An escape from Vardanyan's Theorem

Ana de Almeida Borges Joost J. Joosten

Universitat de Barcelona
Seminari Cuc
February 22, 2021

In this talk we...

- Discuss known shortcomings of quantified provability logic
- Introduce QRC $_{1}$ as a solution
- State obtained results about QRC_{1}
- Sketch a couple of proofs

Provability Logics

- Interpret \square as "is provable in a (specific) formal theory"
- Interpret \diamond as "is consistent with that formal theory"

Examples:

- GL is $\mathrm{K} 4+\square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi$ (Löb's axiom)
- GLP is a polymodal version of GL, with [0], [1], ... as modalities
- Decidability is PSPACE-complete
- RC is the strictly positive fragment of GLP, with statements of the form $\varphi \vdash \psi$, where φ, ψ are in the language built from \top, p, \wedge, $\langle 0\rangle,\langle 1\rangle, \ldots$
- E.g. $\langle 1\rangle p \vdash\langle 0\rangle p$
- Decidability is in PTIME

Arithmetical realizations

It is possible to express Gödel's provability predicate in PA:

$$
\operatorname{Prov}_{\mathrm{PA}}(\varphi):=\exists p \operatorname{Proof}_{\mathrm{PA}}(p, \varphi)
$$

Let \mathcal{L}_{\square} be the language of GL .
An arithmetical realization is any function $(\cdot)^{\star}$ taking:

$$
\text { formulas in } \mathcal{L}_{\square} \rightarrow \text { sentences in } \mathcal{L}_{\mathrm{PA}}
$$ propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives

$$
\square \rightarrow \operatorname{Prov}_{\mathrm{PA}}
$$

Solovay's Theorem

Theorem (Solovay, 1976)

Let $\varphi \in \mathcal{L}_{\square}$. Then:

$$
\begin{gathered}
\mathrm{GLL} \vdash \varphi \\
\mathbb{\Downarrow}
\end{gathered}
$$

PA $\vdash(\varphi)^{\star}$ for any arithmetical realization $(\cdot)^{\star}$

This can be written as:

$$
\mathrm{GL}=\left\{\varphi \in \mathcal{L}_{\square} \mid \text { for any }(\cdot)^{\star}, \text { we have } \mathrm{PA} \vdash(\varphi)^{\star}\right\}
$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\square, \forall}$ be the language of relational quantified modal logic:
T, relation symbols, boolean connectives, $\forall x$, and \square
Define arithmetical realizations $(\cdot)^{\bullet}$ for $\mathcal{L}_{\square, \forall}$:
formulas in $\mathcal{L}_{\square, \forall} \rightarrow$ formulas in $\mathcal{L}_{\text {PA }}$
n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

$$
\begin{aligned}
\forall x & \rightarrow \forall x \\
\square & \rightarrow \operatorname{Prov}_{\mathrm{PA}}
\end{aligned}
$$

Theorem (Vardanyan, 1986 and McGee, 1985)

$$
\left\{\text { closed } \varphi \in \mathcal{L}_{\square, \forall} \mid \text { for any }(\cdot)^{\bullet}, \text { we have } \mathrm{PA} \vdash(\varphi)^{\bullet}\right\}
$$

is Π_{2}^{0}-complete. Thus it is not recursively axiomatizable.

Planning an escape

Restrict $\mathcal{L}_{\square, \forall}$ to the strictly positive fragment $\mathcal{L}_{\diamond, \forall}$:
Terms ::= Variables | Constants

$$
\mathcal{L}_{\diamond, \forall}::=\top \mid \text { relation symbols applied to Terms }|\varphi \wedge \varphi| \forall x \varphi \mid \diamond \varphi
$$

Define a calculus QRC_{1} with statements $\varphi \vdash \psi$ where:

$$
\varphi, \psi \in \mathcal{L}_{\diamond, \forall}
$$

The arithmetical realizations $(\cdot)^{*}$ for $\mathcal{L}_{\diamond, \forall}$ send:
formulas in $\mathcal{L}_{\diamond, \forall} \rightarrow$ axiomatizations of theories in $\mathcal{L}_{\text {PA }}$
Prove arithmetical soundness and completeness for QRC_{1} :

$$
\mathrm{QRC}_{1}=\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have PA } \vdash(\varphi \vdash \psi)^{*}\right\}
$$

