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Reflection principles

I The basic theory is EA (Elementary Arithmetic) with
language Lexp = {0, S ,+, · , exp, <}

I For each theory T , elementary presented, we consider
formulas

I PrfT (y , x) expresing “y is (codes) a proof of x in T ”
I �T (x) ≡ ∃y PrfT (y , x)

I Local Reflection for T is the following scheme, Rfn(T ),

�T (pϕq)→ ϕ

for each sentence ϕ.

I Uniform Reflection for T is the following scheme,
RFN(T ),

∀x1 . . . ∀xn (�T (pϕ(ẋ1, . . . , ẋn)q)→ ϕ(x1, . . . , xn))

for each formula ϕ(x1, . . . , xn).
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for each formula ϕ(x1, . . . , xn).



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Reflection principles

I The basic theory is EA (Elementary Arithmetic) with
language Lexp = {0, S ,+, · , exp, <}

I For each theory T , elementary presented, we consider
formulas

I PrfT (y , x) expresing “y is (codes) a proof of x in T ”
I �T (x) ≡ ∃y PrfT (y , x)

I Local Reflection for T is the following scheme, Rfn(T ),

�T (pϕq)→ ϕ

for each sentence ϕ.

I Uniform Reflection for T is the following scheme,
RFN(T ),
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Partial Reflection

Partial Reflection: Reflection scheme restricted to a class of
formulas Σ.

I Partial Local Reflection, RfnΣ(T ) is given by

�T (pϕq)→ ϕ

for every ϕ ∈ Σ ∩ Sent

I Partial Uniform Reflection, RFNΣ(T ) is given by

∀x1 . . . ∀xn (�T (pϕ(ẋ1, . . . , ẋn)q)→ ϕ(x1, . . . , xn))

for all ϕ(~x) ∈ Σ.
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Relativized reflection principles

I For each n ≥ 1 and each theory T , elementary
presented, we consider the formulas

I PrfnT (y , x) expressing

“y is (codes) a proof of x in T + ThΠn(N )”

I [n]T (x) ≡ ∃y PrfnT (y , x)

I Relativized Local Reflection for T is the scheme,
Rfnn(T ),

[n]T (pϕq)→ ϕ

for each sentence ϕ.

I Relativized Uniform Reflection for T , RFNn(T ) is
defined in a similar way.



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Relativized reflection principles

I For each n ≥ 1 and each theory T , elementary
presented, we consider the formulas

I PrfnT (y , x) expressing

“y is (codes) a proof of x in T + ThΠn(N )”

I [n]T (x) ≡ ∃y PrfnT (y , x)

I Relativized Local Reflection for T is the scheme,
Rfnn(T ),

[n]T (pϕq)→ ϕ

for each sentence ϕ.

I Relativized Uniform Reflection for T , RFNn(T ) is
defined in a similar way.



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Relativized reflection principles

I For each n ≥ 1 and each theory T , elementary
presented, we consider the formulas

I PrfnT (y , x) expressing

“y is (codes) a proof of x in T + ThΠn(N )”

I [n]T (x) ≡ ∃y PrfnT (y , x)

I Relativized Local Reflection for T is the scheme,
Rfnn(T ),

[n]T (pϕq)→ ϕ

for each sentence ϕ.

I Relativized Uniform Reflection for T , RFNn(T ) is
defined in a similar way.



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Relativized reflection principles

I For each n ≥ 1 and each theory T , elementary
presented, we consider the formulas

I PrfnT (y , x) expressing

“y is (codes) a proof of x in T + ThΠn(N )”

I [n]T (x) ≡ ∃y PrfnT (y , x)

I Relativized Local Reflection for T is the scheme,
Rfnn(T ),

[n]T (pϕq)→ ϕ

for each sentence ϕ.

I Relativized Uniform Reflection for T , RFNn(T ) is
defined in a similar way.



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Relativized reflection principles

I For each n ≥ 1 and each theory T , elementary
presented, we consider the formulas

I PrfnT (y , x) expressing

“y is (codes) a proof of x in T + ThΠn(N )”

I [n]T (x) ≡ ∃y PrfnT (y , x)

I Relativized Local Reflection for T is the scheme,
Rfnn(T ),

[n]T (pϕq)→ ϕ

for each sentence ϕ.

I Relativized Uniform Reflection for T , RFNn(T ) is
defined in a similar way.



