First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy

Ordinal analysis based on iterated reflection

First order and beyond

Joost J. Joosten

University of Barcelona

Thursday 03-11-2016 Lisbon Seminar on Mathematical Logic

イロト イポト イヨト イヨト

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy

Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

• Let T be some r.e. sound theory

Joost J. Joosten Ordinal analysis based on iterated reflection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Let T be some r.e. sound theory
- We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

イロト イヨト イヨト イヨト

- Let T be some r.e. sound theory
- We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

<ロ> (日) (日) (日) (日) (日)

- Let T be some r.e. sound theory
- We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

$$T^0 := T;$$

<ロ> (日) (日) (日) (日) (日)

- Let T be some r.e. sound theory
- We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

$$T^0 := T;$$

 $T^{\alpha+1} := T^{\alpha} + \operatorname{Con}(T^{\alpha});$

<ロ> (日) (日) (日) (日) (日)

- Let T be some r.e. sound theory
- We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

$$\begin{array}{lll} T^0 & := & T; \\ T^{\alpha+1} & := & T^{\alpha} + \operatorname{Con}(T^{\alpha}); \\ T^{\lambda} & := & \bigcup_{\alpha < \lambda} T^{\alpha} & \text{ for limit } \lambda < \Gamma. \end{array}$$

<ロ> (日) (日) (日) (日) (日)

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Pro

Turing progressions The logics GLP_A Proof theoretical ordinals

The obvious way of proving things about Turing progressions is by transfinite induction.

・ロン ・回と ・ヨン・

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy

Turing progressions The logics GLP_A Proof theoretical ordinals

- The obvious way of proving things about Turing progressions is by transfinite induction.
- How can weak theories still prove interesting statements about Turing progressions?

<ロ> (日) (日) (日) (日) (日)

- The obvious way of proving things about Turing progressions is by transfinite induction.
- How can weak theories still prove interesting statements about Turing progressions?
- Schmerl (1978): reflexive transfinite induction

イロト イヨト イヨト イヨト

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy $\begin{array}{l} \textbf{Turing progressions} \\ \textbf{The logics } \text{GLP}_{\Lambda} \\ \textbf{Proof theoretical ordinals} \end{array}$

► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$

<ロ> (四) (四) (三) (三) (三)

- ► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$
- ► **Theorem** EA proves reflexive transfinite induction (Schmerl) If EA $\vdash \forall \alpha \ (\Box_{\text{EA}} \forall \beta < \dot{\alpha} \ \phi(\beta) \rightarrow \phi(\alpha))$, then

 $EA \vdash \forall \alpha \ \phi(\alpha).$

イロト イポト イヨト イヨト

- ► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$
- ► **Theorem** EA proves reflexive transfinite induction (Schmerl) If EA $\vdash \forall \alpha \ (\Box_{EA} \forall \beta < \dot{\alpha} \phi(\beta) \rightarrow \phi(\alpha))$, then

 $EA \vdash \forall \alpha \ \phi(\alpha).$

Proof By Löb's rule

イロト イポト イヨト イヨト

- ► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$
- ► **Theorem** EA proves reflexive transfinite induction (Schmerl) If EA $\vdash \forall \alpha \ (\Box_{\text{EA}} \forall \beta < \dot{\alpha} \ \phi(\beta) \rightarrow \phi(\alpha))$, then

$$EA \vdash \forall \alpha \ \phi(\alpha).$$

Proof By Löb's rule

Clearly, if

$$T \vdash \forall \alpha \Big(\Box_{\mathcal{T}} \; \forall \beta < \dot{\alpha} \; \phi(\beta) \; \rightarrow \; \phi(\alpha) \Big),$$

イロト イポト イヨト イヨト

- ► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$
- ► **Theorem** EA proves reflexive transfinite induction (Schmerl) If EA $\vdash \forall \alpha \ (\Box_{\text{EA}} \forall \beta < \dot{\alpha} \ \phi(\beta) \rightarrow \phi(\alpha))$, then

$$EA \vdash \forall \alpha \ \phi(\alpha).$$

Proof By Löb's rule

Clearly, if

$$T \vdash \forall \alpha \Big(\Box_T \ \forall \beta < \dot{\alpha} \ \phi(\beta) \ \rightarrow \ \phi(\alpha) \Big),$$

then also

イロト イポト イヨト イヨト

- ► Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha);$
- ► **Theorem** EA proves reflexive transfinite induction (Schmerl) If EA $\vdash \forall \alpha \ (\Box_{\text{EA}} \forall \beta < \dot{\alpha} \ \phi(\beta) \rightarrow \phi(\alpha))$, then

$$EA \vdash \forall \alpha \ \phi(\alpha).$$

Proof By Löb's rule

Clearly, if

$$T \vdash \forall \alpha \Big(\Box_{\mathcal{T}} \ \forall \beta < \dot{\alpha} \ \phi(\beta) \ \rightarrow \ \phi(\alpha) \Big),$$

then also

$$T \vdash \Box_T \ \forall \alpha \ \phi(\alpha) \ \rightarrow \ \forall \alpha \ \phi(\alpha),$$

イロト イポト イヨト イヨト

 We can generalize Turing progressions to stronger notions of consistency.

・ロン ・回と ・ヨン ・ヨン

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:

・ロト ・回ト ・ヨト ・ヨト

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in T using all true Π_n sentences" by [n]_T

・ロト ・回ト ・ヨト ・ヨト

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in T using all true Π_n sentences" by [n]_T
- The dual notion "consistent with T and all true Π_n sentences" is denoted (n)_T.

・ロン ・回と ・ヨン・

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in *T* using all true Π_n sentences" by [n]_T
- The dual notion "consistent with T and all true Π_n sentences" is denoted ⟨n⟩_T.
- Then

・ロン ・回と ・ヨン ・ヨン

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in T using all true Π_n sentences" by [n]_T
- The dual notion "consistent with T and all true Π_n sentences" is denoted ⟨n⟩_T.
- Then

•
$$T_n^0 := T;$$

・ロン ・回と ・ヨン ・ヨン

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in T using all true Π_n sentences" by [n]_T
- The dual notion "consistent with T and all true Π_n sentences" is denoted (n)_T.
- Then

$$\begin{array}{l} \blacktriangleright \quad T_n^0 := T; \\ \blacktriangleright \quad T_n^{\alpha+1} := T_n^\alpha \cup \{ \langle n \rangle_{T_n^\alpha} \top \}; \end{array}$$

・ロン ・回と ・ヨン ・ヨン

- We can generalize Turing progressions to stronger notions of consistency.
- For $n \in \omega$:
- We will denote "provable in T using all true Π_n sentences" by [n]_T
- The dual notion "consistent with T and all true Π_n sentences" is denoted (n)_T.
- Then

$$\begin{array}{l} \bullet \quad T_n^0 := T; \\ \bullet \quad T_n^{\alpha+1} := T_n^\alpha \cup \{ \langle n \rangle_{T_n^\alpha} \top \}; \\ \bullet \quad T_n^\lambda := \bigcup_{\alpha < \lambda} T_n^\alpha \quad \text{for limit } \lambda. \end{array}$$