QRC $_{1}$: Axioms and rules

$$
\begin{array}{cl}
\varphi \vdash \top \quad \varphi \wedge \psi \vdash \varphi & \diamond \diamond \varphi \vdash \diamond \varphi \\
\frac{\varphi \vdash \varphi}{\varphi \vdash \psi} \frac{\varphi \vdash \chi}{\varphi \vdash \chi} \quad \frac{\varphi \vdash \psi}{\diamond \varphi \vdash \diamond \psi} \\
\frac{\varphi \vdash \psi \vdash \psi}{\varphi \vdash \psi \wedge \chi} & \frac{\varphi \vdash \psi}{\varphi \vdash \forall x \psi} \\
\frac{x \notin \mathrm{fv} \varphi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]} & \frac{\varphi[x \leftarrow t] \vdash \psi}{\forall x \varphi \vdash \psi} \\
t \text { free for } x \operatorname{in} \varphi \text { and } \psi & c \operatorname{not} \operatorname{in} \varphi \operatorname{nor} \psi
\end{array}
$$

Some provable and unprovable statements

$$
\begin{gathered}
\diamond \forall x \varphi \vdash \forall x \diamond \varphi \\
\forall x \diamond \varphi \nvdash \diamond \forall x \varphi \\
\frac{\varphi \vdash \psi[x \leftarrow c]}{\varphi \vdash \forall x \psi} \\
x \text { not free in } \varphi \text { and } c \text { not in } \varphi \text { nor } \psi
\end{gathered}
$$

Arithmetical semantics

The arithmetical realizations $(\cdot)^{*}$ for $\mathcal{L}_{\diamond, \forall}$:
formulas in $\mathcal{L}_{\diamond, \forall} \rightarrow$ axiomatizations of theories in $\mathcal{L}_{\text {PA }}$
variables $x_{i} \rightarrow$ variables y_{i}
constants $c_{i} \rightarrow$ variables z_{i}

$$
(\top)^{*}:=\tau_{\mathrm{PA}}(u)
$$

$$
(S(x, c))^{*}:=\sigma(y, z, u) \vee \tau_{\mathrm{PA}}(u)
$$

$$
(\psi(x, c) \wedge \delta(x, c))^{*}:=(\psi(x, c))^{*} \vee(\delta(x, c))^{*}
$$

$$
(\diamond \psi(x, c))^{*}:=\tau_{\mathrm{PA}}(u) \vee\left(u=\left\ulcorner\operatorname{Con}_{(\psi(x, c))^{*}} \top\right\urcorner\right)
$$

$$
\left(\forall x_{i} \psi(x, c)\right)^{*}:=\exists y_{i}(\psi(x, c))^{*}
$$

$$
(\varphi(x, c) \vdash \psi(x, c))^{*}:=\forall \theta, y, z\left(\square_{\psi^{*}(y, z)} \theta \rightarrow \square_{\varphi^{*}(y, z)} \theta\right)
$$

Arithmetical soundness

Theorem (Arithmetical soundness)

$$
\begin{aligned}
& \operatorname{QRC}_{1} \subseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*},\right. \text { we have } \\
& \left.\qquad \operatorname{PA} \vdash \forall \theta, y, z\left(\square_{\psi^{*}(y, z)} \theta \rightarrow \square_{\varphi^{*}(y, z)} \theta\right)\right\}
\end{aligned}
$$

By induction on the QRC_{1}-proof. Here is the case of $\diamond \diamond \varphi \vdash \diamond \varphi$:

- Pick any $(\cdot)^{*}$, reason in T, and let θ, y, z be arbitrary
- Assume $\square_{(\diamond \varphi) * *}$)
- Then $\square_{\mathrm{pA}}\left(\mathrm{Con}_{\varphi^{*}}(\mathrm{~T}) \rightarrow \theta\right)$
- By provable Σ_{1}-completeness, $\square_{\mathrm{PA}}\left(\operatorname{Con}_{\mathrm{PA}}\left(\operatorname{Con}_{\varphi^{*}}(T)\right) \rightarrow \operatorname{Con}_{\varphi^{*}}(T)\right)$
- Then $\square_{\mathrm{PA}}\left(\operatorname{Con}_{\mathrm{PA}}\left(\operatorname{Con}_{\varphi^{*}}(\mathrm{~T})\right) \rightarrow \theta\right)$
- We conclude $\square_{(\Delta \Delta \varphi)^{*}} \theta$

Arithmetical completeness

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

Where T is a r.e. theory extending $I \Sigma_{1}$.
Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC $_{1}$
- Counter models should be finite, transitive, irreflexive, rooted, and have constant domain
- Embed such models in arithmetic using the Solovay sentences λ_{i}

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain D is the same for every world (new!)
- each constant symbol c and relational symbol S has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world
- we use assignments g : Variables $\rightarrow D$ to interpret variables
- we abuse notation and define $g(c):=$ denotation (c) for all assignments g and constants c

Satisfaction

Let g be a w-assignment.

$$
\mathcal{M}, w \Vdash^{g} S(t, u) \Longleftrightarrow\langle g(t), g(u)\rangle \in \operatorname{denotation}_{w}(S)
$$