On an abstract
approach

Cordón–Franco,
Lara–Mart́ın

Introduction

Uniform and Local
Reflection

A model–theoretic
proof

Existentially closed
models

Parsons’s theorem

Conditional axioms
and conservation

Conditional axioms

Normal conditional
sentences

Some applications

Induction

Local Reflection

Parameter free
induction

Metareflection

I Metareflection Rule, RRn(T ):

ϕ

〈n〉T (ϕ)

I Πm–RRn(T ) is the rule RR(T ) with the restriction that
ϕ is a Πm–sentence.

I If T is an elementary presented extension of EA, then
for every m ≥ 1,

T n
m ≡ [T ,Πn+1–RRn(T )]m

where T n
0 = T and T n

k+1 = Tk + 〈n〉Tk
>, and

I [U,Πn+1–RR(T )] is the closure of U under first order
logic and unnested applications of Πn+1–RR(T )],

I [T ,Πn+1–RR(T )]1 = [T ,Πn+1–RR(T )],
[T ,Σ1–IR]k+1 = [[T ,Σ1–IR]k ,Σ1–IR].
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Conservation properties of reflection principles

I (Beklemishev) If U is a Πn+2–axiomatized extension of
EA then

I U + RFNΣn+1 (T ) is Πn+1–conservative over
U + Πn+1–RRn(T ).

I U + RFNΣn+1 (T ) is Σn+2–conservative over
U + Rfnn

Σn+1
(T ).

I (Goryachev, Beklemishev) Let ϕ1, . . . , ϕm a finite set of
sentences. Then for every ψ ∈ Πn+1,

T + Rfnn
ϕ1

(T ) + · · ·+ Rfnn
ϕm

(T ) ` ψ =⇒ T n
m ` ψ

(hence [T ,Πn+1–RRn(T )]m ` ψ).
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Σn+1–closed models

I Σn+1–closed models provide a simple and clear method
to obtain conservation results.

I Definition. Let T be a theory. We say that A |= T is a
Σn+1–closed model of T if for each B |= T ,

A ≺n B =⇒ A ≺n+1 B

I It generalizes the notion of an existentially closed model.

I Proposition. (Existence)
Let T be a Πn+2–axiomatizable theory and A |= T
countable. Then there exists B |= T such that A ≺n B
and B is Σn+1–closed for T.

I Corollary. Every consistent and Πn+2–axiomatizable
theory has a Σn+1–closed model.
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I Σn+1–closed models provide a simple and clear method
to obtain conservation results.

I Definition. Let T be a theory. We say that A |= T is a
Σn+1–closed model of T if for each B |= T ,

A ≺n B =⇒ A ≺n+1 B
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The basics of the method

The basic device is the following result:

Theorem (Avigad,’02)

Let T1 be a Πn+2–axiomatizable theory such that every
Σn+1–closed model for T1 is a model of T2. Then T2 is
Πn+1–conservative over T1.

Other key ingredient in most applications:

Lemma
Let A be a Σn+1–closed model for T. Let ϕ(~x) ∈ Πn+1 and
~a ∈ A such that A |= ϕ(~a). Then there exist θ(v ,~x) ∈ Πn

and b ∈ A such that

A |= θ(b,~a) and T ` θ(v ,~x)→ ϕ(~x)
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Parsons’s Theorem (I)

Theorem (Parsons, ’72)

IΣ1 is Π2–conservative over I∆0 + Σ1–IR.

I Σ1–Induction Rule, Σ1–IR:

ϕ(0) ∧ ∀x (φ(x)→ φ(x + 1))

∀x φ(x)

I Let T be a Π2–axiomatizable finite extension of IΣ0,
T = I Σ0 + ∀x∃y∀u ≤ x∃v ≤ y σ(u, v) for some
σ(x , y) ∈ ∆0. Then, for each m ≥ 1,

[T ,Σ1–IR]m ≡ T + ∀x ∃y (Fm(x) = y) ` ψ

where F0(x) = (x + 1)2 + (µy)(σ(x , y)),
Fk+1(x) = Fk(x)x+1.
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Parsons’ Theorem (II)

Theorem
Let A be a Σn+2–closed model of T + Σn+1–IR. Then
A |= IΣn+1.