・ロン ・回と ・ヨン ・ヨン

Some early results from Schmerl's 1978 Logic Colloquium paper:

・ロン ・回 と ・ヨン ・ヨン

Some early results from Schmerl's 1978 Logic Colloquium paper:

$$\blacktriangleright \mathrm{I}\Sigma_n \equiv_{\prod_{n=1}^0} \mathrm{PRA}_n^{\omega^\omega}$$

・ロン ・回 と ・ヨン ・ヨン

- Some early results from Schmerl's 1978 Logic Colloquium paper:
- ► IΣ_n ≡_{Π⁰_{n+1}} PRA^{ω^ω}_n ► PA ≡_{Π⁰_{n+1}} PRA^{ε₀}_n

・ロン ・回 と ・ ヨ と ・ ヨ と

- Some early results from Schmerl's 1978 Logic Colloquium paper:
- ► I $\Sigma_n \equiv_{\prod_{n=1}^0} \operatorname{PRA}_n^{\omega^{\omega}}$
- ▶ $PA \equiv_{\prod_{n=1}^{0}} PRA_n^{\varepsilon_0}$
- $\omega \operatorname{Con}^{\mathsf{G}}(\operatorname{PA}) \equiv T_2^{\varepsilon_1}$

・ロト ・回ト ・ヨト ・ヨト

 Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

・ロン ・回と ・ヨン ・ヨン

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive

イロト イヨト イヨト イヨト

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_{\mathcal{T}} \top \rightarrow \neg \Box_{\mathcal{T}} \diamondsuit_{\mathcal{T}} \top$

・ロン ・回 と ・ ヨ と ・ ヨ と

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_T \top \to \neg \Box_T \diamondsuit_T \top$
- ▶ Gödel II: $\Box_T(\Box_T \bot \to \bot) \to \Box_T \bot$

・ロン ・回 と ・ ヨ と ・ ヨ と

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_T \top \to \neg \Box_T \diamondsuit_T \top$
- ▶ Gödel II: $\Box_T(\Box_T \bot \to \bot) \to \Box_T \bot$
- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$

- 사례가 사용가 사용가 구용

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_T \top \to \neg \Box_T \diamondsuit_T \top$
- ▶ Gödel II: $\Box_T(\Box_T \bot \to \bot) \to \Box_T \bot$
- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.

・ 同 ト ・ ヨ ト ・ ヨ ト

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_T \top \to \neg \Box_T \diamondsuit_T \top$
- ▶ Gödel II: $\Box_T(\Box_T \bot \to \bot) \to \Box_T \bot$
- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.
- However:

・ 同 ト ・ ヨ ト ・ ヨ ト

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
- ► Already just the language with one modality [0] is expressive
- $\blacktriangleright \text{ Gödel II: } \diamondsuit_T \top \to \neg \Box_T \diamondsuit_T \top$
- ▶ Gödel II: $\Box_T(\Box_T \bot \to \bot) \to \Box_T \bot$
- For $n \in \mathbb{N}$ we see $T_n \equiv T + \diamondsuit_T^n \top$
- Transfinite progressions are not expressible in the modal language with just one modal operator.

However:

▶ **Proposition:** $T + \langle 1 \rangle_T \top$ is a Π_1 conservative extension of $T + \{ \langle 0 \rangle_T^k \top \mid k \in \omega \}.$
Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

Definition

The logic GLP_{Λ} is the propositional normal modal logic that has for each $\xi < \Lambda$ a modality [ξ] and is axiomatized by the following schemata:

・ロン ・回と ・ヨン ・ヨン

Definition

The logic GLP_{Λ} is the propositional normal modal logic that has for each $\xi < \Lambda$ a modality [ξ] and is axiomatized by the following schemata:

$$\begin{split} & [\xi](A \to B) \to ([\xi]A \to [\xi]B) \\ & [\xi]([\xi]A \to A) \to [\xi]A \\ & \langle \xi \rangle A \to [\zeta] \langle \xi \rangle A & \text{for } \xi < \zeta, \\ & [\xi]A \to [\zeta]A & \text{for } \xi < \zeta. \end{split}$$

・ロン ・回と ・ヨン ・ヨン

Definition

The logic GLP_{Λ} is the propositional normal modal logic that has for each $\xi < \Lambda$ a modality [ξ] and is axiomatized by the following schemata:

$$\begin{split} & [\xi](A \to B) \to ([\xi]A \to [\xi]B) \\ & [\xi]([\xi]A \to A) \to [\xi]A \\ & \langle \xi \rangle A \to [\zeta] \langle \xi \rangle A & \text{for } \xi < \zeta, \\ & [\xi]A \to [\zeta]A & \text{for } \xi < \zeta. \end{split}$$

The rules of inference are Modus Ponens and necessitation for each modality: $\frac{\psi}{|\zeta|\psi}$.

・ロン ・回と ・ヨン・

Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

• GLP^0_{Λ} denotes the closed fragment (no propositional variables)

・ロト ・回ト ・ヨト ・ヨト

Э

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called *worms*

(人間) (人) (人) (人)

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called worms
- $\blacktriangleright \langle \xi_0 \rangle \dots \langle \xi_n \rangle \top$

・ロン ・回と ・ヨン ・ヨン

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called *worms*
- $\blacktriangleright \langle \xi_0 \rangle \dots \langle \xi_n \rangle \top$
- We write $\mathbb W$ for the class of all worms

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called worms
- $\blacktriangleright \langle \xi_0 \rangle \dots \langle \xi_n \rangle \top$
- We write $\mathbb W$ for the class of all worms
- Worms are quite expressive under their natural arithmetical interpretation:

・ロン ・回と ・ヨン・

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called worms
- $\blacktriangleright \langle \xi_0 \rangle \dots \langle \xi_n \rangle \top$
- We write $\mathbb W$ for the class of all worms
- Worms are quite expressive under their natural arithmetical interpretation:

・ロン ・回と ・ヨン・

- GLP^0_{Λ} denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP^0_{Λ} are called worms
- $\blacktriangleright \langle \xi_0 \rangle \dots \langle \xi_n \rangle \top$
- We write $\mathbb W$ for the class of all worms
- Worms are quite expressive under their natural arithmetical interpretation:

► Theorem

 $\mathrm{EA} + \langle n+1 \rangle_{\mathrm{EA}} \top \equiv \mathrm{EA} + \mathtt{RFN}_{\Sigma_{n+1}}(\mathrm{EA}) \equiv \mathrm{I}\Sigma_n.$

・ロン ・回と ・ヨン ・ヨン

• We can define natural orderings $<_{\xi}$ on \mathbb{W} by

$$A <_{\xi} B \quad :\Leftrightarrow \quad \mathsf{GLP} \vdash B \rightarrow \langle \xi \rangle A$$

イロン イボン イヨン イヨン 三日

• We can define natural orderings $<_{\xi}$ on \mathbb{W} by

$$A <_{\xi} B \quad :\Leftrightarrow \quad \mathsf{GLP} \vdash B \rightarrow \langle \xi \rangle A$$

• **Definition** By $o_{\alpha}(A)$ we denote the order type of A under $<_{\alpha}$

・ロン ・回 と ・ ヨ と ・ ヨ と

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Proof theoretical ordinals

• We can define natural orderings $<_{\xi}$ on \mathbb{W} by

$$A <_{\xi} B \quad :\Leftrightarrow \quad \mathsf{GLP} \vdash B \rightarrow \langle \xi \rangle A$$

▶ Definition By o_α(A) we denote the order type of A under <_α and we write o(A) instead of o₀(A).

