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I Let T be some r.e. sound theory

I We define the Turing(-Feferman) progression along a recursive
Γ of T as follows:

I
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I Transfinite induction: ∀α (∀β<α φ(β)→ φ(α)) → ∀α φ(α);

I Theorem EA proves reflexive transfinite induction (Schmerl)

If EA ` ∀α
(
2EA ∀β<α̇ φ(β) → φ(α)

)
, then

EA ` ∀α φ(α).

I Proof By Löb’s rule

I Clearly, if

T ` ∀α
(
2T ∀β<α̇ φ(β) → φ(α)

)
,

then also
T ` 2T ∀α φ(α) → ∀α φ(α),
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I We can generalize Turing progressions to stronger notions of
consistency.

I For n ∈ ω:

I We will denote “provable in T using all true Πn sentences” by
[n]T

I The dual notion “consistent with T and all true Πn

sentences” is denoted 〈n〉T .
I Then

I T 0
n := T ;

I Tα+1
n := Tα

n ∪ {〈n〉Tαn >};
I Tλ

n :=
⋃
α<λ Tα

n for limit λ.
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I PA ≡Π0
n+1

PRAε0
n
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I Poly-modal provability logics turn out to be suitably well
equipped to talk about Turing progressions

I Already just the language with one modality [0] is expressive

I Gödel II: 3T> → ¬2T3T>
I Gödel II: 2T (2T⊥ → ⊥)→ 2T⊥
I For n ∈ N we see Tn ≡ T + 3n

T>
I Transfinite progressions are not expressible in the modal

language with just one modal operator.

I However:

I Proposition: T + 〈1〉T> is a Π1 conservative extension of
T + {〈0〉kT> | k ∈ ω}.
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I Gödel II: 2T (2T⊥ → ⊥)→ 2T⊥
I For n ∈ N we see Tn ≡ T + 3n

T>
I Transfinite progressions are not expressible in the modal

language with just one modal operator.

I However:

I Proposition: T + 〈1〉T> is a Π1 conservative extension of
T + {〈0〉kT> | k ∈ ω}.

Joost J. Joosten Ordinal analysis based on iterated reflection



First order arithmetical theories
Beyond first order

Hyper-arithmetical hierarchy

Turing progressions
The logics GLPΛ
Proof theoretical ordinals

I Poly-modal provability logics turn out to be suitably well
equipped to talk about Turing progressions

I Already just the language with one modality [0] is expressive

I Gödel II: 3T> → ¬2T3T>
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Definition
The logic GLPΛ is the propositional normal modal logic that has
for each ξ < Λ a modality [ξ] and is axiomatized by the following
schemata:

[ξ](A→ B)→ ([ξ]A→ [ξ]B)
[ξ]([ξ]A→ A)→ [ξ]A
〈ξ〉A→ [ζ]〈ξ〉A for ξ < ζ,
[ξ]A→ [ζ]A for ξ < ζ.

The rules of inference are Modus Ponens and necessitation for
each modality: ψ

[ζ]ψ .
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I GLP0
Λ denotes the closed fragment (no propositional variables)

I Iterated consistency statements in GLP0
Λ are called worms

I 〈ξ0〉 . . . 〈ξn〉>
I We write W for the class of all worms

I Worms are quite expressive under their natural arithmetical
interpretation:

I Theorem
EA + 〈n + 1〉EA> ≡ EA + RFNΣn+1(EA) ≡ IΣn.
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A <ξ B :⇔ GLP ` B → 〈ξ〉A

I For <0 defines a well-order on the class of worms modulo
provable GLP equivalence.

(Beklemishev, Fernández Duque, JjJ)

I For <ξ with ξ > 0 the relation is no longer linear (mod prov.
equivalence) but is still well-founded

(infinite anti-chains)

I Worms of GLPω are known to be useful for Turing
progressions:

I Proposition (Beklemishev) For each ordinal α < ε0 there is
some GLPω-worm A such that o(A) = α, and T + A is Π1

equivalent to Tα.
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I We formulated a new elegant calculus for o(A) (DFD, JjJ,
2014 JIGPAL)

I o(>) = 0;
I o(A0B) = o(B) + 1 + o(A);
I o(α ↑ A) = eα

(
o(A)

)
I Here eα is “α times iterating ordinal exponentiaton”