Proof. Let ϕ(x) ∈ Σn+1 such that

A |= ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))

Then there exist a ∈ A and θ(u) ∈ Πn such that

T + Σn+1–IR ` θ(u)→ ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))

and A |= θ(a). Put ψ(x , u) := θ(u)→ φ(x), Then

T + Σn+1–IR ` ψ(0, u) ∧ ∀x (ψ(x , u)→ ψ(x + 1, u))

Hence, T + Σn+1–IR ` ∀x ψ(x , u). As a consequence
A |= ∀x ψ(x , u). In particular, A |= θ(a)→ ∀x ϕ(x) and
it follows that A |= ∀x ϕ(x).
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Conditional axioms

Let L denote the language of First Order Arithmetic.

Definition
A set of L–formulas, E , is a set of conditional axioms if
each element of E is a formula of the form α(~v)→ β(~v).

Let T be an L–theory and E be a set of conditional axioms.

I T + E is obtained by adding to T the universal closure
of each formula in E .

I Example: T + E = I Σ1, for T = I ∆0 and

E = {Iϕ,x(~v) : ϕ(x , ~v) ∈ Σ1}

where Iϕ,x(~v) is the induction scheme

ϕ(0, ~v) ∧ ∀x (ϕ(x , ~v)→ ϕ(x + 1, ~v))︸ ︷︷ ︸
α

→ ∀x ϕ(x , ~v)︸ ︷︷ ︸
β
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Conditional axioms (cont’d)

I We can associate to each set of conditional axioms, E ,
two auxiliary sets of conditional axioms:

I E− = E ∩ Sent, and
I UE = {∀~v α(~v)→ ∀~v β(~v) : α(~v)→ β(~v) ∈ E}

I The theories T + UE and T + E− are obtained by
adding to T the sentences in UE and E− respectively.

I Example: For E = I ∆1 we have:
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Conditional axioms (cont’d)

I We can associate to each set of conditional axioms, E ,
two auxiliary sets of conditional axioms:

I E− = E ∩ Sent, and
I UE = {∀~v α(~v)→ ∀~v β(~v) : α(~v)→ β(~v) ∈ E}

I The theories T + UE and T + E− are obtained by
adding to T the sentences in UE and E− respectively.

I Example: For E = I ∆1 we have:

E = {∀x (ϕ(x , ~v)↔ ψ(x , ~v))︸ ︷︷ ︸
α(~v)

→ Iϕ,x(~v)︸ ︷︷ ︸
β(~v)

: ϕ ∈ Σ1, ψ ∈ Π1}

UE = {∀~v (∀x (ϕ(x , ~v)↔ ψ(x , ~v)))→ ∀~v Iϕ,x(~v) : ϕ ∈ Σ1, ψ ∈ Π1}

E− = {∀x (ϕ(x)↔ ψ(x))→ Iϕ,x : ϕ(x) ∈ Σ−
1 , ψ(x) ∈ Π−

1 }
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Conditional axioms: Inference rules

We also define an inference rule, E -Rule, with instances

α(~v)

β(~v)
, for each α(~v)→ β(~v) ∈ E

I [T ,E –Rule] denotes the closure of T under first order
logic and unnested applications of E –Rule.

I T + E –Rule denotes the closure of T under first order
logic and (nested) applications of E –Rule.

I We denote by E−–Rule the inference rule associated to
the set of conditional axioms E−.
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Normal conditional axioms

Let us fix a countable first order language L.
I Π will denote a fixed set of L–formulas such that:

1. It contains all atomic formulas and is closed under
subformulas.

2. We assume that (modulo logical equivalence) Π is
closed under disjunctions and conjunctions, and

3. (modulo logical equivalence) ¬Π ⊆ ∃Π, (here ¬Π is
{¬ϕ : ϕ ∈ Π} and ∃Π is {∃~xϕ(~x) : ϕ(~x) ∈ Π}).

I We say that a formula α(~v)→ β(~v) is a normal
conditional axiom w.r.t. Π if

I α(~v) ∈ ∀¬Π, and
I β(~v) ∈ ∀∃Π.
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The basic reduction

I For each set of formulas Π, we introduce the rule
E Π–Rule given by the instances

θ(~v ,~z)→ α(~v)

θ(~v ,~z)→ β(~v)

for each α(~v)→ β(~v) ∈ E and θ(~v ,~z) ∈ Π.

Lemma
Let T be a theory and E a set of conditional axioms such
that

(S1) For every α(~v)→ β(~v) ∈ E , α(~v) ∈ ∃∀¬Π.

(S2) T + E Π–Rule is ∀∃Π–axiomatizable.