・ロト ・回ト ・ヨト ・ヨト

$$A <_{\xi} B \quad :\Leftrightarrow \quad \mathsf{GLP} \vdash B \to \langle \xi \rangle A$$

For <₀ defines a well-order on the class of worms modulo provable GLP equivalence.

イロン イボン イヨン イヨン 三日

$$A <_{\xi} B :\Leftrightarrow \operatorname{GLP} \vdash B \to \langle \xi \rangle A$$

 For <₀ defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)

(日) (同) (E) (E) (E)

$$A <_{\xi} B :\Leftrightarrow \operatorname{GLP} \vdash B \to \langle \xi \rangle A$$

 For <₀ defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)

 For <ξ with ξ > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded

・ロン ・回 と ・ ヨ と ・ ヨ と

$$A <_{\xi} B :\Leftrightarrow \operatorname{GLP} \vdash B \to \langle \xi \rangle A$$

 For <₀ defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)

For <ξ with ξ > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)

・ロン ・回 と ・ ヨ と ・ ヨ と

$$A <_{\xi} B :\Leftrightarrow \operatorname{GLP} \vdash B \to \langle \xi \rangle A$$

- For <₀ defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)
- For <ξ with ξ > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)
- Worms of GLP_{\u03c6} are known to be useful for Turing progressions:

・ロン ・回 と ・ ヨ と ・ ヨ と

$$A <_{\xi} B :\Leftrightarrow \operatorname{GLP} \vdash B \to \langle \xi \rangle A$$

- For <₀ defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)
- For <ξ with ξ > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)
- Worms of GLP_{\u03c6} are known to be useful for Turing progressions:
- Proposition (Beklemishev) For each ordinal α < ε₀ there is some GLP_ω-worm A such that o(A) = α, and T + A is Π₁ equivalent to T_α.

(日) (同) (E) (E) (E)

Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

▶ We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)

・ロト ・回ト ・ヨト ・ヨト

 We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)

•
$$o(\top) = 0;$$

・ロト ・回ト ・ヨト ・ヨト

- We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)
 - $o(\top) = 0;$ • o(A0B) = o(B) + 1 + o(A);

・ロト ・回ト ・ヨト ・ヨト

 We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

・ロト ・回ト ・ヨト ・ヨト

- We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)
 - $o(\top) = 0;$ • o(A0B) = o(B) + 1 + o(A);

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

・ロト ・回ト ・ヨト ・ヨト

- We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)
 - $o(\top) = 0;$ • o(A0B) = o(B) + 1 + o(A);

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

• Moreover,
$$o_{\xi}(A) = o(\xi \downarrow h_{\xi}(A))$$

・ロト ・回ト ・ヨト ・ヨト

- We formulated a new elegant calculus for o(A) (DFD, JjJ, 2014 JIGPAL)
 - $o(\top) = 0;$ • o(A0B) = o(B) + 1 + o(A);

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

- Here e^α is "α times iterating ordinal exponentiaton"
- Moreover, $o_{\xi}(A) = o(\xi \downarrow h_{\xi}(A))$
- Here h_ξ(A) is the "ξ-head of A", that is the leftmost part of A where all modalities are at least ξ

소리가 소문가 소문가 소문가

Turing progressions The logics GLP_A Proof theoretical ordinals

Our calculus for o(A)

Joost J. Joosten Ordinal analysis based on iterated reflection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Turing progressions The logics GLP_A Proof theoretical ordinals

• Our calculus for o(A)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{l} \mbox{Turing progressions} \\ \mbox{The logics } \mbox{GLP}_{\Lambda} \\ \mbox{Proof theoretical ordinals} \end{array}$

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

<ロ> (四) (四) (注) (注) (三)

Turing progressions The logics GLP_{Λ} Proof theoretical ordinals

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

<ロ> (四) (四) (注) (注) (三)

Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

• Here e^{α} is " α times iterating ordinal exponentiaton"

イロン イヨン イヨン イヨン

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

• Here e^{α} is " α times iterating ordinal exponentiaton"

Examples:

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

Examples:

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

Examples:

$$o(\top) = 0;$$
 $o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1;$

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

► Examples:

•
$$o(\top) = 0;$$

• $o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1$

•
$$o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2;$$

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$
• $o(\alpha \uparrow A) = e^{\alpha}(o(A))$

• Here e^{α} is " α times iterating ordinal exponentiaton"

Examples:

• $o(\top) = 0;$ • $o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1;$ • $o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2;$

•
$$o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3;$$

イロト イヨト イヨト イヨト
• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A)$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

Examples:

•
$$o(\top) = 0;$$

• $o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1;$
• $o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2;$
• $o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3;$
• $o(0000) = o(0) + 1 + o(00) = 1 + 1 + 2 = 4$, etc.;

,

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

• $o(\alpha \uparrow A) = e^{\alpha}(o(A))$

Here e^α is "α times iterating ordinal exponentiaton"

Examples:

•
$$o(\top) = 0;$$

• $o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1;$
• $o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2;$
• $o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3;$
• $o(0000) = o(0) + 1 + o(00) = 1 + 1 + 2 = 4, \text{ etc.};$
• $o(1) = o(1 + 0) = o(1 + 0) = o(1) = o($

•
$$o(1) = o(1 \uparrow 0) = e^{1}(o(0)) = e^{1}(1) = \omega^{1} = \omega;$$

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

• Here e^{α} is " α times iterating ordinal exponentiaton"

Examples:

•
$$o(101) = o(1) + 1 + o(1) = \omega + \omega;$$

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

• Here e^{α} is " α times iterating ordinal exponentiaton"

Examples:

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy

Turing progressions The logics ${\sf GLP}_\Lambda$ Proof theoretical ordinals

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$

•
$$o(\alpha \uparrow A) = e^{\alpha}(o(A))$$

Here e^α is "α times iterating ordinal exponentiaton"