I Moreover, oξ(A) = o
(
ξ ↓ hξ(A)

)
I Here hξ(A) is the “ξ-head of A”, that is the leftmost part of

A where all modalities are at least ξ
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I o(A0B) = o(B) + 1 + o(A);
I o(α ↑ A) = eα

(
o(A)

)
I Here eα is “α times iterating ordinal exponentiaton”
I Examples:

I o(>) = 0;
I o(0) = o(>0>) = o(>) + 1 + o(>) = 0 + 1 + 0 = 1;
I o(00) = o(>00) = o(>) + 1 + o(0) = 0 + 1 + 1 = 2;
I o(000) = o(0) + 1 + o(0) = 1 + 1 + 1 = 3;
I o(0000) = o(0) + 1 + o(00) = 1 + 1 + 2 = 4, etc.;
I o(1) = o(1 ↑ 0) = e1(o(0)) = e1(1) = ω1 = ω;
I o(101) = o(1) + 1 + o(1) = ω + ω;
I o(11) = o(1 ↑ 00) = e1(o(00)) = e1(2) = ω2;
I o(2) = o(2 ↑ 0) = e2(o(0)) = e2(1) = ωω

1

= ωω;
I o(323) = o(2 ↑ 101) = e2(o(101)) = e2(ω + ω) = ωω

ω+ω

;
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I eα is “α times iterating ordinal exponentiaton”

1. e0 := id;
2. e1(ξ) := −1 + ωξ; (important: start with zero!)
3. eα+β := eα ◦ eβ

I Transfinite iteration would stabilize/saturate at eω

I Our solution (DFD, JjJ, 2013 APAL), call any collection
{f α}α∈On satisfying (1)–(3) a weak hyperexponential

I Then define the hyperexponential to be the unique weak
hyperexponential {f α}α∈On which is point-wise minimal
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I A recursive definition for hyperexponentials:

1. e0(ξ) = ξ,
2. e1(ξ) = −1 + ωξ,
3. eω

ρ+ξ = eω
ρ

eξ, where 0 < ξ < ωρ + ξ,
4. eω

ρ

0 = 0,
5. eω

ρ

(ξ + 1) = limζ→ωρ eζ(f ω
ρ

(ξ) + 1) for ρ > 0,
6. eω

ρ

ξ = limζ→ξ eω
ρ

ζ for ξ ∈ Lim and ρ > 0.

I A new perspective on binary Veblen functions;

I Theorem ϕα(ξ) = eω
α

(1 + ξ)

I The Veblen functions are a natural subsequence of
hyperexponentiation
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I For GLP0
ω Ignatiev presented a nice model

I Elements in the model are so-called Ignatiev sequences (I):
sequences a of length ω of ordinals below ε0,

I so that ai+1 ≤ `ai .

I Here ` is the last exponent function, mapping an ordinal to
the exponent of the last term in its CNF representation

I `(0) := 0 and `(ξ + ωα) = α

I Accessibility relation Rn is defined as aRnb iff

I an > bn and
I ai = bi for all i < n

I This model is universal for GLP0
ω
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the exponent of the last term in its CNF representation

I `(0) := 0 and `(ξ + ωα) = α

I Accessibility relation Rn is defined as aRnb iff

I an > bn and
I ai = bi for all i < n

I This model is universal for GLP0
ω
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The logics GLPΛ
Proof theoretical ordinals

I We define the Πn+1 proof-theoretic ordinal of a theory U as
follows:

I |U|Πn+1 = sup{ξ | T ξ
n ⊆ U}.

I For U a arithmetical theory we define its Turing-Taylor
expansion by

I tt(U) :=
⋃∞

n=0 T
|U|Πn+1
n

I In case U ≡ tt(U) we say that U has a convergent
Turing-Taylor expansion.
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First order arithmetical theories
Beyond first order

Hyper-arithmetical hierarchy

Turing progressions
The logics GLPΛ
Proof theoretical ordinals

I We write Wξ for the class of all worms all of whose modalities
are at least ξ

I Theorem (Beklemishev)

For each worm A ∈Wn : T + A ≡n T
o(A)
n ;

I Theorem(JjJ)

