Provability Logics and Applications
Day 1
Provability as modality

David Fernández Duque1 and Joost J. Joosten2

1: Universidad de Sevilla;
2: Universitat de Barcelona

Monday 13-08-2012
ESSLLI Tutorial, Opole
From now on: no distinction between A, $\neg A$, $\neg\neg A$, etc.
From now on: no distinction between A, $\neg A$, $\neg\neg A$, etc.

If the context allows us to
From now on: no distinction between A, $\neg A$, $\neg \neg A$, etc.

If the context allows us to

If we allow ourselves to...
From now on: no distinction between A, $\neg\neg A$, $\neg A\neg$, etc.

If the context allows us to

If we allow ourselves to...

Easy to see:

$$\mathbb{N} \models \text{Prv}_{PA}(A \rightarrow B) \land \text{Prv}_{PA}(A) \rightarrow \text{Prv}_{PA}(B)$$
From now on: no distinction between A, $\neg A$, $\neg\neg A$, etc.

If the context allows us to

If we allow ourselves to...

Easy to see:

$$\mathbb{N} \models \text{Prv}_{PA}(A \rightarrow B) \land \text{Prv}_{PA}(A) \rightarrow \text{Prv}_{PA}(B)$$

For example via Hilbert style implementation of Prv_{PA}.
From now on: no distinction between A, $\neg A$, $\neg\neg A$, etc.

If the context allows us to

If we allow ourselves to...

Easy to see:

$$\mathbb{N} \models \text{Prv}_{PA}(A \rightarrow B) \land \text{Prv}_{PA}(A) \rightarrow \text{Prv}_{PA}(B)$$

For example via Hilbert style implementation of Prv_{PA}.

We can construct $\text{prv}_{PA}(z, B)$
given $\text{prv}_{PA}(x, A \rightarrow B)$ and $\text{prv}_{PA}(y, A)$
From now on: no distinction between A, $\neg A$, $\neg\neg A$, etc.

If the context allows us to

If we allow ourselves to...

Easy to see:

$$\mathbb{N} \models \Prv_{PA}(A \rightarrow B) \land \Prv_{PA}(A) \rightarrow \Prv_{PA}(B)$$

For example via Hilbert style implementation of \Prv_{PA}.

We can construct $\text{prv}_{PA}(z, B)$
given $\text{prv}_{PA}(x, A \rightarrow B)$ and $\text{prv}_{PA}(y, A)$

Thus:

$$\text{PA} \vdash \Prv_{PA}(A \rightarrow B) \land \Prv_{PA}(A) \rightarrow \Prv_{PA}(B)$$
From now on: no distinction between A, $\neg A$, $\neg \neg A$, etc.
If the context allows us to
If we allow ourselves to...
Easy to see:

$$\mathbb{N} \models \Prv_{PA}(A \rightarrow B) \land \Prv_{PA}(A) \rightarrow \Prv_{PA}(B)$$

For example via Hilbert style implementation of \Prv_{PA}.
We can construct $\text{prv}_{PA}(z, B)$
given $\text{prv}_{PA}(x, A \rightarrow B)$ and $\text{prv}_{PA}(y, A)$
Thus:

$$PA \vdash \Prv_{PA}(A \rightarrow B) \land \Prv_{PA}(A) \rightarrow \Prv_{PA}(B)$$

Provable/Formalized Modus Ponens
▶ Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem.

Theorem:
\[N \vdash \Prv_{\mathcal{PA}}(A \rightarrow B) \iff \Prv_{\mathcal{PA}}(A) \rightarrow \Prv_{\mathcal{PA}}(B) \]

Proof:

\(\leftarrow \) is easy;

\(\rightarrow \) follows from induction on the length of a proof;

Hilbert style calculus: only deal with Modus Ponens.

Note, \(\mathcal{PA} \) can perform this induction!

So:
\[\mathcal{PA} \vdash \Prv_{\mathcal{PA}}(A \rightarrow B) \iff \Prv_{\mathcal{PA}}(A) \rightarrow \Prv_{\mathcal{PA}}(B) \]
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

\[\text{Proof:} \quad \Downarrow \text{is easy; } \quad \Rightarrow \text{follows from induction on the length of a proof; } \]

Hilbert style calculus: only deal with Modus Ponens. Note, PA can perform this induction!

So:

\[\text{PA} \vdash \text{Prv}_{\text{PA}} + A (B) \Leftrightarrow \text{Prv}_{\text{PA}} (A \rightarrow B) \]
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

\[
\mathbb{N} \models \text{Prv}_{\text{PA} + A}(B) \iff \text{Prv}_{\text{PA}}(A \rightarrow B)
\]
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

Theorem

\[\mathbb{N} \models \text{Prv}_{PA+A}(B) \iff \text{Prv}_{PA}(A \rightarrow B) \]

Proof: \(\leftarrow \) is easy;

\[\text{Prv}_{PA+A}(B) \iff \text{Prv}_{PA}(A \rightarrow B) \]
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

Theorem

\[\mathbb{N} \vDash \text{Prv}_{\text{PA}+A}(B) \iff \text{Prv}_{\text{PA}}(A \rightarrow B) \]

Proof: \leftarrow is easy;

\rightarrow follows from induction on the length of a proof;
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

Theorem

\[\mathbb{N} \models \text{Prv}_{PA+A}(B) \iff \text{Prv}_{PA}(A \rightarrow B) \]

Proof:
- \(\leftarrow \) is easy;
- \(\rightarrow \) follows from induction on the length of a proof;
- Hilbert style calculus: only deal with Modus Ponens.
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

Theorem

\[\mathbb{N} \models \text{Prv}_{\text{PA}+A}(B) \iff \text{Prv}_{\text{PA}}(A \rightarrow B) \]

Proof: ← is easy;

→ follows from induction on the length of a proof;

Hilbert style calculus: only deal with Modus Ponens.

Note, PA can perform this induction!
Provable/Formalized Modus Ponens

We also have a formalized version of the Deduction Theorem

Theorem

\[\mathbb{N} \vDash \text{Prv}_{PA+A}(B) \leftrightarrow \text{Prv}_{PA}(A \rightarrow B) \]

Proof: ← is easy;

→ follows from induction on the length of a proof;

Hilbert style calculus: only deal with Modus Ponens.

Note, PA can perform this induction!