Examples:

$$\begin{array}{l} \bullet \ o(\top) = 0; \\ \bullet \ o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1; \\ \bullet \ o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2; \\ \bullet \ o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3; \\ \bullet \ o(0000) = o(0) + 1 + o(00) = 1 + 1 + 2 = 4, \ \text{etc.}; \\ \bullet \ o(1) = o(1 \uparrow 0) = e^1(o(0)) = e^1(1) = \omega^1 = \omega; \\ \bullet \ o(101) = o(1 \uparrow 00) = e^1(o(00)) = e^1(2) = \omega^2; \\ \bullet \ o(2) = o(2 \uparrow 0) = e^2(o(0)) = e^2(1) = \omega^{\omega^1} = \omega^{\omega}; \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

• Our calculus for o(A)

•
$$o(\top) = 0;$$

• $o(A0B) = o(B) + 1 + o(A);$
• $o(\alpha \uparrow A) = e^{\alpha}(o(A))$

• Here e^{α} is " α times iterating ordinal exponentiaton"

Examples:

$$\begin{array}{l} \bullet \ o(\top) = 0; \\ \bullet \ o(0) = o(\top 0 \top) = o(\top) + 1 + o(\top) = 0 + 1 + 0 = 1; \\ \bullet \ o(00) = o(\top 00) = o(\top) + 1 + o(0) = 0 + 1 + 1 = 2; \\ \bullet \ o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3; \\ \bullet \ o(0000) = o(0) + 1 + o(00) = 1 + 1 + 2 = 4, \ \text{etc.}; \\ \bullet \ o(1) = o(1 \uparrow 0) = e^1(o(0)) = e^1(1) = \omega^1 = \omega; \\ \bullet \ o(101) = o(1) + 1 + o(1) = \omega + \omega; \\ \bullet \ o(101) = o(1 \uparrow 00) = e^1(o(00)) = e^1(2) = \omega^2; \\ \bullet \ o(2) = o(2 \uparrow 0) = e^2(o(0)) = e^2(1) = \omega^{\omega^1} = \omega^{\omega}; \\ \bullet \ o(323) = o(2 \uparrow 101) = e^2(o(101)) = e^2(\omega + \omega) = \omega^{\omega^{\omega + \omega}}; \end{array}$$

イロト イヨト イヨト イヨト

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Turing progressions The logics ${\sf GLP}_{\Lambda}$ Proof theoretical ordinals

• e^{α} is " α times iterating ordinal exponentiaton"

<ロ> (四) (四) (三) (三) (三)

• e^{α} is " α times iterating ordinal exponentiaton"

1.
$$e^0 := id;$$

<ロ> (四) (四) (三) (三) (三)

• e^{α} is " α times iterating ordinal exponentiaton"

1.
$$e^0 := id;$$

2. $e^1(\xi) := -1 + \omega^{\xi};$ (important: start with zero!)

イロン イヨン イヨン イヨン

• e^{α} is " α times iterating ordinal exponentiaton"

1.
$$e^{0} := id;$$

2. $e^{1}(\xi) := -1 + \omega^{\xi};$ (important: start with zero!)
3. $e^{\alpha+\beta} := e^{\alpha} \circ e^{\beta}$

<ロ> (四) (四) (三) (三) (三)

• e^{α} is " α times iterating ordinal exponentiaton"

1. $e^{0} := id;$ 2. $e^{1}(\xi) := -1 + \omega^{\xi};$ (important: start with zero!) 3. $e^{\alpha+\beta} := e^{\alpha} \circ e^{\beta}$

• Transfinite iteration would stabilize/saturate at e^{ω}

・ロト ・回ト ・ヨト ・ヨト

• e^{α} is " α times iterating ordinal exponentiaton"

1.
$$e^{0} := id;$$

2. $e^{1}(\xi) := -1 + \omega^{\xi};$ (important: start with zero!)
3. $e^{\alpha+\beta} := e^{\alpha} \circ e^{\beta}$

- Transfinite iteration would stabilize/saturate at e^{ω}
- Our solution (DFD, JjJ, 2013 APAL), call any collection $\{f^{\alpha}\}_{\alpha\in On}$ satisfying (1)–(3) a *weak hyperexponential*

イロト イポト イヨト イヨト

• e^{α} is " α times iterating ordinal exponentiaton"

1.
$$e^0 := id;$$

2. $e^1(\xi) := -1 + \omega^{\xi};$ (important: start with zero!)
3. $e^{\alpha+\beta} := e^{\alpha} \circ e^{\beta}$

- Transfinite iteration would stabilize/saturate at e^{ω}
- Our solution (DFD, JjJ, 2013 APAL), call any collection $\{f^{\alpha}\}_{\alpha\in On}$ satisfying (1)–(3) a *weak hyperexponential*
- ► Then define the hyperexponential to be the unique weak hyperexponential {f^α}_{α∈On} which is point-wise minimal

イロト イポト イヨト イヨト

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Turing progressions The logics GLP_A Proof theoretical ordinals

• A recursive definition for hyperexponentials:

イロン イヨン イヨン イヨン

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy

Turing progressions The logics GLP_A Proof theoretical ordinals

► A recursive definition for hyperexponentials:

1.
$$e^0(\xi) = \xi$$
,

イロン イヨン イヨン イヨン

► A recursive definition for hyperexponentials:

,

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$

・ロン ・回 と ・ ヨ と ・ ヨ と

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,

イロン イヨン イヨン イヨン

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,

イロン イヨン イヨン イヨン

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,
5. $e^{\omega^{\rho}}(\xi + 1) = \lim_{\zeta \to \omega^{\rho}} e^{\zeta} (f^{\omega^{\rho}}(\xi) + 1)$ for $\rho > 0$,

イロン イヨン イヨン イヨン

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,
5. $e^{\omega^{\rho}}(\xi + 1) = \lim_{\zeta \to \omega^{\rho}} e^{\zeta} (f^{\omega^{\rho}}(\xi) + 1)$ for $\rho > 0$,
6. $e^{\omega^{\rho}} \xi = \lim_{\zeta \to \xi} e^{\omega^{\rho}} \zeta$ for $\xi \in \text{Lim and } \rho > 0$.

イロン イヨン イヨン イヨン

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,
5. $e^{\omega^{\rho}}(\xi + 1) = \lim_{\zeta \to \omega^{\rho}} e^{\zeta} (f^{\omega^{\rho}}(\xi) + 1)$ for $\rho > 0$,
6. $e^{\omega^{\rho}} \xi = \lim_{\zeta \to \xi} e^{\omega^{\rho}} \zeta$ for $\xi \in \text{Lim and } \rho > 0$.

A new perspective on binary Veblen functions;

・ロン ・回と ・ヨン・

► A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,
5. $e^{\omega^{\rho}}(\xi + 1) = \lim_{\zeta \to \omega^{\rho}} e^{\zeta} (f^{\omega^{\rho}}(\xi) + 1)$ for $\rho > 0$,
6. $e^{\omega^{\rho}} \xi = \lim_{\zeta \to \xi} e^{\omega^{\rho}} \zeta$ for $\xi \in \text{Lim and } \rho > 0$.

