An escape from Vardanyan's Theorem

Ana de Almeida Borges Joost J. Joosten

Universitat de Barcelona

Seminari Cuc February 22, 2021

In this talk	we		

- Discuss known shortcomings of quantified provability logic
- Introduce QRC₁ as a solution
- State obtained results about QRC1
- Sketch a couple of proofs

Background ●0000		

Provability Logics

- Interpret □ as "is provable in a (specific) formal theory"
- Interpret \Diamond as "is consistent with that formal theory"

Examples:

- GL is K4 + $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$ (Löb's axiom)
- GLP is a polymodal version of GL, with $[0], [1], \ldots$ as modalities
 - Decidability is PSPACE-complete
- RC is the strictly positive fragment of GLP, with statements of the form φ ⊢ ψ, where φ, ψ are in the language built from ⊤, p, ∧, ⟨0⟩, ⟨1⟩,...
 - E.g. $\langle 1 \rangle p \vdash \langle 0 \rangle p$
 - Decidability is in PTIME

Arithmetical realizations

It is possible to express Gödel's provability predicate in PA:

$$\mathsf{Prov}_{\mathsf{PA}}(\varphi) := \exists p \, \mathsf{Proof}_{\mathsf{PA}}(p, \varphi)$$

Let \mathcal{L}_{\Box} be the language of GL.

An arithmetical realization is any function $(\cdot)^*$ taking:

formulas in $\mathcal{L}_{\Box} \rightarrow$ sentences in \mathcal{L}_{PA} propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives $\Box \rightarrow \text{Prov}_{PA}$

Background 00●00		

Solovay's Theorem

Theorem (Solovay, 1976)
Let
$$\varphi \in \mathcal{L}_{\Box}$$
. Then:
 $GL \vdash \varphi$
 \uparrow
 $PA \vdash (\varphi)^*$ for any arithmetical realization $(\cdot)^*$

This can be written as:

$$\mathsf{GL} = \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } \mathsf{PA} \vdash (\varphi)^{\star} \}$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic:

op, relation symbols, boolean connectives, $\forall x$, and \Box Define arithmetical realizations (·)• for $\mathcal{L}_{\Box,\forall}$:

formulas in $\mathcal{L}_{\Box,\forall} \to$ formulas in $\mathcal{L}_{\mathsf{PA}}$

n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

 $\forall x \to \forall x$ $\Box \to \mathsf{Prov}_{\mathsf{PA}}$

Theorem (Vardanyan, 1986 and McGee, 1985)

 $\{closed \ \varphi \in \mathcal{L}_{\Box,\forall} \mid for \ any \ (\cdot)^{\bullet}, \ we \ have \ \mathsf{PA} \vdash (\varphi)^{\bullet} \}$

is Π^0_2 -complete. Thus it is not recursively axiomatizable.

A.A. Borges, J.J. Joosten (UB)

Background 0000●		

Planning an escape

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$ Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

$$\varphi, \psi \in \mathcal{L}_{\Diamond, \forall}$$

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$ send:

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatizations of theories in $\mathcal{L}_{\mathsf{PA}}$

Prove arithmetical soundness and completeness for QRC₁:

$$\mathsf{QRC}_1 = \{ \varphi \vdash \psi \mid \mathsf{for any} \ (\cdot)^*, \ \mathsf{we have} \ \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

00000 00000 00000000 0000 0000	QRC1		
	00000		

QRC₁: Axioms and rules

$$\varphi \vdash \top \qquad \varphi \land \psi \vdash \varphi$$
$$\varphi \vdash \varphi \qquad \varphi \land \psi \vdash \psi$$
$$\vdash \psi \qquad \psi \vdash \chi \qquad \varphi \vdash \psi \qquad \varphi \vdash \chi$$
$$\varphi \vdash \psi \land \chi \qquad \varphi \vdash \psi \land \chi$$

$$\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$$

$$\frac{\varphi \vdash \psi}{\varphi \vdash \forall \, \mathbf{x} \, \psi} \qquad \frac{\varphi}{\varphi}$$