So:

\[PA \vdash \text{Prv}_{PA+A}(B) \leftrightarrow \text{Prv}_{PA}(A \rightarrow B) \]
Gödel I: PA is incomplete
Gödel I: PA is incomplete

That is, there is some true sentence π with $\text{PA} \not\vdash \pi$
Gödel I: PA is incomplete

That is, there is some true sentence π with $\text{PA} \not\vdash \pi$

We have seen such a π:
- Gödel I: PA is incomplete
- That is, there is some true sentence π with $\text{PA} \nvdash \pi$
- We have seen such a π: The Gödel sentence λ
Gödel I: PA is incomplete
That is, there is some true sentence π with $\text{PA} \nvdash \pi$
We have seen such a π: The Gödel sentence λ
Note that $\lambda \in \Pi_1$
Gödel I: PA is incomplete

That is, there is some true sentence π with $\text{PA} \nvdash \pi$

We have seen such a π: The Gödel sentence λ

Note that $\lambda \in \Pi_1$

Thus: PA is Π_1-incomplete
Gödel I: PA is incomplete

That is, there is some true sentence π with $PA \nvdash \pi$

We have seen such a π: The Gödel sentence λ

Note that $\lambda \in \Pi_1$

Thus: PA is Π_1-incomplete

We shall now see that this is optimal
Gödel I: PA is incomplete

That is, there is some true sentence π with $\text{PA} \not\vdash \pi$

We have seen such a π: The Gödel sentence λ

Note that $\lambda \in \Pi_1$

Thus: PA is Π_1-incomplete

We shall now see that this is optimal

Theorem PA is Σ_1-complete
Gödel I: PA is incomplete

That is, there is some true sentence π with $\text{PA} \not\vdash \pi$

We have seen such a π: The Gödel sentence λ

Note that $\lambda \in \Pi_1$

Thus: PA is Π_1-incomplete

We shall now see that this is optimal

Theorem PA is Σ_1-complete

$\mathbb{N} \models \sigma \implies \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$
\[N \models \sigma \implies \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]
\[\mathbb{N} \models \sigma \implies \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]

Proof: by induction on the complexity of \(\sigma \)
\[\mathbb{N} \models \sigma \implies \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]

Proof: by induction on the complexity of \(\sigma \)

- True atomic sentences can all be proved in \(\text{PA} \)
\[\mathbb{N} \models \sigma \implies \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]

Proof: by induction on the complexity of \(\sigma \)

- True atomic sentences can all be proved in \(\text{PA} \)
- \(t_1 = t_2 \) and \(t_1 < t_2 \)
\[\mathbb{N} \models \sigma \implies \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]

Proof: by induction on the complexity of \(\sigma \)

- True atomic sentences can all be proved in PA
- \(t_1 = t_2 \) and \(t_1 < t_2 \)
- By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \bar{n} \)
\(\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \)

Proof: by induction on the complexity of \(\sigma \)

True atomic sentences can all be proved in \text{PA}

\(t_1 = t_2 \) and \(t_1 < t_2 \)

By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \overline{n} \)

\(n \) times

For example, in \(a + b = S \ S \ldots \ S \ 0 \)
\[\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \]

Proof: by induction on the complexity of \(\sigma \)

- True atomic sentences can all be proved in PA
- \(t_1 = t_2 \) and \(t_1 < t_2 \)
- By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \bar{n} \)
 \[n \text{ times} \]
- For example, in \(a + b = S S \ldots S 0 \)
 \[n \text{ times} \]
 - \(b = 0 \), then \(a + 0 = a \) and by induction \(\text{PA} \vdash a = S S \ldots S 0; \)
\(\mathbb{N} \models \sigma \implies PA \vdash \sigma \text{ for } \sigma \in \Sigma_1 \)

Proof: by induction on the complexity of \(\sigma \)

True atomic sentences can all be proved in \(PA \)

\(t_1 = t_2 \) and \(t_1 < t_2 \)

By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \bar{n} \)

\[n \text{ times} \]

For example, in \(a + b = SS \ldots S0 \)

\[b = 0, \text{ then } a + 0 = a \text{ and by induction } PA \vdash a = SS \ldots S0; \]

\[n \text{ times} \]

and using an axiom: \(PA \vdash a + b = SS \ldots S0 \)

\[n \text{ times} \]
\(\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \)

Proof: by induction on the complexity of \(\sigma \)

True atomic sentences can all be proved in PA

\(t_1 = t_2 \text{ and } t_1 < t_2 \)

By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \overline{n} \)

\(n \) times

For example, in \(a + b = S S \ldots S 0 \)

\(b = 0, \) then \(a + 0 = a \) and by induction \(\text{PA} \vdash a = S S \ldots S 0; \)

\(n \) times

and using an axiom: \(\text{PA} \vdash a + b = S S \ldots S 0 \)

\(b = Sb', \) then \(a + Sb' = S(a + b') \) whence by IH

\(n \) times

\(\text{PA} \vdash a + b' = S \ldots S 0 \)
- \(\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \) for \(\sigma \in \Sigma_1 \)

- **Proof**: by induction on the complexity of \(\sigma \)

- True atomic sentences can all be proved in \(\text{PA} \)

- \(t_1 = t_2 \) and \(t_1 < t_2 \)

- By induction on the complexity of \(t_1 \) and sufficient for \(t_1 = \bar{n} \)

- For example, in \(a + b = SS\ldots S 0 \)

 - \(b = 0 \), then \(a + 0 = a \) and by induction \(\text{PA} \vdash a = SS\ldots S 0 \);
 - and using an axiom: \(\text{PA} \vdash a + b = SS\ldots S 0 \)

 - \(b = Sb' \), then \(a + Sb' = S(a + b') \) whence by IH

 - \(\text{PA} \vdash a + b' = S\ldots S 0 \)
 - and using an axiom: \(\text{PA} \vdash a + b = SS\ldots S 0 \)
True atomic sentences can all be proved in PA
True atomic sentences can all be proved in PA
We have seen one simple case
True atomic sentences can all be proved in PA
We have seen one simple case
Many more cases but equally simple
True atomic sentences can all be proved in PA

We have seen one simple case

Many more cases but equally simple

Next step: bounded quantification $\forall x<y \psi(x)$
True atomic sentences can all be proved in PA
We have seen one simple case
Many more cases but equally simple
Next step: bounded quantification $\forall x < y \psi(x)$
For each natural number y

$$\vdash \forall x < y \psi(x) \leftrightarrow \psi(0) \land \ldots \land \psi(y)$$
True atomic sentences can all be proved in PA