A new perspective on binary Veblen functions;

• Theorem
$$\varphi_{\alpha}(\xi) = e^{\omega^{\alpha}}(1+\xi)$$

・ロン ・回と ・ヨン・

A recursive definition for hyperexponentials:

1.
$$e^{0}(\xi) = \xi$$
,
2. $e^{1}(\xi) = -1 + \omega^{\xi}$,
3. $e^{\omega^{\rho} + \xi} = e^{\omega^{\rho}} e^{\xi}$, where $0 < \xi < \omega^{\rho} + \xi$,
4. $e^{\omega^{\rho}} 0 = 0$,
5. $e^{\omega^{\rho}}(\xi + 1) = \lim_{\zeta \to \omega^{\rho}} e^{\zeta} (f^{\omega^{\rho}}(\xi) + 1)$ for $\rho > 0$,
6. $e^{\omega^{\rho}} \xi = \lim_{\zeta \to \xi} e^{\omega^{\rho}} \zeta$ for $\xi \in \text{Lim and } \rho > 0$.

A new perspective on binary Veblen functions;

• Theorem
$$\varphi_{\alpha}(\xi) = e^{\omega^{\alpha}}(1+\xi)$$

 The Veblen functions are a natural subsequence of hyperexponentiation

イロン イヨン イヨン イヨン

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Turing progressions The logics GLP_A Proof theoretical ordinals

• For GLP^0_{ω} Ignatiev presented a nice model

イロン イヨン イヨン イヨン

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,

・ロン ・回と ・ヨン・

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.

・ロト ・回ト ・ヨト ・ヨト

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

(本間) (本語) (本語)

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

•
$$\ell(0) := 0$$
 and $\ell(\xi + \omega^{\alpha}) = \alpha$

→ 同 → → 目 → → 目 →

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

•
$$\ell(0) := 0$$
 and $\ell(\xi + \omega^{\alpha}) = \alpha$

Accessibility relation R_n is defined as aR_nb iff

・ 同 ト ・ ヨ ト ・ ヨ ト

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

•
$$\ell(0) := 0$$
 and $\ell(\xi + \omega^{\alpha}) = \alpha$

Accessibility relation R_n is defined as aR_nb iff

・ 同 ト ・ ヨ ト ・ ヨ ト

First order arithmetical theories	Turing progressions
Beyond first order	The logics GLP_{Λ}
Hyper-arithmetical hierarchy	Proof theoretical ordinals

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

•
$$\ell(0) := 0$$
 and $\ell(\xi + \omega^{\alpha}) = \alpha$

• Accessibility relation R_n is defined as aR_nb iff

•
$$a_n > b_n$$
 and

•
$$a_i = b_i$$
 for all $i < n$

・ 同 ト ・ ヨ ト ・ ヨ ト

- For GLP⁰_{\omega} Ignatiev presented a nice model
- Elements in the model are so-called *Ignatiev sequences* (*I*): sequences a of length ω of ordinals below ε₀,
- ▶ so that $a_{i+1} \leq \ell a_i$.
- ► Here ℓ is the *last exponent* function, mapping an ordinal to the exponent of the last term in its CNF representation

•
$$\ell(0) := 0$$
 and $\ell(\xi + \omega^{\alpha}) = \alpha$

Accessibility relation R_n is defined as aR_nb iff

•
$$a_n > b_n$$
 and

•
$$a_i = b_i$$
 for all $i < n$

This model is universal for GLP⁰_w

We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

イロン イヨン イヨン イヨン

We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

$$\blacktriangleright |U|_{\Pi_{n+1}} = \sup\{\xi \mid T_n^{\xi} \subseteq U\}.$$

イロン イヨン イヨン イヨン

- We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:
- $\blacktriangleright |U|_{\prod_{n+1}} = \sup\{\xi \mid T_n^{\xi} \subseteq U\}.$
- ► For *U* a arithmetical theory we define its *Turing-Taylor* expansion by

・ロト ・回ト ・ヨト ・ヨト

We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

$$\blacktriangleright |U|_{\Pi_{n+1}} = \sup\{\xi \mid T_n^{\xi} \subseteq U\}.$$

► For *U* a arithmetical theory we define its *Turing-Taylor* expansion by

•
$$\operatorname{tt}(U) := \bigcup_{n=0}^{\infty} T_n^{|U|_{\Pi_{n+1}}}$$

・ロト ・回ト ・ヨト ・ヨト
- We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:
- $\blacktriangleright |U|_{\prod_{n+1}} = \sup\{\xi \mid T_n^{\xi} \subseteq U\}.$
- ► For *U* a arithmetical theory we define its *Turing-Taylor* expansion by

•
$$\operatorname{tt}(U) := \bigcup_{n=0}^{\infty} T_n^{|U|_{\Pi_{n+1}}}$$

In case U ≡ tt(U) we say that U has a convergent Turing-Taylor expansion.

イロン 不同と 不同と 不同と

Turing progressions The logics GLP_{Λ} Proof theoretical ordinals

We write W_ξ for the class of all worms all of whose modalities are at least ξ

イロン イボン イヨン イヨン 三日

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

・ロト ・回ト ・ヨト ・ヨト

First order arithmetical theories Beyond first order Hyper-arithmetical hierarchy Proof theoretical ordinals

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A: T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

・ロト ・回ト ・ヨト ・ヨト

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

・ロト ・回ト ・ヨト ・ヨト

æ

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

• The monomials in Turing-Taylor progressions are the T_n^{α}

イロト イポト イヨト イヨト

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- The monomials in Turing-Taylor progressions are the T_n^{α}
- They are not entirely independent!

イロト イポト イヨト イヨト

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- The monomials in Turing-Taylor progressions are the T_n^{α}
- They are not entirely independent!

$$\blacktriangleright T_1^1 \vdash T_0^{\omega}$$

イロト イポト イヨト イヨト

- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- The monomials in Turing-Taylor progressions are the T_n^{α}
- They are not entirely independent!

•
$$T_1^1 \vdash T_0^{\omega}$$

• $T_1^1 + T_0^{\omega+1} \equiv T_1^1 + T_0^{\omega\cdot 2}$

イロト イポト イヨト イヨト

- First order arithmetical theories
 Turing progressions

 Beyond first order
 The logics GLP_A

 Hyper-arithmetical hierarchy
 Proof theoretical ordinals
- We write W_ξ for the class of all worms all of whose modalities are at least ξ
- Theorem (Beklemishev)

For each worm $A \in \mathbb{W}_n$: $T + A \equiv_n T_n^{o(A)}$;

► Theorem(JjJ)

For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_n^{o(A)}$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- The monomials in Turing-Taylor progressions are the T_n^{α}
- They are not entirely independent!

$$\succ T_1^1 \vdash T_0^{\omega}$$

$$T_1^1 + T_0^{\omega+1} \equiv T_1^1 + T_0^{\omega}$$

Ignatiev's model can be interpreted as representing 'natural' theories!