$\varphi[\mathbf{x} \leftarrow t] \vdash \psi$
$\forall x \varphi \vdash \psi$

 $x \notin \mathsf{fv} \varphi$

t free for x in φ

$$\frac{\varphi \vdash \psi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]}$$

t free for *x* in φ and ψ

$$\frac{\varphi[\mathbf{x}\leftarrow \mathbf{c}]\vdash\psi[\mathbf{x}\leftarrow \mathbf{c}]}{\varphi\vdash\psi}$$

 ${\boldsymbol c}$ not in φ nor ψ

φ

 Background
 QRC1
 Relational semantics
 Arithmetical completeness
 Final remarks

 00000
 000000000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Some provable and unprovable statements

$$\Diamond \,\forall \, x \, \varphi \vdash \forall \, x \, \Diamond \varphi$$

 $\forall \, x \, \Diamond \varphi \not\vdash \Diamond \, \forall \, x \, \varphi$

$$\frac{\varphi \vdash \psi[\mathbf{x} \leftarrow \mathbf{c}]}{\varphi \vdash \forall \, \mathbf{x} \, \psi}$$

 ${\it x}$ not free in φ and ${\it c}$ not in φ nor ψ

Arithmetical semantics

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatizations of theories in \mathcal{L}_{PA} variables $x_i \rightarrow$ variables y_i constants $c_i \rightarrow$ variables z_i $(\top)^* := \tau_{PA}(u)$ $(S(x,c))^* := \sigma(y,z,u) \lor \tau_{\mathsf{PA}}(u)$ $(\psi(x,c) \wedge \delta(x,c))^* := (\psi(x,c))^* \vee (\delta(x,c))^*$ $(\Diamond \psi(x,c))^* := \tau_{\mathsf{PA}}(u) \lor (u = \lceil \mathsf{Con}_{(\psi(x,c))^*} \top \rceil)$ $(\forall x_i \psi(x, c))^* := \exists y_i (\psi(x, c))^*$ $(\varphi(x,c) \vdash \psi(x,c))^* := \forall \theta, y, z (\Box_{\psi^*(y,c)}\theta \to \Box_{\varphi^*(y,c)}\theta)$

Arithmetical soundness

Theorem (Arithmetical soundness)

 $\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have}$ $\mathsf{PA} \vdash \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \rightarrow \Box_{\varphi^*(y,z)} \theta) \}$

By induction on the QRC₁-proof. Here is the case of $\Diamond \Diamond \varphi \vdash \Diamond \varphi$:

- Pick any $(\cdot)^*$, reason in T, and let θ, y, z be arbitrary
- Assume $\Box_{(\Diamond \varphi)^*} \theta$
- Then $\Box_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top) \to \theta)$
- By provable Σ_1 -completeness, $\Box_{\mathsf{PA}}(\mathsf{Con}_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top)) \to \mathsf{Con}_{\varphi^*}(\top))$
- Then $\Box_{\mathsf{PA}}(\mathsf{Con}_{\mathsf{PA}}(\mathsf{Con}_{\varphi^*}(\top)) \to \theta)$
- We conclude $\Box_{(\Diamond \Diamond \varphi)^*} \theta$

Arithmetical completeness

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

Where T is a r.e. theory extending $I\Sigma_1$.

Adapt Solovay's completeness proof:

- Need Kripke completeness for QRC1
- Counter models should be finite, transitive, irreflexive, rooted, and have constant domain
- Embed such models in arithmetic using the Solovay sentences λ_i

. . .

	Relational semantics •00000000	

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain D
- the domain *D* is the same for every world (new!)
- each constant symbol *c* and relational symbol *S* has a denotation at each world
- there is a transitive relation R between worlds
- constants have the same denotation at every world
- the denotation of a relation symbol depends on the world
- we use assignments g : Variables $\rightarrow D$ to interpret variables
- we abuse notation and define g(c) := denotation(c) for all assignments g and constants c

	Relational semantics 00000000	

Let g be a w-assignment.