We have seen one simple case

Many more cases but equally simple

Next step: bounded quantification $\forall x < y \psi(x)$

For each natural number y

$$PA \vdash \forall x < y \psi(x) \leftrightarrow \underbrace{\psi(0) \land \ldots \land \psi(y)}_{y+1 \text{ conjuncts}}$$

Thus, we can apply our IH
True atomic sentences can all be proved in PA
We have seen one simple case
Many more cases but equally simple
Next step: bounded quantification $\forall x < y \psi(x)$
For each natural number y

$$\forall x < y \psi(x) \iff \psi(0) \land \ldots \land \psi(y)$$

Thus, we can apply our IH
Likewise for $\exists x < y \psi(x)$
- Boolean connectives: by an easy call to the IH
Boolean connectives: by an easy call to the IH

Unbounded existential quantification: $\exists x \psi(x)$
- Boolean connectives: by an easy call to the IH
- Unbounded existential quantification: $\exists x \psi(x)$
- also directly from the IH
Boolean connectives: by an easy call to the IH

Unbounded existential quantification: \(\exists x \, \psi(x) \)

also directly from the IH

This finishes the proof
Boolean connectives: by an easy call to the IH
Unbounded existential quantification: $\exists x \, \psi(x)$
also directly from the IH
This finishes the proof

$$\mathbb{N} \models \sigma \quad \Rightarrow \quad \text{PA} \vdash \sigma \quad \text{for } \sigma \in \Sigma_1$$
Some remarks on Sigma completeness:

- Goldbach's conjecture: each even number above two is the sum of two prime numbers.
- This is a Π^1_1 statement.
- Thus: If Goldbach's conjecture is independent of PA, then it is true.

Theorem: If $\text{PA} \vdash \phi$, then $\text{PA} \vdash \text{Prv}_{\text{PA}}(\phi)$

Proof: Remember, representing "provability in PA" implies p is the code of a PA proof of ϕ $\iff N | = \text{prv}_{\text{PA}}(p, \phi)$.

As $\text{Prv}_{\text{PA}}(\phi) \in \Sigma^1_1$ we have $\text{PA} \vdash \phi \Rightarrow N | = \text{Prv}_{\text{PA}}(\phi) \Rightarrow \text{PA} \vdash \text{Prv}_{\text{PA}}(\phi)$.
Some remarks on Sigma completeness:

Goldbach’s conjecture: each even number above two is the sum of two prime numbers
Some remarks on Sigma completeness:

- Goldbach’s conjecture: each even number above two is the sum of two prime numbers
- This is a Π_1 statement
Some remarks on Sigma completeness:

- Goldbach’s conjecture: each even number above two is the sum of two prime numbers
- This is a Π_1 statement
- Thus: If Goldbach’s conjecture is independent of PA, then it is true
Some remarks on Sigma completeness:

Goldbach’s conjecture: each even number above two is the sum of two prime numbers

This is a Π_1 statement

Thus: If Goldbach’s conjecture is independent of PA, then it is true

Theorem: If $\mathsf{PA} \vdash \varphi$, then $\mathsf{PA} \vdash \text{Prv}_{\mathsf{PA}}(\varphi)$
Some remarks on Sigma completeness:

Goldbach’s conjecture: each even number above two is the sum of two prime numbers

This is a Π_1 statement

Thus: If Goldbach’s conjecture is independent of PA, then it is true

Theorem: If $\text{PA} \vdash \varphi$, then $\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi)$

Proof: Remember, representing “provability in PA” implies

\[p \text{ is the code of a PA proof of } \varphi \iff \mathbb{N} \models \text{prv}_{\text{PA}}(p, \varphi) \]
Some remarks on Sigma completeness:

Goldbach’s conjecture: each even number above two is the sum of two prime numbers

This is a Π_1 statement

Thus: If Goldbach’s conjecture is independent of PA, then it is true

Theorem: If $\text{PA} \vdash \varphi$, then $\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi)$

Proof: Remember, representing “provability in PA” implies

\[p \text{ is the code of a PA proof of } \varphi \iff \mathbb{N} \models \text{prv}_{\text{PA}}(p, \varphi) \]

As $\text{Prv}_{\text{PA}}(\varphi) \in \Sigma_1$ we have

\[\text{PA} \vdash \varphi \Rightarrow \mathbb{N} \models \text{Prv}_{\text{PA}}(\varphi) \Rightarrow \text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi) \]
Sigma completeness: \(\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \) for \(\sigma \in \Sigma_1 \)
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

$\text{PA} \vdash \sigma \rightarrow \text{Prv}_{T}(\sigma)$ for $\sigma \in \Sigma_1$
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

Theorem $\text{PA} \vdash \text{“}\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma''\text{”}$ for $\sigma \in \Sigma_1$
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

Theorem $\text{PA} \vdash \text{``} \mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma'' \text{''}$ for $\sigma \in \Sigma_1$

That is: $\text{PA} \vdash \sigma \rightarrow \text{Prv}_T(\sigma)$ for $\sigma \in \Sigma_1$
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

Theorem $\text{PA} \vdash \text{“} \mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma'' \text{”}$ for $\sigma \in \Sigma_1$

That is: $\text{PA} \vdash \sigma \rightarrow \text{Prv}_T(\sigma)$ for $\sigma \in \Sigma_1$

Proof: formalizing exactly the previous proof of Sigma-completeness in PA
Sigma completeness: \(\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma \text{ for } \sigma \in \Sigma_1 \)

The proof gives us slightly more:

Theorem \(\text{PA} \vdash \text{"} \mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma'' \text{"} \text{ for } \sigma \in \Sigma_1 \)

That is: \(\text{PA} \vdash \sigma \rightarrow \text{Prv}_T(\sigma) \text{ for } \sigma \in \Sigma_1 \)

Proof: formalizing exactly the previous proof of Sigma-completeness in PA

We have a sufficient amount of induction
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

Theorem $\text{PA} \vdash "\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma''"$ for $\sigma \in \Sigma_1$

That is: $\text{PA} \vdash \sigma \rightarrow \text{Prv}_T(\sigma)$ for $\sigma \in \Sigma_1$

Proof: formalizing exactly the previous proof of Sigma-completeness in PA

We have a sufficient amount of induction

Note that we can do bounded quantification as we have the totality of exponentiation
Sigma completeness: $\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma$ for $\sigma \in \Sigma_1$

The proof gives us slightly more:

Theorem $\text{PA} \vdash "\mathbb{N} \models \sigma \Rightarrow \text{PA} \vdash \sigma''"$ for $\sigma \in \Sigma_1$