• The universal model of GLP^0_ω : Ignatiev's model \mathcal{I}

イロン イヨン イヨン イヨン

æ

- The universal model of GLP^0_{ω} : Ignatiev's model \mathcal{I}
- Theorem The points in the Ignatiev model exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion

イロン 不同と 不同と 不同と

- The universal model of GLP⁰_w: Ignatiev's model I
- Theorem The points in the Ignatiev model exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion
- ▶ That is, for each such theory U, we have that $\mathsf{tt}(U) \in \mathcal{I}$

- The universal model of GLP^0_ω : Ignatiev's model \mathcal{I}
- Theorem The points in the Ignatiev model exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion
- ▶ That is, for each such theory U, we have that $\mathsf{tt}(U) \in \mathcal{I}$
- ▶ and for each $\vec{A} \in \mathcal{I}$, there is a theory U so that $tt(U) = \vec{A}$

- The universal model of GLP⁰_w: Ignatiev's model I
- Theorem The points in the Ignatiev model exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion
- ▶ That is, for each such theory U, we have that $tt(U) \in \mathcal{I}$
- ▶ and for each $\vec{A} \in \mathcal{I}$, there is a theory U so that $tt(U) = \vec{A}$
- This yields a roadmap to conservation results!

We would like to extend the results of the first section beyond first order

<ロ> (四) (四) (三) (三) (三)

- We would like to extend the results of the first section beyond first order
- ► Logics GLP_A studied (Bekl. 2005; Bekl. DFD, JjJ 2014 SL)

イロン イヨン イヨン イヨン

- We would like to extend the results of the first section beyond first order
- ► Logics GLP_A studied (Bekl. 2005; Bekl. DFD, JjJ 2014 SL)
- ▶ Ignatiev's model \mathcal{I} generalized (DFD, JjJ, 2013 JSL)

イロト イポト イヨト イヨト

The modal logics Arithmetical interpretations

Beklemishev's autonomous worm notation

1	()	2	()()
ω	(())	$\omega + \omega$	(())()(())
ε ₀	((()))	ω^{ε_0+1}	(())((()))

・ロト ・回ト ・ヨト ・ヨト

æ

The modal logics Arithmetical interpretations

Fernandez-Duque's Spiders

$$\begin{split} \omega & \begin{pmatrix} () \\ \end{pmatrix} & \varphi_{\omega_{1}^{CK}}(1) & \begin{pmatrix} () \\ () \end{pmatrix} \\ \omega_{1}^{CK} & \begin{pmatrix} \\ () \end{pmatrix} & \omega_{3}^{CK} + \omega_{1}^{CK} & \begin{pmatrix} \\ () \end{pmatrix} () \begin{pmatrix} \\ () \end{pmatrix} () \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ () \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ () \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ () \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ () \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ () \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \\ \psi_{\omega_{1}^{CK}}(\omega_{\omega_{1}^{CK}}^{CK}) & \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

イロン イヨン イヨン イヨン

æ

The modal logics Arithmetical interpretations

Omega Rule interpretation

(ロ) (四) (E) (E) (E)

The modal logics Arithmetical interpretations

Omega Rule interpretation

 $\blacktriangleright \ [0]_T \phi \Leftrightarrow \Box_T \phi$

<ロ> (四) (四) (三) (三) (三)

The modal logics Arithmetical interpretations

- Omega Rule interpretation
- $\blacktriangleright \ [0]_T \phi \Leftrightarrow \Box_T \phi$
- ► if $\xi < \lambda$,

$$\frac{[\xi]_{\tau}\psi(\bar{0}) \quad [\xi]_{\tau}\psi(\bar{1}) \quad [\xi]_{\tau}\psi(\bar{2})\dots}{\forall n\psi(n)} \qquad \Box_{\tau}(\forall n\psi(n) \to \phi)$$
$$\underline{[\lambda]_{\tau}\phi}$$

<ロ> (四) (四) (三) (三) (三)

The modal logics Arithmetical interpretations

- Omega Rule interpretation
- $\blacktriangleright \ [0]_T \phi \Leftrightarrow \Box_T \phi$
- ► if $\xi < \lambda$,

$$\frac{[\xi]_{\tau}\psi(\bar{0}) \quad [\xi]_{\tau}\psi(\bar{1}) \quad [\xi]_{\tau}\psi(\bar{2})\dots}{\forall n\psi(n)} \qquad \Box_{\tau}(\forall n\psi(n) \to \phi)$$
$$[\lambda]_{\tau}\phi$$

 Theorem (DFD, JjJ) For recursive Λ we have GLP_Λ sound and complete for the omega rule interpretation for a large class of theories

・ロト ・回ト ・ヨト ・ヨト

The modal logics Arithmetical interpretations

Omega Rule interpretation with oracles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The modal logics Arithmetical interpretations

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:

イロン イヨン イヨン イヨン

The modal logics Arithmetical interpretations

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:
- ► ECA₀ \vdash $n \in X \rightarrow [0|X]_T (\bar{n} \in \bar{X})$ ECA₀ \vdash $n \notin X \Rightarrow [0|X]_T (\bar{n} \notin \bar{X})$

・ロト ・回ト ・ヨト ・ヨト

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:
- ► ECA₀ \vdash $n \in X \rightarrow [0|X]_T (\bar{n} \in \bar{X})$ ECA₀ \vdash $n \notin X \Rightarrow [0|X]_T (\bar{n} \notin \bar{X})$

► If
$$\phi \in \Sigma_{2m+1}^0(X, x)$$
 then
 $\operatorname{ECA}_0 \vdash \forall X \, \forall x \, \left(\phi(X, x) \to [\overline{m}|X]_{\operatorname{ECA}_0}^{\mathbf{m}} \, \phi(\overline{X}, \dot{x})\right).$

・ロト ・回ト ・ヨト ・ヨト

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:
- ► ECA₀ \vdash $n \in X \rightarrow [0|X]_T (\bar{n} \in \bar{X})$ ECA₀ \vdash $n \notin X \Rightarrow [0|X]_T (\bar{n} \notin \bar{X})$
- ► If $\phi \in \Sigma_{2m+1}^0(X, x)$ then $\operatorname{ECA}_0 \vdash \forall X \forall x \left(\phi(X, x) \to [\overline{m}|X]_{\operatorname{ECA}_0}^{\mathbf{m}} \phi(\overline{X}, \dot{x}) \right).$
- ► λ -OracleRFN^A_{ECA0} [Π_1^1] $\equiv \lambda$ -OracleCons^A_{ECA0}.