For each worm A : T + A ≡
⋃∞

n=0 T
o(A)
n

I Compare this to

f (x) :=
∞∑

n=0

f (n)(0)

n!
xn

I The monomials in Turing-Taylor progressions are the Tα
n

I They are not entirely independent!
I T 1

1 ` Tω
0

I T 1
1 + Tω+1

0 ≡ T 1
1 + Tω·2

0
I Ignatiev’s model can be interpreted as representing ‘natural’

theories!
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I The universal model of GLP0
ω: Ignatiev’s model I

I Theorem The points in the Ignatiev model exactly correspond
to those sub-theories of PA that have a convergent
Turing-Taylor expansion

I That is, for each such theory U, we have that tt(U) ∈ I
I and for each ~A ∈ I, there is a theory U so that tt(U) = ~A

I This yields a roadmap to conservation results!
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Beyond first order

Hyper-arithmetical hierarchy

The modal logics
Arithmetical interpretations

I We would like to extend the results of the first section beyond
first order

I Logics GLPΛ studied (Bekl. 2005; Bekl. DFD, JjJ 2014 SL)

I Ignatiev’s model I generalized (DFD, JjJ, 2013 JSL)
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Beklemishev’s autonomous worm notation

1 () 2 ()()

ω (()) ω + ω (())()(())

ε0 ((())) ωε0+1 (())((()))
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Fernandez-Duque’s Spiders

ω
()
 ϕωCK

1
(1)

()
()


ωCK

1


()

 ωCK
3 + ωCK

1


()

()


()()()


ωCK
ω

8:()
9;
 ψωCK

1
(ωCK
ω )

8:8:()
9;

9;
ωCK
ωCK

1

8:
()

9;
 ψωCK

2
(ωCK
ωCK

1
)
8:8:

()

9;
9;

()
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First order arithmetical theories
Beyond first order

Hyper-arithmetical hierarchy

The modal logics
Arithmetical interpretations

I Omega Rule interpretation

I [0]Tφ⇔ 2Tφ

I if ξ < λ,

[ξ]Tψ(0̄) [ξ]Tψ(1̄) [ξ]Tψ(2̄) . . .

∀nψ(n)
2T (∀nψ(n)→ φ)

[λ]Tφ

I Theorem (DFD, JjJ) For recursive Λ we have GLPΛ sound
and complete for the omega rule interpretation for a large
class of theories

Joost J. Joosten Ordinal analysis based on iterated reflection
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The modal logics
Arithmetical interpretations

I Omega Rule interpretation with oracles

I [λ|X ]Tφ means that we may also use an oracle for X :

I ECA0 ` n ∈ X → [0|X ]T (n̄ ∈ X̄ )
ECA0 ` n 6∈ X ⇒ [0|X ]T (n̄ 6∈ X̄ )

I If φ ∈ Σ0
2m+1(X , x) then

ECA0 ` ∀X ∀x
(
φ(X , x)→ [m|X ]mECA0

φ(X , ẋ)
)

.

I λ-OracleRFNΛ
ECA0

[Π1
1] ≡ λ-OracleConsΛ

ECA0
.

I ECA0 + 0-OracleRFN1
ECA0

[Σ0
1] implies ACA0

I ACA0 ` wo(Λ)→
(
∀λ∈|Λ|

(
λ > 0→

[λ|Λ,X ]ΛECA0
TIΛ

ω·λ̇(φ(X ))
))
.

Joost J. Joosten Ordinal analysis based on iterated reflection
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Hyper-arithmetical hierarchy

The modal logics
Arithmetical interpretations

Towards a Π0
1 analysis of predicativity

Predicative oracle consistency:

Pred-O-Con(T ) = ∀Λ∀X (wo(Λ)→ 〈Λ|X 〉T>)

Theorem (Cordón-Franco, DFD, JjJ, Lara-Mart́ın)

ATR0 ≡ ECA0 + Pred-O-Con(ECA0)

I Recall: PA ≡ EA + {n-Con(EA) | n < ω}.
I ATR0 ≡ ECA0 + “{α-Oracle-Con(ECA0) | α a well-order}”.
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Conjectures:

I ATR0 ≡Π0
1
EA + {〈γ〉EA> : γ < Γ0}

I ‖ATR0‖ECA0

Π0
1

= Γ0

[∞]Tφ holds if φ is provable using an arbitrary number of ω-rules.