That is: $\text{PA} \vdash \sigma \rightarrow \text{Prv}_T(\sigma)$ for $\sigma \in \Sigma_1$

Proof: formalizing exactly the previous proof of Sigma-completeness in PA

We have a sufficient amount of induction

Note that we can do bounded quantification as we have the totality of exponentiation

Corollary: $\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi) \rightarrow \text{Prv}_{\text{PA}}(\text{Prv}_{\text{PA}}(\varphi))$
Provable Σ_1-completeness:

$$PA \vdash \Prv_{PA}(\varphi) \rightarrow \Prv_{PA}(\Prv_{PA}(\varphi))$$
Provable Σ_1-completeness:

$$\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi) \rightarrow \text{Prv}_{\text{PA}}(\text{Prv}_{\text{PA}}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.
Provability as modality

Modal logics

Löb revisited

Arithmetical soundness of GL

Formalized Modus Ponens and Deduction

Sigma completeness of PA

Löb’s theorem

Provable Σ_1-completeness:

$$PA \vdash \Prv_{PA}(\varphi) \rightarrow \Prv_{PA}(\Prv_{PA}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.

Proof We see that $PA \vdash \lambda \leftrightarrow \neg \Prv_{PA}(\bot)$
Provability as modality
Modal logics
Löb revisited
Arithmetical soundness of GL
Sigma completeness of PA
Löb’s theorem

Provable Σ_1-completeness:

$$PA \vdash \text{Prv}_{PA}(\varphi) \rightarrow \text{Prv}_{PA}(\text{Prv}_{PA}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.

Proof We see that $PA \vdash \lambda \leftrightarrow \neg \text{Prv}_{PA}(\bot)$

Clearly, inside PA we have $\neg \text{Prv}_{PA}(\lambda) \rightarrow \neg \text{Prv}_{PA}(\bot)$.
Provable Σ_1-completeness:

$$\text{PA} \vdash \Prv_{\text{PA}}(\varphi) \rightarrow \Prv_{\text{PA}}(\Prv_{\text{PA}}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.

Proof We see that $\text{PA} \vdash \lambda \leftrightarrow \neg\Prv_{\text{PA}}(\bot)$

- Clearly, inside PA we have $\neg\Prv_{\text{PA}}(\lambda) \rightarrow \neg\Prv_{\text{PA}}(\bot)$.
- For the other direction reason in PA and assume $\neg\Prv_{\text{PA}}(\bot)$.
Provable Σ_1-completeness:

$$PA \vdash \Prv_{PA}(\varphi) \rightarrow \Prv_{PA}(\Prv_{PA}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.

Proof We see that $PA \vdash \lambda \leftrightarrow \neg \Prv_{PA}(\bot)$

Clearly, inside PA we have $\neg \Prv_{PA}(\lambda) \rightarrow \neg \Prv_{PA}(\bot)$.

For the other direction reason in PA and assume $\neg \Prv_{PA}(\bot)$

Moreover, for a contradiction assume $\Prv_{PA}(\lambda)$
Provability as modality

Modal logics
Löb revisited
Arithmetical soundness of GL

Sigma completeness of PA
Löb’s theorem

Provability as modality

Formalized Modus Ponens and Deduction

Löb’s theorem

Provable Σ_1-completeness:

$$PA \vdash \text{Prv}_{PA}(\varphi) \rightarrow \text{Prv}_{PA}(\text{Prv}_{PA}(\varphi))$$

Corollary: Gödel II: If a theory is consistent, it will not prove its own consistency.

Proof: We see that $PA \vdash \lambda \leftrightarrow \neg \text{Prv}_{PA}(\bot)$

Clearly, inside PA we have $\neg \text{Prv}_{PA}(\lambda) \rightarrow \neg \text{Prv}_{PA}(\bot)$.

For the other direction reason in PA and assume $\neg \text{Prv}_{PA}(\bot)$

Moreover, for a contradiction assume $\text{Prv}_{PA}(\lambda)$

By provable Σ_1 completeness: $\text{Prv}_{PA}(\text{Prv}_{PA}(\lambda))$, that is $\text{Prv}_{PA}(\neg \lambda)$
Theorem If $\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi) \rightarrow \varphi$, then $\text{PA} \vdash \varphi$
Theorem If $\text{PA} \vdash \text{Prv}_\text{PA}(\varphi) \rightarrow \varphi$, then $\text{PA} \vdash \varphi$

PA is as modest about it’s own correctness as it could possibly be
Theorem If $PA \vdash \text{Prv}_{PA}(\varphi) \rightarrow \varphi$, then $PA \vdash \varphi$

PA is as modest about its own correctness as it could possibly be

Proof: By contraposition supposing $PA \not\vdash \varphi$
Theorem: If $PA \vdash Prv_{PA}(\varphi) \rightarrow \varphi$, then $PA \vdash \varphi$

PA is as modest about its own correctness as it could possibly be.

Proof: By contraposition supposing $PA \not\vdash \varphi$

Thus $PA + \neg \varphi$ is consistent.
Theorem: If $PA \vdash \text{Prv}_{PA}(\varphi) \rightarrow \varphi$, then $PA \vdash \varphi$

PA is as modest about it’s own correctness as it could possibly be

Proof: By contraposition supposing $PA \not\vdash \varphi$

Thus $PA + \neg \varphi$ is consistent

By Gödel 2 for $PA + \neg \varphi$ we get

$$PA + \neg \varphi \not\vdash \text{Con}_{PA+\neg \varphi}$$
Theorem: If $PA \vdash \Prv_{PA}(\varphi) \rightarrow \varphi$, then $PA \vdash \varphi$

PA is as modest about it's own correctness as it could possibly be.

Proof: By contraposition supposing $PA \nvdash \varphi$

Thus $PA + \neg \varphi$ is consistent.