$\mathcal{M}, w \Vdash^{g} \diamond \varphi \Longleftrightarrow$ there is a world v such that $w R v$ and $\mathcal{M}, v \Vdash^{g} \varphi$
$\mathcal{M}, w \Vdash^{g} \forall x \varphi \Longleftrightarrow$ for all assignments $h \sim_{x} g$, we have $\mathcal{M}, w \Vdash^{h} \varphi$

Relational soundness and completeness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M}, world w, and assignment g :

$$
\mathcal{M}, w \Vdash^{g} \varphi \Longrightarrow \mathcal{M}, w \Vdash^{g} \psi
$$

Theorem (Relational completeness)

If $\varphi \nvdash \psi$, then there is a finite model \mathcal{M}, a world w, and an assignment g such that:

$$
\mathcal{M}, w \Vdash^{g} \varphi \quad \text { and } \quad \mathcal{M}, w \Vdash^{g} \psi .
$$

Since QRC_{1} has the finite model property, it is decidable.

Proving relational completeness

- Given $\varphi \nvdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are not true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$
w=\left\langle w^{+}, w^{-}\right\rangle \quad \text { e.g. }\langle\{\varphi\},\{\psi\}\rangle
$$

- Worlds should be well-formed pairs though...

Well-formed pairs

Let Λ be a set of formulas and p be a pair.

- $\Gamma \vdash \delta$ is shorthand for $\left(\bigwedge_{\gamma \in \Gamma} \gamma\right) \vdash \delta$
- p is closed if every formula in p is closed
- p is consistent if for every $\delta \in p^{-}$we have $p^{+} \nvdash \delta$
- p is Λ-maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^{+}$or $\varphi \in p^{-}$
- p is fully witnessed if for every formula $\forall x \varphi \in p^{-}$there is a constant c such that $\varphi[x \leftarrow c] \in p^{-}$
- p is Λ-well-formed if it is closed, Λ-maximal, consistent and fully witnessed

Building a world from an incomplete pair

- Let Λ be a finite set of closed formulas
- Let C be a finite set of constants containing the constants in Λ and some new constants
- Let Λ_{C} be the closure under (closed) subformulas of Λ, and such that if $\forall x \varphi \in \Lambda_{C}$, then for every $c \in C$ we have $\varphi[x \leftarrow c] \in \Lambda_{C}$
- Let $p=\left\langle p^{+}, p^{-}\right\rangle$be a closed consistent pair such that $p^{+} \cup p^{-} \subseteq \Lambda_{C}$
- Goal: obtain a Λ_{C}-well-formed pair w extending p

Method

- Some formulas in Λ_{C} are consequences of p^{+}, and thus must be added to w^{+}to preserve consistency
- We put all the other formulas of Λ_{C} in p^{-}

This Method works!

Lemma

If $|C|>2($ max. constant count in $\Lambda)+2($ max. \forall-depth of $\Lambda)$ and p^{+}is a singleton, the Method produces a Λ_{C}-well-formed pair w.

- w is consistent because $\varphi \in w^{+}$if and only if $p^{+} \vdash \varphi$
- w is fully-witnessed because...

$$
\begin{gathered}
\forall x \varphi \in w^{-} \\
\Downarrow
\end{gathered}
$$

there is some $c \in C$ s.t. c doesn't appear in $\forall x \varphi$ nor p^{+}

$$
\begin{gathered}
\Downarrow \\
p^{+} \nvdash \varphi[x \leftarrow c] \\
\Downarrow \\
\varphi[x \leftarrow c] \in w^{-}
\end{gathered}
$$

Building a counter-model

- Start with $\varphi \nvdash \psi$ (both closed)
- Build a (well-formed!) world w by extending $p:=\langle\{\varphi\},\{\psi\}\rangle$ (with $\Lambda:=\{\varphi, \psi\}$ and C large enough for Λ)
- Let the domain be the set of constants C
- Let the denotation of relation symbols at w correspond to their membership in w^{+}
- If $\diamond \chi \in w^{+}$, create a new world v_{χ} seen from w by Λ_{C}-completing

$$
\left\langle\{\chi\},\left\{\delta, \diamond \delta \mid \diamond \delta \in w^{-}\right\} \cup\{\diamond \chi\}\right\rangle
$$

- Define the domain and the denotation at v_{χ} like with w
- Repeat until all \diamond-formulas are witnessed

Putting it together

Lemma (Truth lemma)

Let \mathcal{M} be the counter-model we just built. Then for any world w, assignment g, and formula $\chi^{g} \in \Lambda_{C}$:

$$
\mathcal{M}, w \Vdash^{g} \chi \Longleftrightarrow \chi^{g} \in w^{+},
$$

where χ^{g} is χ with every free variable x replaced by $g(x)$.