Satisfaction

 $\mathcal{M}, w \Vdash^{g} S(t, u) \iff \langle g(t), g(u) \rangle \in \mathsf{denotation}_{w}(S)$

 $\mathcal{M}, \mathbf{w}\Vdash^{\mathbf{g}} \Diamond \varphi \iff$

there is a world v such that wRv and $\mathcal{M}, v \Vdash^{g} \varphi$

 $\mathcal{M}, w \Vdash^{g} \forall x \varphi \iff$ for all assignments $h \sim_{x} g$, we have $\mathcal{M}, w \Vdash^{h} \varphi$

Relational soundness and completeness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M} , world w, and assignment g:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \varphi \implies \mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \psi.$$

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model \mathcal{M} , a world w, and an assignment g such that:

$$\mathcal{M}, w \Vdash^{g} \varphi$$
 and $\mathcal{M}, w \nvDash^{g} \psi$.

Since QRC_1 has the finite model property, it is decidable.

Proving relational completeness

- Given $\varphi \not\vdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are not true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$w = \langle w^+, w^- \rangle$$
 e.g. $\langle \{\varphi\}, \{\psi\} \rangle$

• Worlds should be *well-formed* pairs though...

	Relational semantics	

Well-formed pairs

Let Λ be a set of formulas and p be a pair.

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- p is closed if every formula in p is closed
- p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$
- p is Λ -maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^+$ or $\varphi \in p^-$
- *p* is *fully witnessed* if for every formula ∀x φ ∈ p⁻ there is a constant c such that φ[x←c] ∈ p⁻
- *p* is Λ-*well-formed* if it is closed, Λ-maximal, consistent and fully witnessed

Building a world from an incomplete pair

- Let Λ be a finite set of closed formulas
- Let *C* be a finite set of constants containing the constants in Λ and some new constants
- Let Λ_C be the closure under (closed) subformulas of Λ, and such that if ∀x φ ∈ Λ_C, then for every c ∈ C we have φ[x←c] ∈ Λ_C
- Let $p = \langle p^+, p^- \rangle$ be a closed consistent pair such that $p^+ \cup p^- \subseteq \Lambda_C$
- Goal: obtain a Λ_C -well-formed pair w extending p

Method

- Some formulas in Λ_C are consequences of p^+ , and thus must be added to w^+ to preserve consistency
- We put all the other formulas of Λ_C in p^-

	Relational semantics	
	000000000	

This Method works!

Lemma

If $|C| > 2(max. \text{ constant count in } \Lambda) + 2(max. \forall -depth \text{ of } \Lambda) \text{ and } p^+ \text{ is a singleton, the Method produces a } \Lambda_C\text{-well-formed pair } w.$

- w is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

 $\forall x \varphi \in w^-$

there is some $c \in C$ s.t. c doesn't appear in $\forall x \varphi$ nor p^+

$$\begin{array}{c} \downarrow \\ p^+ \not\vdash \varphi[x \leftarrow c] \\ \downarrow \\ \varphi[x \leftarrow c] \in w^- \end{array}$$

	Relational semantics	

Building a counter-model

- Start with $\varphi \not\vdash \psi$ (both closed)
- Build a (well-formed!) world w by extending $p := \langle \{\varphi\}, \{\psi\} \rangle$ (with $\Lambda := \{\varphi, \psi\}$ and C large enough for Λ)
- Let the domain be the set of constants C
- Let the denotation of relation symbols at w correspond to their membership in w^+
- If $\Diamond \chi \in w^+$, create a new world v_{χ} seen from w by Λ_C -completing

$$\langle \{\chi\}, \{\delta, \Diamond \delta \mid \Diamond \delta \in w^-\} \cup \{\Diamond \chi\} \rangle$$

- Define the domain and the denotation at v_{χ} like with w
- Repeat until all ◊-formulas are witnessed

00000 00000 0000000 000 0000		Relational semantics	
		00000000	

Putting it together

Lemma (Truth lemma)

Let \mathcal{M} be the counter-model we just built. Then for any world w, assignment g, and formula $\chi^g \in \Lambda_C$:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \chi \iff \chi^{\mathbf{g}} \in \mathbf{w}^+,$$

where χ^{g} is χ with every free variable x replaced by g(x).

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model \mathcal{M} , a world w, and an assignment g such that:

$$\mathcal{M}, w \Vdash^{g} \varphi$$
 and $\mathcal{M}, w \nvDash^{g} \psi$.