By Gödel 2 for $PA + \neg \varphi$ we get

$$PA + \neg \varphi \nvdash \text{Con}_{PA+\neg \varphi}$$

By deduction (and the formalized version)

$$PA \nvdash \neg \varphi \rightarrow \text{Con}_{PA}(\neg \varphi)$$
Theorem If $\text{PA} \vdash \text{Prv}_{\text{PA}}(\varphi) \rightarrow \varphi$, then $\text{PA} \vdash \varphi$

PA is as modest about it’s own correctness as it could possibly be

Proof: By contraposition supposing $\text{PA} \not\vdash \varphi$

Thus $\text{PA} + \neg \varphi$ is consistent

By Gödel 2 for $\text{PA} + \neg \varphi$ we get

$$\text{PA} + \neg \varphi \not\vdash \text{Con}_{\text{PA} + \neg \varphi}$$

By deduction (and the formalized version)

$$\text{PA} \not\vdash \neg \varphi \rightarrow \text{Con}_{\text{PA}}(\neg \varphi)$$

And $\text{Con}_{\text{PA}}(\neg \varphi)$ is just $\neg \text{Prv}_{\text{PA}}(\varphi)$
Provability as modality

Modal logics

Löb revisited

Arithmetical soundness of GL

Syntax of modal logics

Various modal logics

PA ⊢ Prv_{PA}(A → B) ∧ Prv_{PA}(A) → Prv_{PA}(B)

Note, this holds for any (possibly non-standard) formulas A and B.

We would like to collect all such principles.

If possible.

We have to find a suitable signature where to collect such principles.

David Fernández Duque and Joost J. Joosten

Provability as modality
PA ⊢ Prv_{PA}(A → B) ∧ Prv_{PA}(A) → Prv_{PA}(B)

Note, this holds for any (possibly non-standard) formulas A and B
Provability as modality

Modal logics

Löb revisited

Arithmetical soundness of GL

Syntax of modal logics

Various modal logics

▶ \(\text{PA} \vdash \text{Prv}_{\text{PA}}(A \rightarrow B) \land \text{Prv}_{\text{PA}}(A) \rightarrow \text{Prv}_{\text{PA}}(B) \)

▶ Note, this holds for any (possibly non-standard) formulas \(A \) and \(B \)

▶ We would like to collect all such principles
PA ⊬ Prv_{PA}(A → B) \land Prv_{PA}(A) \rightarrow Prv_{PA}(B)

Note, this holds for any (possibly non-standard) formulas A and B

We would like to collect all such principles

If possible
PA \vdash \Prv PA (A \rightarrow B) \land \Prv PA (A) \rightarrow \Prv PA (B)

Note, this holds for any (possibly non-standard) formulas A and B

We would like to collect all such principles

If possible

We have to find a suitable signature where to collect such principles
Provability as modality

Modal logics

Löb revisited

Arithmetical soundness of GL

Syntax of modal logics

Various modal logics

- \(\text{PA} \vdash \Prv_{\text{PA}}(A \rightarrow B) \land \Prv_{\text{PA}}(A) \rightarrow \Prv_{\text{PA}}(B) \)
- Note, this holds for *any* (possibly non-standard) formulas \(A \) and \(B \)
- We would like to collect *all* such principles
- If possible
- We have to find a suitable signature where to collect such principles
- Propositional modal logics
Language of propositional modal logic:
Language of propositional modal logic:
- countable set of propositional variables \mathbb{P};
Language of propositional modal logic:

- countable set of propositional variables \(P \);
- Two logical constants \(\top \) and \(\bot \).
Language of propositional modal logic:
 ▶ countable set of propositional variables P;
 ▶ Two logical constants \top and \bot.

Operators of propositional modal logic:
Language of propositional modal logic:
- countable set of propositional variables \(\mathbb{P} \);
- Two logical constants \(\top \) and \(\bot \).

Operators of propositional modal logic:
- Boolean connectives: \(\rightarrow, \wedge \);
Language of propositional modal logic:
- countable set of propositional variables \mathbb{P};
- Two logical constants \top and \bot.

Operators of propositional modal logic:
- Boolean connectives: \rightarrow, \land;
- Unary modal operator: \Box.
Language of propositional modal logic:
- countable set of propositional variables \(\mathcal{P} \);
- Two logical constants \(\top \) and \(\bot \).

Operators of propositional modal logic:
- Boolean connectives: \(\rightarrow, \land \);
- Unary modal operator: \(\square \).

All other Boolean connectives are defined as usual:
Language of propositional modal logic:
- countable set of propositional variables P;
- Two logical constants \top and \bot.

Operators of propositional modal logic:
- Boolean connectives: \to, \land;
- Unary modal operator: \Box.

All other Boolean connectives are defined as usual:
- $\neg \psi := \psi \to \bot$;
Language of propositional modal logic:
- countable set of propositional variables \(\mathbb{P} \);
- Two logical constants \(\top \) and \(\bot \).

Operators of propositional modal logic:
- Boolean connectives: \(\rightarrow, \land \);
- Unary modal operator: \(\Box \).

All other Boolean connectives are defined as usual:
- \(\neg \psi := \psi \rightarrow \bot \);
- \(\psi \lor \varphi := \neg (\neg \psi \land \neg \varphi) \);
Language of propositional modal logic:
 - countable set of propositional variables P;
 - Two logical constants \top and \bot.

Operators of propositional modal logic:
 - Boolean connectives: \rightarrow, \land;
 - Unary modal operator: \Box.

All other Boolean connectives are defined as usual:
 - $\neg \psi := \psi \rightarrow \bot$;
 - $\psi \lor \varphi := \neg(\neg\psi \land \neg\varphi)$;
 - etc.
Language of propositional modal logic:
- countable set of propositional variables \mathbb{P};
- Two logical constants \top and \bot.

Operators of propositional modal logic:
- Boolean connectives: \rightarrow, \wedge;
- Unary modal operator: \Box.

All other Boolean connectives are defined as usual:
- $\neg \psi := \psi \rightarrow \bot$;
- $\psi \lor \varphi := \neg (\neg \psi \land \neg \varphi)$;
- etc.

The dual modal operator \Diamond is defined as $\neg \Box \neg$.
Language of propositional modal logic:
- countable set of propositional variables \mathbb{P};
- Two logical constants \top and \bot.

Operators of propositional modal logic:
- Boolean connectives: \to, \land;
- Unary modal operator: \square.

All other Boolean connectives are defined as usual:
- $\neg \psi := \psi \to \bot$;
- $\psi \lor \varphi := \neg (\neg \psi \land \neg \varphi)$;
- etc.

The dual modal operator \diamond is defined as $\neg \square \neg$

\square and \diamond bind as \neg and the rest as usual.
Language of propositional modal logic:
- countable set of propositional variables \mathbb{P};
- Two logical constants \top and \bot.

Operators of propositional modal logic:
- Boolean connectives: \to, \land;
- Unary modal operator: \Box.

All other Boolean connectives are defined as usual:
- $\neg \psi := \psi \to \bot$;
- $\psi \lor \varphi := \neg (\neg \psi \land \neg \varphi)$;
- etc.