Then T + E is ∀¬Π–conservative over T + E Π–Rule.
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The basic reduction (cont’d)

I It holds that [U,E –Rule] ⊆ [U,E Π–Rule].

I E is Π–reducible modulo T if for every theory U
extending T , it holds

[U,E Π–Rule] ≡ [U,E –Rule]

Theorem
Let T be a ∀∃Π–axiomatizable theory and E a set of normal
conditional axioms w.r.t. Π. Assume that E is Π–reducible
modulo T . Then

1. T + E is ∀¬Π–conservative over T + E –Rule.

2. T + E is ∃∀¬Π–conservative over T + UE .

3. If every ∀∃Π–axiomatizable extension of T + E− is
closed under E –Rule, then T + E is ∃∀¬Π–conservative
over T + E−
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For Σn+1–induction:

I I Σn+1 is a set of normal conditional axioms w.r.t. Πn+1

and it is Πn+1–reducible modulo I ∆0. Hence, for every
Πn+2–axiomatizable theory T extending I ∆0:

1. ThΠn+2 (T + I Σn+1) ≡ T + Σn+1–IR.
2. ThΣn+3 (T + I Σn+1) ≡ T + I Σ−

n+1.

For ∆n+1–induction:
I I ∆n+1 is a set of normal conditional axioms w.r.t. Πn+1

and it is Π1–reducible modulo I ∆0. Hence, for every
Πn+2–axiomatizable theory T extending I ∆0:

1. ThΠn+2 (T + I ∆n+1) ≡ T + ∆n+1–IR.
2. ThΣn+3 (T + I ∆n+1) ≡ T + UI ∆n+1.
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The finite case

Theorem
Let F be a set of normal conditional sentences w.r.t. Π.
Then, for every ∀∃Π–axiomatizable theory T it holds that

Th∀¬Π(T + F ) ⊆ [T ,F Π–Rule]m

where m is the number of elements of F .

Corollary

Let E be a set of normal conditional sentences w.r.t. Π.
Assume that E is Π–reducible modulo T . Then for every
finite set of sentences F ⊆ E with m elements, it holds that

Th∀¬Π(T + F ) ⊆ [T ,E –Rule]m.
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The finite case (proof)

Lemma
Let E = {ψ1, . . . , ψm} a finite set of closed conditional
axioms w.r.t. Π. Then

T + E Π–Rule ≡ [T ,E Π–Rule]m

I If ψ is a sentence of the form α→ β, with α ∈ ∀¬Π
and β ∈ ∀∃Π, we define the rule

ψΠ–Rule :
θ(u)→ α

θ(u)→ β
, (θ(u) ∈ Π).

I T + ψΠ–Rule ≡ [T , ψΠ–Rule].

I It holds that for each sentence ϕ ∈ ∀¬Π, a proof of ϕ
in T + E Π–Rule only requires one application of each
rule ψΠ

j –Rule.
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Kaye’s Theorem

Theorem
For every theory T extension of I Σn, m ≥ 1 and
ϕ1(x), . . . , ϕm(x) ∈ Σ−n+1,

ThΠn+2(T + Iϕ1 + · · ·+ Iϕm) ⊆ [T ,Σn+1–IR]m

I I Σ−n+1 is a set of normal conditional sentences w.r.t.
Πn+1 .

I I Σ−n+1 is Πn+1–reducible modulo I Σn.
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∆1–Induction

I UI ∆1 is a set of normal conditional axioms w.r.t. Π1.

I UI ∆1 is Π1–reducible modulo I Σ0.

Theorem
Let T a Π3–axiomatizable extension of I Σ0. Let
ϕ1(x , u), . . . , ϕm(x , u) ∈ Σ1, ψ1(x , u), . . . , ψm(x , u) ∈ Π1,
and θ ∈ Π2 such that

T + UIϕ1,ψ1 + · · ·+ UIϕm,ψm ` θ

then [T ,∆1–IR]m ` θ.
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Local reflection

I Let T an elementary presented theory. For each
sentence σ, the local relativized reflection principle
for σ wrt T , Rfnn

σ(T ) is equivalent to the sentence

¬σ → 〈n〉T (¬σ)

I Rfnn
Σn+1

(T ) can be axiomatized by a set of normal
conditional sentences w.r.t. Πn, and

I In addition, Rfnn
Σn+1

(T ) is Πn–reducible modulo EA.
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Goryachev’s theorem

Theorem
Let T be an elementary presented extension of EA and
ϕ1, . . . , ϕm a finite set of Σ1–sentences. Then for every
Π2-axiomatized extension of EA ψ ∈ Π1,

U+Rfnϕ1(T )+· · ·+Rfnϕm(T ) ` ψ =⇒ [U,Π1–RR(T )]m ` ψ

I This provides a weak version of Goryachev’s theorem.
I The full result can be obtained from a result by L.

