and Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!
Any (content) questions?

[^0]: Definition II.6.1 (continuous functions). Within RCA_{0}, let \widehat{A} and \widehat{B} be complete separable metric spaces. A (code for a) continuous partial function ϕ from \widehat{A} to \widehat{B} is a set of quintuples $\Phi \subseteq \mathbb{N} \times A \times \mathbb{Q}^{+} \times B \times \mathbb{Q}^{+}$ which is required to have certain properties. We write $(a, r) \Phi(b, s)$ as an abbreviation for $\exists n((n, a, r, b, s) \in \Phi)$. The properties which we require are:

 1. if $(a, r) \Phi(b, s)$ and $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$, then $d\left(b, b^{\prime}\right) \leq s+s^{\prime}$;
 2. if $(a, r) \Phi(b, s)$ and $\left(a^{\prime}, r^{\prime}\right)<(a, r)$, then $\left(a^{\prime}, r^{\prime}\right) \Phi(b, s)$;
 3. if $(a, r) \Phi(b, s)$ and $(b, s)<\left(b^{\prime}, s^{\prime}\right)$, then $(a, r) \Phi\left(b^{\prime}, s^{\prime}\right)$;
 where the notation $\left(a^{\prime}, r^{\prime}\right)<(a, r)$ means that $d\left(a, a^{\prime}\right)+r^{\prime}<r$.