The dual modal operator \Diamond is defined as $\neg \Box \neg$

\Box and \Diamond bind as \neg and the rest as usual

For us:
Language of propositional modal logic:

- countable set of propositional variables \mathbb{P};
- Two logical constants \top and \bot.

Operators of propositional modal logic:

- Boolean connectives: \rightarrow, \land;
- Unary modal operator: \square.

All other Boolean connectives are defined as usual:

- $\neg \psi := \psi \rightarrow \bot$;
- $\psi \lor \varphi := \neg (\neg \psi \land \neg \varphi)$;
- etc.

The dual modal operator \Diamond is defined as $\neg \square \neg$

\square and \Diamond bind as \neg and the rest as usual

For us: \square for provable and \Diamond as consistent
Various properties become naturally expressible
Various properties become naturally expressible

Formalized Modus Ponens

\[\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \]
Various properties become naturally expressible

Formalized Modus Ponens

\[\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \]

Uniform reflection

\[\Box p \rightarrow p \]
Various properties become naturally expressible

Formalized Modus Ponens

$$\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$$

Uniform reflection

$$\Box p \rightarrow p$$

Gödel’s second incompleteness theorem:

$$\Diamond \top \rightarrow \neg \Box \Diamond \top$$
The logic K

- All axioms of the form $2(A \rightarrow B) \rightarrow (2A \rightarrow 2B)$
- All propositional tautologies as axioms
- The only rules are Modus Ponens and Necessitation

Non valid reasoning:
- Assume p
- Derive $2p$ by Necessitation
- Thus, conclude $p \rightarrow 2p$

Note: $2p \lor \neg 2p$ is also an axiom
The logic \mathbf{K}

- All axioms of the form $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
The logic \mathbf{K}

- All axioms of the form $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms
The logic \mathbf{K}

- All axioms of the form $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms

The only rules are Modus Ponens and Necessitation
The logic K

- All axioms of the form $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms

The only rules are Modus Ponens and Necessitation

Non valid reasoning:

- Assume p
- Derive $\Box p$ by Necessitation
- Thus, conclude $p \rightarrow \Box p$

Note: $\Box p \lor \neg \Box p$ is also an axiom
The logic K

- All axioms of the form $\Box(A \to B) \to (\Box A \to \Box B)$
- All propositional tautologies as axioms

The only rules are Modus Ponens and Necessitation

Non valid reasoning:

- Assume p

$\Box p \lor \neg \Box p$ is also an axiom
The logic \mathbf{K}

- All axioms of the form $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms

- The only rules are Modus Ponens and Necessitation

- Non valid reasoning:
 - Assume p
 - Derive $\Box p$ by Necessitation
The logic \mathbf{K}

- All axioms of the form $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms

The only rules are Modus Ponens and Necessitation

Non valid reasoning:

- Assume p
- Derive $\Box p$ by Necessitation
- Thus, conclude $p \rightarrow \Box p$
The logic \mathbf{K}

- All axioms of the form $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
- All propositional tautologies as axioms

The only rules are Modus Ponens and Necessitation

Non valid reasoning:

- Assume p
- Derive $\Box p$ by Necessitation
- Thus, conclude $p \rightarrow \Box p$

Note: $\Box p \lor \neg \Box p$ is also an axiom
$\vdash K \vdash \Box A \land \Box B \iff \Box (A \land B)$
\(K \vdash \Box A \land \Box B \leftrightarrow \Box (A \land B) \)

Proof: \(A \rightarrow (B \rightarrow A \land B) \) is a tautology
\[
\text{Proof: } A \rightarrow (B \rightarrow A \land B) \text{ is a tautology}
\]

Necessitation and \(K \) axiom twice to obtain
K ⊨ □A ∧ □B ↔ □(A ∧ B)

Proof: A → (B → A ∧ B) is a tautology

Necessitation and K axiom twice to obtain

□A → (□B → □(A ∧ B))
\[
\begin{align*}
\text{\textbf{K}} & \vdash \Box A \land \Box B \iff \Box (A \land B) \\
\text{Proof: } & A \to (B \to A \land B) \text{ is a tautology} \\
\text{Necessitation and } \textbf{K} \text{ axiom twice to obtain} \\
& \Box A \to (\Box B \to \Box (A \land B)) \\
\text{Use the tautology} \\
& (\Box A \to (\Box B \to \Box (A \land B))) \to (\Box A \land \Box B \to \Box (A \land B))
\end{align*}
\]
K ⊨ □A ∧ □B ↔ □(A ∧ B)

Proof: \(A \rightarrow (B \rightarrow A \land B) \) is a tautology

Necessitation and K axiom twice to obtain

\[\square A \rightarrow (\square B \rightarrow \square (A \land B)) \]

Use the tautology

\[(\square A \rightarrow (\square B \rightarrow \square (A \land B))) \rightarrow (\square A \land \square B \rightarrow \square (A \land B)) \]

The other direction is similar starting with \(A \land B \rightarrow A \)
The logic \textbf{K4}: as \textbf{K} but now adding all axioms of the form
\[\Box A \rightarrow \Box \Box A \]
The logic **K4**: as **K** but now adding all axioms of the form
\[\square A \rightarrow \square \square A \]

The logic **GL**: as **K** but now adding all axioms of the form
\[\square(\square A \rightarrow A) \rightarrow \square A \]
We shall see that

\[
K + \{ \Box (\Box A \rightarrow A) \rightarrow \Box A \mid A \text{ a modal formula} \} \vdash \Box B \rightarrow \Box \Box B.
\]
We shall see that

\[K + \{ \Box (\Box A \to A) \to \Box A \mid A \text{ a modal formula} \} \vdash \Box B \to \Box \Box B. \]

Proof:

\[K \vdash \Box B \to \Box (\Box (\Box B \land B) \to \Box B \land B) \]
We shall see that

$$K + \{\Box(\Box A \rightarrow A) \rightarrow \Box A \mid A \text{ a modal formula}\} \vdash \Box B \rightarrow \Box \Box B.$$

Proof:

$$K \vdash \Box B \rightarrow \Box(\Box(\Box B \land B) \rightarrow \Box B \land B)$$

Next, apply Löb to $\Box B \land B$.
We shall see that

$$K + \{ \Box(\Box A \rightarrow A) \rightarrow \Box A \mid A \text{ a modal formula} \} \vdash \Box B \rightarrow \Box \Box B.$$

Proof:

$$K \vdash \Box B \rightarrow \Box(\Box(\Box B \land B) \rightarrow \Box B \land B)$$

Next, apply L"ob to $\Box B \land B$.