(1) マン・ション・

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:
- ► ECA₀ \vdash $n \in X \rightarrow [0|X]_T (\bar{n} \in \bar{X})$ ECA₀ \vdash $n \notin X \Rightarrow [0|X]_T (\bar{n} \notin \bar{X})$
- ► If $\phi \in \Sigma_{2m+1}^0(X, x)$ then $\operatorname{ECA}_0 \vdash \forall X \forall x \left(\phi(X, x) \to [\overline{m}|X]_{\operatorname{ECA}_0}^{\mathbf{m}} \phi(\overline{X}, \dot{x}) \right).$
- ► λ -OracleRFN^A_{ECA0} [Π_1^1] $\equiv \lambda$ -OracleCons^A_{ECA0}.
- ► $ECA_0 + 0$ -OracleRFN $_{ECA_0}^1[\Sigma_1^0]$ implies ACA_0

(1日) (1日) (日)

The modal logics Arithmetical interpretations

- Omega Rule interpretation with oracles
- $[\lambda|X]_T \phi$ means that we may also use an *oracle* for X:
- ► ECA₀ \vdash $n \in X \rightarrow [0|X]_T (\bar{n} \in \bar{X})$ ECA₀ \vdash $n \notin X \Rightarrow [0|X]_T (\bar{n} \notin \bar{X})$

► If
$$\phi \in \Sigma_{2m+1}^0(X, x)$$
 then
 $\operatorname{ECA}_0 \vdash \forall X \, \forall x \, \left(\phi(X, x) \to [\overline{m}|X]_{\operatorname{ECA}_0}^{\mathbf{m}} \phi(\overline{X}, \dot{x})\right).$

- ► λ -OracleRFN^{Λ}_{ECA₀}[Π_1^1] $\equiv \lambda$ -OracleCons^{Λ}_{ECA₀}.
- ► $ECA_0 + 0$ -OracleRFN $_{ECA_0}^1[\Sigma_1^0]$ implies ACA_0

$$\begin{array}{l} \bullet \quad \operatorname{ACA}_{0} \vdash \operatorname{wo}(\Lambda) \rightarrow \Big(\forall \, \lambda \in |\Lambda| \, \left(\lambda > 0 \rightarrow \\ [\lambda|\Lambda, X]^{\Lambda}_{\operatorname{ECA}_{0}} \operatorname{TI}_{\omega \cdot \dot{\lambda}}^{\overline{\Lambda}}(\phi(\overline{X})) \right) \Big). \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Towards a Π_1^0 analysis of predicativity

Predicative oracle consistency:

$$\texttt{Pred-O-Con}(\mathcal{T}) = \forall \Lambda \forall X(\texttt{wo}(\Lambda) \rightarrow \langle \Lambda | X \rangle_{\mathcal{T}} \top)$$

Theorem (Cordón-Franco, DFD, JjJ, Lara-Martín)

$$ATR_0 \equiv ECA_0 + Pred-O-Con(ECA_0)$$

- ► Recall: $PA \equiv EA + \{n-Con(EA) \mid n < \omega\}.$
- $ATR_0 \equiv ECA_0 + "\{\alpha Oracle Con(ECA_0) \mid \alpha \text{ a well-order}\}"$.

・ロト ・回ト ・ヨト ・ヨト

The modal logics Arithmetical interpretations

Conjectures:

$$\begin{split} & \wedge \operatorname{ATR}_{0} \equiv_{\Pi_{1}^{0}} \operatorname{EA} + \{ \langle \gamma \rangle_{\operatorname{EA}} \top : \gamma < \Gamma_{0} \} \\ & \bullet \|\operatorname{ATR}_{0}\|_{\Pi_{1}^{0}}^{\operatorname{ECA}_{0}} = \Gamma_{0} \end{split}$$

 $[\infty]_T \phi$ holds if ϕ is provable using an *arbitrary* number of ω -rules.

Theorem (DFD):

$$\Pi^1_1\text{-}\mathrm{CA} = \mathrm{ECA}_0 + \forall X \ \langle \infty | X \rangle_{\mathrm{ECA}_0} \top$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

イロン イロン イヨン イヨン 三日

► A central ingredient for PA: syntactical complexity classes

・ロト ・回ト ・ヨト ・ヨト

- ► A central ingredient for PA: syntactical complexity classes
- Like in the truth interpretation of GLP

・ロト ・回ト ・ヨト ・ヨト

æ

- ► A central ingredient for PA: syntactical complexity classes
- Like in the truth interpretation of GLP
- Omega-rule interpretation is slightly better
イロト イポト イヨト イヨト

- ► A central ingredient for PA: syntactical complexity classes
- Like in the truth interpretation of GLP
- Omega-rule interpretation is slightly better
- However, does not tie up with the Turing jump hierarchy

イロト イポト イヨト イヨト

- ► A central ingredient for PA: syntactical complexity classes
- Like in the truth interpretation of GLP
- Omega-rule interpretation is slightly better
- However, does not tie up with the Turing jump hierarchy
- Friedman, Goldfarb and Harrington come to the rescue!

ヘロン 人間 とくほど くほとう

æ

Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^{0}$ we have that there is some $\rho_n \in \Sigma_{n+1}^{0}$ so that

$$\mathrm{EA} \vdash \langle n \rangle_T^{\mathsf{True}} \top \to (\sigma \leftrightarrow [n]_T^{\mathsf{True}} \rho_n).$$

イロト イポト イヨト イヨト

Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^{0}$ we have that there is some $\rho_n \in \Sigma_{n+1}^{0}$ so that

$$\mathrm{EA} \vdash \langle n \rangle_T^{\mathsf{True}} \top \to (\sigma \leftrightarrow [n]_T^{\mathsf{True}} \rho_n).$$

proof The proof runs analogue to the proof of the classical FGH theorem adding an additional ingredient to get things down to EA.

イロン イロン イヨン イヨン 三日

▶ The [n] predicates tie up with the arithmetical hierarchy:

イロン イロン イヨン イヨン 三日

▶ The [n] predicates tie up with the arithmetical hierarchy:

・ロト ・回ト ・ヨト ・ヨト

3

▶ The [n] predicates tie up with the arithmetical hierarchy:

Lemma

・ロト ・回ト ・ヨト ・ヨト

3

▶ The [*n*] predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

1. *A* is c.e. in $\emptyset^{(n)}$;

・ロト ・回ト ・ヨト ・ヨト

3

▶ The [*n*] predicates tie up with the arithmetical hierarchy:

Lemma

- 1. A is c.e. in $\emptyset^{(n)}$;
- 2. A is 1-1 reducible to $\emptyset^{(n+1)}$;

소리가 소문가 소문가 소문가

3

▶ The [*n*] predicates tie up with the arithmetical hierarchy:

Lemma

- 1. A is c.e. in $\emptyset^{(n)}$;
- 2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
- 3. A is definable on the standard model by a $\sum_{n=1}^{0}$ formula;