Arithmetical completeness proof

Theorem (Arithmetical completeness)

 $\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$

- Assume $\varphi \not\vdash \psi$
- Take a (finite, transitive, irreflexive, rooted, constant domain) Kripke model \mathcal{M} satisfying φ and not ψ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic, obtaining a formula λ_i representing each world *i*
- Define S• as:

$$(S(x_k))^{ullet} := \bigvee_{i \in \mathcal{M}} \left(\lambda_i \wedge \bigvee_{\langle a \rangle \in S^{\mathcal{M}_i}} \ulcorner a \urcorner = y_k \mod m \right)$$

Prove a Truth Lemma stating (for i > 0) that if i ⊢^g χ then
 T ⊢ λ_i → χ[•][y←[¬]g(x)[¬]]; if i ⊭^g χ then T ⊢ λ_i → ¬χ[•][y←[¬]g(x)[¬]]

A.A. Borges, J.J. Joosten (UB)

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• Prove a Truth Lemma stating (for i > 0) that if $i \Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \chi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$; if $i \not\Vdash^{g} \chi$ then $T \vdash \lambda_{i} \rightarrow \neg \chi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$

- Then $T \vdash \lambda_1 \to \varphi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$ and $T \vdash \lambda_1 \to \neg \psi^{\bullet}[y \leftarrow \ulcorner g(x) \urcorner]$
- Prove $\mathbb{N} \vDash \lambda_0$

. . .

- Prove $T \vdash \lambda_0 \rightarrow \Diamond_T \lambda_1$.
- Then $T \vdash \lambda_0 \to \Diamond_T \neg (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$
- Then $\mathbb{N} \vDash \neg \Box_{\mathcal{T}} (\varphi^{\bullet} \to \psi^{\bullet}) [y \leftarrow \ulcorner g(x) \urcorner]$
- Then $T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$

Arithmetical completeness proof (cont'ed)

Theorem (Arithmetical completeness)

$$\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } T \vdash (\varphi \vdash \psi)^* \}$$

• ...

• We have
$$T \not\vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$$

• Recall
$$(\varphi \vdash \psi)^* = \forall \theta, y (\Box_{\psi^*} \theta \rightarrow \Box_{\varphi^*} \theta)$$

• Prove
$$T \vdash \forall \theta, y (\Box_{\varphi^*} \theta \leftrightarrow \Box_T (\varphi^\bullet \to \theta))$$

- Assume towards contradiction that $T \vdash (\varphi \vdash \psi)^*$
- Then $T \vdash \forall \theta, y (\Box_T (\psi^{\bullet} \to \theta) \to \Box_T (\varphi^{\bullet} \to \theta))$
- Then $T \vdash \Box_T(\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$
- Then $T \vdash (\varphi^{\bullet} \to \psi^{\bullet})[y \leftarrow \ulcorner g(x) \urcorner]$ by soundness of T
- Contradiction!

		Final remarks ●000

Heyting Arithmetic

Theorem

$$\mathsf{QRC}_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

•
$$(\varphi \vdash \psi)^* = \forall \, \theta, y, z \, (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta)$$

- $(\varphi \vdash \psi)^*$ is Π_2^0
- PA is Π_2^0 conservative over HA

Corollary

$$QRC_1 = \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } HA \vdash (\varphi \vdash \psi)^* \}$$

• Also works with RC1

			Final remarks 0●00
In summary			

- There is no quantified provability logic with $\mathcal{L}_{\Box \forall}$ QRC1:
 - quantified, strictly positive provability logic with $\mathcal{L}_{\triangle \forall}$
 - decidable
 - sound and complete w.r.t. relational semantics (with constant domain models!)
 - sound and complete w.r.t arithmetical semantics
 - the quantified provability logic of all r.e. theories extending $I\Sigma_1$
 - the quantified provability logic of HA

00000 00000000 000 000 00					Final remarks
	00000	00000	00000000	000	0000

Thank you

ana de almeida gabriel @ ub . edu

		Final remarks 000●

Further Reading

- G. Boolos (1995) *The Logic of Provability* Cambridge University Press
- A.A.B. and J.J. Joosten (2020) Quantified Reflection Calculus with one modality Advances in Modal Logic 13
- V.A. Vardanyan (1986)
 Arithmetic complexity of predicate logics of provability and their fragments
 Doklady Akad. Nauk SSSR 288(1), 11–14 (Russian)
 Soviet Mathematics Doklady 33, 569–572 (English)