From now on we shall sometimes refer to GL as containing the axioms $\Box A \rightarrow \Box \Box A$.
We shall see that

\[\text{K} + \{ \Box (\Box A \rightarrow A) \rightarrow \Box A \mid A \text{ a modal formula} \} \vdash \Box B \rightarrow \Box \Box B. \]

Proof:

\[\text{K} \vdash \Box B \rightarrow \Box (\Box (\Box B \land B) \rightarrow \Box B \land B) \]

Next, apply Löb to \(\Box B \land B \).

From now on we shall sometimes refer to \(\text{GL} \) as containing the axioms \(\Box A \rightarrow \Box \Box A \)

and sometimes as not containing those axioms
We considered the liar λ:

$$\lambda \leftrightarrow \neg \text{Prv}_{PA}(\lambda)$$

The liar is both true and independent.

What about the truth-teller?

$$\tau \leftrightarrow \text{Prv}_{PA}(\tau)$$

Now that we have a link to modal logic, we shall often write $2PA$ for Prv_{PA}.

By Löb we know $PA \vdash 2PA(\tau) \rightarrow \tau = \Rightarrow PA \vdash \tau$.

Thus, the truth-teller is both true and provable.

First proven by Löb.
We considered the liar λ: $\lambda \leftrightarrow \neg \text{Prv}_{PA}(\lambda)$
We considered the liar \(\lambda : \lambda \leftrightarrow \neg \text{Prv}_{\text{PA}}(\lambda) \)

The liar is both true and independent
We considered the liar λ: $\lambda \leftrightarrow \neg \text{Prv}_{PA}(\lambda)$

The liar is both true and independent

What about the truth-teller?
We considered the liar \(\lambda: \lambda \leftrightarrow \neg \Prv_{PA}(\lambda) \)

The liar is both true and independent

What about the truth-teller?: \(\tau \leftrightarrow \Prv_{PA}(\tau) \)
We considered the liar λ: $\lambda \leftrightarrow \neg \Prv_{PA}(\lambda)$

The liar is both true and independent

What about the truth-teller?: $\tau \leftrightarrow \Prv_{PA}(\tau)$

Now that we have a link to modal logic, we shall often write \Box_{PA} for \Prv_{PA}
We considered the liar λ: $\lambda \leftrightarrow \neg \Prv_{PA}(\lambda)$

The liar is both true and independent

What about the truth-teller? $\tau \leftrightarrow \Prv_{PA}(\tau)$

Now that we have a link to modal logic, we shall often write \square_{PA} for \Prv_{PA}

By Löb we know $PA \vdash \square_{PA}(\tau) \rightarrow \tau \implies PA \vdash \tau$
We considered the liar λ: $\lambda \leftrightarrow \neg \text{Prv}_{PA}(\lambda)$

The liar is both true and independent

What about the truth-teller?: $\tau \leftrightarrow \text{Prv}_{PA}(\tau)$

Now that we have a link to modal logic, we shall often write \Box_{PA} for Prv_{PA}

By Löb we know $\text{PA} \vdash \Box_{PA}(\tau) \rightarrow \tau \implies \text{PA} \vdash \tau$

Thus, the truth-teller is both true and provable
We considered the liar λ: $\lambda \leftrightarrow \neg \Prv_{PA}(\lambda)$

The liar is both true and independent

What about the truth-teller?: $\tau \leftrightarrow \Prv_{PA}(\tau)$

Now that we have a link to modal logic, we shall often write \Box_{PA} for \Prv_{PA}

By L"ob we know $\text{PA} \vdash \Box_{PA}(\tau) \rightarrow \tau \implies \text{PA} \vdash \tau$

Thus, the truth-teller is both true and provable

First proven by L"ob
We shall give Löb's proof for the sake of practicing with fixpoints and for beauty based on a proof of the following theorem.

Theorem: Sinterklaas (Saint Nicholas) exists

Proof:
We shall give Löb’s proof
for the sake of practicing with fixpoints and for beauty
We shall give Löb’s proof
for the sake of practicing with fixpoints and for beauty
based on a proof of the following theorem
We shall give L"ob's proof for the sake of practicing with fixpoints and for beauty based on a proof of the following theorem

Theorem Sinterklaas (Saint Nicholas) exists
We shall give Löb’s proof
for the sake of practicing with fixpoints and for beauty
based on a proof of the following theorem
\textbf{Theorem} Sinterklaas (Saint Nicholas) exists
\textbf{Proof}:
We shall give Löb’s proof
for the sake of practicing with fixpoints and for beauty
based on a proof of the following theorem
Theorem Sinterklaas (Saint Nicholas) exists
Proof:
Sinterklaas (Saint Nicholas) exists
- Sinterklaas (Saint Nicholas) exists
- **Proof:** If this sentence is true, then Sinterklaas exists
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens

Using our assumption again, we get \(S \)
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens

Using our assumption again, we get \(S \)

We conclude \(A \rightarrow S \) discharging Assumption 1
Provability as modality
Modal logics
Löb revisited
Arithmetical soundness of GL

Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens

Using our assumption again, we get \(S \)

We conclude \(A \rightarrow S \) discharging Assumption 1

This is just \(A \)
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \leftrightarrow (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens

Using our assumption again, we get \(S \)

We conclude \(A \rightarrow S \) discharging Assumption 1

This is just \(A \)

Applying twice Modus Ponens we get \(S \)
Sinterklaas (Saint Nicholas) exists

Proof: If this sentence is true, then Sinterklaas exists

\[A \iff (A \rightarrow S) \]

Suppose \(A \) (Assumption 1)

Then \(A \rightarrow S \) via Modus Ponens

Using our assumption again, we get \(S \)

We conclude \(A \rightarrow S \) discharging Assumption 1

This is just \(A \)

Applying twice Modus Ponens we get \(S \)
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi)$ and reason in PA
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi)$ and reason in PA

Thus, by necessitation and distribution

$$\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \Box_{\text{PA}} \chi \rightarrow \Box \psi)$$
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi)$ and reason in PA

Thus, by necessitation and distribution

$$\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \Box_{\text{PA}} \chi \rightarrow \Box \psi)$$

By transitivity $\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \chi \rightarrow \Box \psi)$
Theorem (Löb) If $\text{PA} \vdash \Box_{PA} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{PA} \chi \rightarrow \psi)$ and reason in PA