Theorem (DFD):

Π1
1-CA = ECA0 + ∀X 〈∞|X 〉ECA0>
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Hyper-arithmetical hierarchy

The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

I A central ingredient for PA: syntactical complexity classes

I Like in the truth interpretation of GLP

I Omega-rule interpretation is slightly better

I However, does not tie up with the Turing jump hierarchy

I Friedman, Goldfarb and Harrington come to the rescue!

Joost J. Joosten Ordinal analysis based on iterated reflection
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Hyper-arithmetical hierarchy

The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

Theorem
Let T be any computably enumerable theory extending EA and let
n < ω. For each σ ∈ Σ0

n+1 we have that there is some ρn ∈ Σ0
n+1

so that
EA ` 〈n〉True

T > →
(
σ ↔ [n]True

T ρn

)
.

I proof The proof runs analogue to the proof of the classical
FGH theorem adding an additional ingredient to get things
down to EA.

Joost J. Joosten Ordinal analysis based on iterated reflection
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First order arithmetical theories
Beyond first order

Hyper-arithmetical hierarchy

The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

I The [n] predicates tie up with the arithmetical hierarchy:

I Lemma
Let T be any c.e. theory and let A ⊆ N. The following are
equivalent

1. A is c.e. in ∅(n);

2. A is 1-1 reducible to ∅(n+1);

3. A is definable on the standard model by a Σ0
n+1 formula;

4. A is definable on the standard model by a formula of the form
[n]Tρ(ẋ);

Joost J. Joosten Ordinal analysis based on iterated reflection
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The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

I fixing a well-behaved ordinal notation we formalize

I [ζ]φ :⇔ 2φ ∨ ∃ψ ∃ ξ<ζ (〈ξ〉ψ ∧ 2(〈ξ〉ψ → φ)).

I Theorem
The logic GLPΛ is sound for strong enough theories T under the
interpretation 2 7→ [λ]2,ΛT .

Joost J. Joosten Ordinal analysis based on iterated reflection
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The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

Definition
Let T be a c.e. theory. We define

- ∆2
0 := Σ2

0 := Π2
0 := ∆0

0;

- Σ2
α+1 = Σ2

α ∪ Π2
α ∪ {[α]2Tϕ(ẋ) | ϕ(x) ∈ Form} for α > 0;

- Π2
α+1 = Σ2

α ∪ Π2
α ∪ {〈α〉2Tϕ(ẋ) | ϕ(x) ∈ Form} for α > 0;

- Σ2
λ := Π2

λ :=
⋃
α<λ

Σ2
α for λ ∈ Lim.
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The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

I Theorem/conjecture Let T be any c.e. theory, let ξ < Λ for
a natural ordinal notation system, and let A ⊆ N. The
following are equivalent

1. A is c.e. in ∅(ξ);

2. A is 1-1 reducible to ∅(ξ+1);

3. A is definable on the standard model by a formula of the form
[ξ]2Tρ(ẋ);

I No longer runs out of phase
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I No longer runs out of phase

Joost J. Joosten Ordinal analysis based on iterated reflection



First order arithmetical theories
Beyond first order

Hyper-arithmetical hierarchy

The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

I Theorem/conjecture Let T be any c.e. theory, let ξ < Λ for
a natural ordinal notation system, and let A ⊆ N. The
following are equivalent

1. A is c.e. in ∅(ξ);

2. A is 1-1 reducible to ∅(ξ+1);

3. A is definable on the standard model by a formula of the form
[ξ]2Tρ(ẋ);
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The Turing-jump interpretation of transfinite provability logics
Hyper-arithmetical reflection

Theorem

Let T be a c.e. theory containing ECA0.

1. ECA0 ` RFNΛ
T (Π2

α+1) ≡ 〈α〉2T>;

2. For β ≤ α, we have ECA0 ` β−RFNΛ
T (Π2

α+1) ≡ 〈α〉2T>;

3. For β > α we have that ECA0 ` β−RFNΛ
T (Π2

α+1) ≡ 〈β〉2T>;

4. So, in general, we have that
ECA0 ` β−RFNΛ

T (Π2
α+1) ≡ 〈max{α, β}〉2T>.

1. Theorem/conjecture: The theory EA + {〈ξ〉> | ξ < ζ} has
Π0

1 ordinal sup{eξ1 | ξ < ζ}.
2. Main question: how do these theories relate to better known

theories like fragments of second order arithmetic of weak
set-theories.

Joost J. Joosten Ordinal analysis based on iterated reflection
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