Beklemishev: For each sentence ψ ∈ Π1, and sentences
ϕ1, . . . , ϕm such that

T + Rfnϕ1(T ) + · · ·+ Rfnϕm(T ) ` ψ

there exist sentences σ1, . . . , σm ∈ Σ1 such that

T + Rfnσ1(T ) + · · ·+ Rfnσm(T ) ` ψ
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Induction up to Σ1–definable elements

I We denote by I (Σ1,K1) the theory given by I ∆0

together with the induction scheme

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→
∀x1, x2 (δ(x1) ∧ δ(x2)→ x1 = x2)→ ∀x (δ(x)→ ϕ(x))

where ϕ(x) ∈ Σ1 and δ(x) ∈ Σ−1 .

I (Σ1,K1)–IR denotes the following inference rule:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))

∀x1, x2 (δ(x1) ∧ δ(x2)→ x1 = x2)→ ∀x (δ(x)→ ϕ(x))

where ϕ(x) ∈ Σ1 and δ(x) ∈ Σ−1 .
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Induction up to Σ1–definable elements (II)

I I (Σ1,K1) is set of normal conditional axioms w.r.t. Π1.

I I (Σ1,K1) is Π1–reducible modulo I Σ0.

I I Π−1 ≡ I (Σ−1 ,K1)

I Let us denote by Π−1 –IR0 the rule

∀x (ϕ(x)→ ϕ(x + 1))

ϕ(0)→ ∀x ϕ(x)
, ϕ(x) ∈ Π−1

I For every Π2–axiomatizable theory T extending I Σ0,

[T , (Σ−1 ,K1)–IR] ≡ [T ,Π−1 –IR0]
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Induction up to Σ1–definable elements (III)

Theorem
Let T be a B(Σ1)–axiomatizable extension of I ∆0. Then.

1. T + I (Σ1,K1) is Π2–conservative over T + (Σ1,K1)–IR.

2. T + (Σ1,K1)–IR is Σ2–conservative over
T + (Σ−1 ,K1)–IR.

3. T + (Σ−1 ,K1)–IR ≡ [T , (Σ−1 ,K1)–IR].

4. T + I (Σ1,K1) is B(Σ1) conservative over
T + I (Σ−1 ,K1).

Corollary

I Π−1 is Π2–conservative over I Σ0 + (Σ1,K1)–IR.
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Induction up to Σ1–definable elements (III)

Theorem
Let T be a B(Σ1)–axiomatizable extension of I ∆0. Then.

1. T + I (Σ1,K1) is Π2–conservative over T + (Σ1,K1)–IR.

2. T + (Σ1,K1)–IR is Σ2–conservative over
T + (Σ−1 ,K1)–IR.

3. T + (Σ−1 ,K1)–IR ≡ [T , (Σ−1 ,K1)–IR].

4. T + I (Σ1,K1) is B(Σ1) conservative over
T + I (Σ−1 ,K1).

Corollary

I Π−1 is Π2–conservative over I Σ0 + (Σ1,K1)–IR.
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Parameter free Π1-Induction

I Let ϕ1(x), . . . , ϕm(x) ∈ Π−1 and ψ ∈ Π2 such that

I ∆0 + Iϕ1 + · · ·+ Iϕm ` ψ

Then [I ∆0, (Σ1,K1)–IR)]m ` ψ.

I If ψ ∈ B(Σ1) then [I ∆0, (B(Σ1)−,K1)–IR)]m ` ψ.
I If ψ ∈ Π1, then there exist sentences π1, . . . , πr ∈ Π1

and σ1, . . . , σr ∈ Σ1 such that
I I ∆0 `

∨r
j=1(σj ∧ πj).

I For each j = 1, . . . , r , over I ∆0 + Sj , m unnested
applications of Π−

1 –IR0 proves ψ.
I For each j = 1, . . . , r , [I ∆0 + Sj ,Π1–IR]m ` ψ.
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