Thus, by necessitation and distribution

$$\Box_{PA} \chi \rightarrow (\Box_{PA} \Box_{PA} \chi \rightarrow \Box \psi)$$

By transitivity $\Box_{PA} \chi \rightarrow (\Box_{PA} \chi \rightarrow \Box \psi)$

which is just $\Box_{PA} \chi \rightarrow \Box \psi$
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi)$ and reason in PA

Thus, by necessitation and distribution

$$\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \Box_{\text{PA}} \chi \rightarrow \Box \psi)$$

By transitivity $\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \chi \rightarrow \Box \psi)$

which is just $\Box_{\text{PA}} \chi \rightarrow \Box \psi$

By assumption

$$\Box_{\text{PA}} \chi \rightarrow \psi$$ (1)
Theorem (Löb) If \(\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi \), then \(\text{PA} \vdash \psi \)

Proof We consider \(\chi \) with \(\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi) \) and reason in \(\text{PA} \)

Thus, by necessitation and distribution

\[\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \Box_{\text{PA}} \chi \rightarrow \Box \psi) \]

By transitivity \(\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \chi \rightarrow \Box \psi) \)
which is just \(\Box_{\text{PA}} \chi \rightarrow \Box \psi \)

By assumption

\[\Box_{\text{PA}} \chi \rightarrow \psi \quad (1) \]

Thus \(\chi \), whence by Nec. \(\Box \chi \) and MP on (1) we get \(\psi \)
Theorem (Löb) If $\text{PA} \vdash \Box_{\text{PA}} \psi \rightarrow \psi$, then $\text{PA} \vdash \psi$

Proof We consider χ with $\text{PA} \vdash \chi \leftrightarrow (\Box_{\text{PA}} \chi \rightarrow \psi)$ and reason in PA

Thus, by necessitation and distribution

$$\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \Box_{\text{PA}} \chi \rightarrow \Box \psi)$$

By transitivity $\Box_{\text{PA}} \chi \rightarrow (\Box_{\text{PA}} \chi \rightarrow \Box \psi)$

which is just $\Box_{\text{PA}} \chi \rightarrow \Box \psi$

By assumption

$$\Box_{\text{PA}} \chi \rightarrow \psi$$ \hspace{1cm} (1)

Thus χ, whence by Nec. $\Box \chi$ and MP on (1) we get ψ.
Arithmetical realization: $f : \mathbb{P} \rightarrow \text{Sent}_{PA}$
- **Arithmetical realization**: $f : \mathbb{P} \rightarrow \text{Sent}_{PA}$
- We extend f to be defined on all modal formulas:

 - $f(\top) = \top$
 - $f(\bot) = \bot$
 - $f(\square A) = \square f(A)$

Theorem

If $GL \vdash A$, then for any arithmetical realization f,

$PA \vdash f(A)$

Proof

By induction on the proof A in GL

Let Löb’s rule be $(\square A \rightarrow A)$

It is easy to show that $K_4 + LR \vdash \square (\square A \rightarrow A) \rightarrow \square A$
- *Arithmetical realization:* \(f : \mathcal{P} \to \text{Sent}_{PA} \)

- We extend \(f \) to be defined on all modal formulas:
 - \(f \) commutes with Boolean connectives;
Arithmetical realization: $f : \mathbb{P} \rightarrow \text{Sent}_{PA}$

- We extend f to be defined on all modal formulas:
 - f commutes with Boolean connectives;
 - In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
Arithmetical realization: $f : \mathbb{P} \rightarrow \text{Sent}_{PA}$

We extend f to be defined on all modal formulas:

- f commutes with Boolean connectives;
- In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
- $f(\square A) = \square_{PA} f(A)$.

Theorem
If $GL \vdash A$, then for any arithmetical realization f,

$PA \vdash f(A)$

Proof
By induction on the proof A in GL.

Let Löb’s rule be $(\square A \rightarrow A) / A$.

It is easy to show that $K4 + LR \vdash (\square A \rightarrow A) \rightarrow \square A$.
Arithmetical realization: $f : \mathbb{P} \rightarrow \text{Sent}_{PA}$

We extend f to be defined on all modal formulas:

- f commutes with Boolean connectives;
- In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
- $f(\Box A) = \Box_{PA} f(A)$.

Theorem If $GL \vdash A$, then for any arithmetical realization f, $PA \vdash f(A)$
Arithmetical realization: $f : P \to \text{Sent}_{PA}$

We extend f to be defined on all modal formulas:
- f commutes with Boolean connectives;
- In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
- $f(\Box A) = \Box_{PA} f(A)$.

Theorem If $GL \vdash A$, then for any arithmetical realization f, $PA \vdash f(A)$

Proof By induction on the proof A in GL
Arithmetical realization: \(f : \mathbb{P} \rightarrow \text{Sent}_{PA} \)

We extend \(f \) to be defined on all modal formulas:

- \(f \) commutes with Boolean connectives;
- In particular, \(f(\top) = \top \) and \(f(\bot) = \bot \);
- \(f(\square A) = \square_{PA} f(A) \).

Theorem: If \(\text{GL} \vdash A \), then for any arithmetical realization \(f \), \(\text{PA} \vdash f(A) \)

Proof: By induction on the proof \(A \) in \(\text{GL} \)

Let Löb’s rule be \((\square A \rightarrow A)/A \)
Arithmetical realization: $f : \mathbb{P} \rightarrow \text{Sent}_{\text{PA}}$

We extend f to be defined on all modal formulas:

- f commutes with Boolean connectives;
- In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
- $f(\Box A) = \Box_{\text{PA}} f(A)$.

Theorem If $\text{GL} \vdash A$, then for any arithmetical realization f, $\text{PA} \vdash f(A)$

Proof By induction on the proof A in GL

Let L"ob’s rule be $(\Box A \rightarrow A)/A$

It is easy to show that

$$K4 + LR \vdash \Box(\Box A \rightarrow A) \rightarrow \Box A$$
Arithmetical realization: $f : \mathbb{P} \to \text{Sent}_{PA}$

We extend f to be defined on all modal formulas:

- f commutes with Boolean connectives;
- In particular, $f(\top) = \top$ and $f(\bot) = \bot$;
- $f(\Box A) = \Box_{PA} f(A)$.

Theorem If $GL \vdash A$, then for any arithmetical realization f, $PA \vdash f(A)$

Proof By induction on the proof A in GL

Let Löb’s rule be $(\Box A \to A)/A$

It is easy to show that

$$K4 + LR \vdash \Box(\Box A \to A) \to \Box A$$