Theorem (Relational completeness)

If $\varphi \nvdash \psi$, then there is a finite model \mathcal{M}, a world w, and an assignment g such that:

$$
\mathcal{M}, w \Vdash^{g} \varphi \quad \text { and } \quad \mathcal{M}, w \Vdash^{g} \psi
$$

Arithmetical completeness proof

Theorem (Arithmetical completeness)

$$
\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Assume $\varphi \nvdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed \mathcal{M} (with an extra world 0 pointing to the root) into the language of arithmetic, obtaining a formula λ_{i} representing each world i
- Define S^{\bullet} as:

$$
\left(S\left(x_{k}\right)\right)^{\bullet}:=\bigvee_{i \in \mathcal{M}}\left(\lambda_{i} \wedge \bigvee_{\langle a\rangle \in S^{\mathcal{M}_{i}}}\ulcorner a\urcorner=y_{k} \bmod m\right)
$$

- Prove a Truth Lemma stating (for $i>0$) that if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$; if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \neg \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$\mathrm{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid\right.$ for any $(\cdot)^{*}$, we have $\left.T \vdash(\varphi \vdash \psi)^{*}\right\}$

- Prove a Truth Lemma stating (for $i>0$) that if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$; if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \neg \chi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$
- Then $T \vdash \lambda_{1} \rightarrow \varphi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$ and $T \vdash \lambda_{1} \rightarrow \neg \psi^{\bullet}[y \leftarrow\ulcorner g(x)\urcorner]$
- Prove $\mathbb{N} \vDash \lambda_{0}$
- Prove $T \vdash \lambda_{0} \rightarrow \diamond_{T} \lambda_{1}$.
- Then $T \vdash \lambda_{0} \rightarrow \diamond_{T} \neg\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$
- Then $\mathbb{N} \vDash \neg \square_{T}\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$
- Then $T \nvdash\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$
\operatorname{QRC}_{1} \supseteq\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } T \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- We have $T \nvdash\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$
- Recall $(\varphi \vdash \psi)^{*}=\forall \theta, y\left(\square_{\psi^{*}} \theta \rightarrow \square_{\varphi^{*}} \theta\right)$
- Prove $T \vdash \forall \theta, y\left(\square_{\varphi^{*}} \theta \leftrightarrow \square_{T}\left(\varphi^{\bullet} \rightarrow \theta\right)\right)$
- Assume towards contradiction that $T \vdash(\varphi \vdash \psi)^{*}$
- Then $T \vdash \forall \theta, y\left(\square_{T}\left(\psi^{\bullet} \rightarrow \theta\right) \rightarrow \square_{T}\left(\varphi^{\bullet} \rightarrow \theta\right)\right)$
- Then $T \vdash \square_{T}\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$
- Then $T \vdash\left(\varphi^{\bullet} \rightarrow \psi^{\bullet}\right)[y \leftarrow\ulcorner g(x)\urcorner]$ by soundness of T
- Contradiction!

Heyting Arithmetic

Theorem

$$
\mathrm{QRC}_{1}=\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have PA } \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- $(\varphi \vdash \psi)^{*}=\forall \theta, y, z\left(\square_{\psi^{*}(y, z)} \theta \rightarrow \square_{\varphi^{*}(y, z)} \theta\right)$
- $(\varphi \vdash \psi)^{*}$ is Π_{2}^{0}
- PA is Π_{2}^{0} conservative over HA

Corollary

$$
\mathrm{QRC}_{1}=\left\{\varphi \vdash \psi \mid \text { for any }(\cdot)^{*}, \text { we have } \mathrm{HA} \vdash(\varphi \vdash \psi)^{*}\right\}
$$

- Also works with RC_{1}

In summary

- There is no quantified provability logic with $\mathcal{L}_{\square, \forall}$ QRC_{1} :
- quantified, strictly positive provability logic with $\mathcal{L}_{\diamond, \forall}$
- decidable
- sound and complete w.r.t. relational semantics (with constant domain models!)
- sound and complete w.r.t arithmetical semantics
- the quantified provability logic of all r.e. theories extending $I \Sigma_{1}$
- the quantified provability logic of HA

Thank you

ana de almeida gabriel @ ub . edu

Further Reading

目 G. Boolos (1995)
The Logic of Provability
Cambridge University Press
R A.A.B. and J.J. Joosten (2020)
Quantified Reflection Calculus with one modality Advances in Modal Logic 13
固 V.A. Vardanyan (1986)
Arithmetic complexity of predicate logics of provability and their fragments
Doklady Akad. Nauk SSSR 288(1), 11-14 (Russian)
Soviet Mathematics Doklady 33, 569-572 (English)