・ロン ・回 と ・ ヨ と ・ ヨ と

► The [*n*] predicates tie up with the arithmetical hierarchy:

Lemma

- 1. A is c.e. in $\emptyset^{(n)}$;
- 2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
- 3. A is definable on the standard model by a $\sum_{n=1}^{0}$ formula;
- A is definable on the standard model by a formula of the form [n]_Tρ(x);

fixing a well-behaved ordinal notation we formalize

fixing a well-behaved ordinal notation we formalize

 $\blacktriangleright \ [\zeta]\phi \quad :\Leftrightarrow \quad \Box\phi \ \lor \ \exists\psi \ \exists\xi < \zeta \ (\langle\xi\rangle\psi \ \land \ \Box(\langle\xi\rangle\psi \to \phi)).$

fixing a well-behaved ordinal notation we formalize

 $\blacktriangleright \ [\zeta]\phi \quad :\Leftrightarrow \quad \Box\phi \ \lor \ \exists\psi \ \exists\xi < \zeta \ (\langle\xi\rangle\psi \ \land \ \Box(\langle\xi\rangle\psi \to \phi)).$

fixing a well-behaved ordinal notation we formalize

 $\blacktriangleright \ [\zeta]\phi \quad :\Leftrightarrow \quad \Box\phi \ \lor \ \exists\psi \ \exists \xi < \zeta \ (\langle\xi\rangle\psi \ \land \ \Box(\langle\xi\rangle\psi \to \phi)).$

► Theorem

The logic GLP_{Λ} is sound for strong enough theories T under the interpretation $\Box \mapsto [\lambda]_{T}^{\Box,\Lambda}$.

<ロ> (四) (四) (三) (三) (三)

Definition

Let T be a c.e. theory. We define

$$\begin{array}{l} - \ \Delta_0^{\square} := \ \Sigma_0^{\square} := \ \Pi_0^{\square} := \ \Delta_0^0; \\ - \ \Sigma_{\alpha+1}^{\square} = \ \Sigma_{\alpha}^{\square} \cup \ \Pi_{\alpha}^{\square} \cup \{ [\alpha]_T^{\square} \varphi(\dot{x}) \mid \varphi(x) \in \operatorname{Form} \} \text{ for } \alpha > 0; \\ - \ \Pi_{\alpha+1}^{\square} = \ \Sigma_{\alpha}^{\square} \cup \ \Pi_{\alpha}^{\square} \cup \{ \langle \alpha \rangle_T^{\square} \varphi(\dot{x}) \mid \varphi(x) \in \operatorname{Form} \} \text{ for } \alpha > 0; \\ - \ \Sigma_{\lambda}^{\square} := \ \Pi_{\lambda}^{\square} := \ \bigcup_{\alpha < \lambda} \Sigma_{\alpha}^{\square} \text{ for } \lambda \in \operatorname{Lim}. \end{array}$$

Theorem/conjecture Let T be any c.e. theory, let ξ < Λ for a natural ordinal notation system, and let A ⊆ N. The following are equivalent

- Theorem/conjecture Let T be any c.e. theory, let ξ < Λ for a natural ordinal notation system, and let A ⊆ N. The following are equivalent
 - 1. A is c.e. in $\emptyset^{(\xi)}$;

- ► **Theorem/conjecture** Let *T* be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent
 - 1. A is c.e. in $\emptyset^{(\xi)}$;
 - 2. A is 1-1 reducible to $\emptyset^{(\xi+1)}$;

・ロン ・回 と ・ 回 と ・ 回 と

- ► Theorem/conjecture Let T be any c.e. theory, let ξ < Λ for a natural ordinal notation system, and let A ⊆ N. The following are equivalent
 - 1. A is c.e. in $\emptyset^{(\xi)}$;
 - 2. A is 1-1 reducible to $\emptyset^{(\xi+1)}$;
 - 3. A is definable on the standard model by a formula of the form $[\xi]^{\Box}_{T}\rho(\dot{x});$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

- ► **Theorem/conjecture** Let *T* be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent
 - 1. A is c.e. in $\emptyset^{(\xi)}$;
 - 2. A is 1-1 reducible to $\emptyset^{(\xi+1)}$;
 - 3. A is definable on the standard model by a formula of the form $[\xi]^{\Box}_{T}\rho(\dot{x});$
- ► No longer runs out of phase

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

・ロン ・回 と ・ 回 と ・ 回 と

3

Theorem

Let T be a c.e. theory containing ECA₀.

1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}^{\Lambda}_{\mathcal{T}}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_{\mathcal{T}}^{\Box} \top;$

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

・ロン ・回 と ・ 回 と ・ 回 と

3

Theorem

- 1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_T^{\Box} \top;$
- 2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \alpha \rangle_T^{\square} \top$;

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

イロト イポト イヨト イヨト

3

Theorem

- 1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_T^{\Box} \top;$
- 2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \alpha \rangle_T^{\square} \top$;
- 3. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \beta \rangle_T^{\square} \top;$

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

3

Theorem

- 1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_T^{\Box} \top;$
- 2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \alpha \rangle_T^{\square} \top$;
- 3. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \beta \rangle_T^{\square} \top;$
- 4. So, in general, we have that $\operatorname{ECA}_0 \vdash \beta - \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \max\{\alpha, \beta\} \rangle_T^{\square} \top.$

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

イロト イポト イラト イラト 一日

Theorem

- 1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_T^{\Box} \top;$
- 2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \alpha \rangle_T^{\square} \top$;
- 3. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \beta \rangle_T^{\Box} \top$;
- 4. So, in general, we have that $\operatorname{ECA}_0 \vdash \beta - \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \max\{\alpha, \beta\} \rangle_T^{\square} \top.$
- 1. Theorem/conjecture: The theory $\text{EA} + \{\langle \xi \rangle \top \mid \xi < \zeta\}$ has Π_1^0 ordinal $\sup\{e^{\xi}1 \mid \xi < \zeta\}$.

The Turing-jump interpretation of transfinite provability logics Hyper-arithmetical reflection

Theorem

- 1. $\operatorname{ECA}_0 \vdash \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\Box}) \equiv \langle \alpha \rangle_T^{\Box} \top;$
- 2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \alpha \rangle_T^{\square} \top$;
- 3. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta \text{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \beta \rangle_T^{\square} \top;$
- 4. So, in general, we have that $\operatorname{ECA}_0 \vdash \beta - \operatorname{RFN}_T^{\Lambda}(\Pi_{\alpha+1}^{\square}) \equiv \langle \max\{\alpha, \beta\} \rangle_T^{\square} \top.$
- 1. **Theorem/conjecture:** The theory $\text{EA} + \{\langle \xi \rangle \top \mid \xi < \zeta\}$ has Π_1^0 ordinal sup $\{e^{\xi}1 \mid \xi < \zeta\}$.
- 2. **Main question**: how do these theories relate to better known theories like fragments of second order arithmetic of weak set-theories.