On an abstract approach to the Reduction Property

A. Cordón–Franco, F. F. Lara–Martín

UNIVERSITY OF SEVILLE (SPAIN)

Partially supported by grants MTM2008-06435 and MTM2011-26840 MICINN, Spanish Goverment

Proof Theory and Modal Logic (First International Wormshop) Barcelona, April 2012

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Contents

Introduction Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction Local Reflection Parameter free induction

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- ► For each theory *T*, *elementary presented*, we consider formulas
 - Prf_T(y, x) expressing "y is (codes) a proof of x in 7
 □_T(x) ≡ ∃y Prf_T(y, x)
- Local Reflection for T is the following scheme, Rfn(T),

 $\Box_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n (\Box_{\mathcal{T}} (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \rightarrow \varphi(x_1, \ldots, x_n))$

for each formula $\varphi(x_1,\ldots,x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- For each theory *T*, *elementary presented*, we consider formulas
 - Prf_T(y,x) expresing "y is (codes) a proof of x in T"
 □_T(x) ≡ ∃y Prf_T(y,x)
- Local Reflection for T is the following scheme, Rfn(T),

 $\Box_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n (\Box_{\mathcal{T}} (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \rightarrow \varphi(x_1, \ldots, x_n))$

for each formula $\varphi(x_1,\ldots,x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- For each theory *T*, *elementary presented*, we consider formulas
 - $Prf_T(y, x)$ expresing "y is (codes) a proof of x in T"

 $\square_{\mathcal{T}}(x) \equiv \exists y \operatorname{Prf}_{\mathcal{T}}(y, x)$

• Local Reflection for T is the following scheme, Rfn(T),

 $\exists \tau (\ulcorner \varphi \urcorner) \to \varphi$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n (\Box_{\mathcal{T}} (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \rightarrow \varphi(x_1, \ldots, x_n))$

for each formula $\varphi(x_1,\ldots,x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- For each theory *T*, *elementary presented*, we consider formulas
 - ▶ Prf_T(y, x) expresing "y is (codes) a proof of x in T"
 - $\square_T(x) \equiv \exists y \operatorname{Prf}_T(y, x)$
- Local Reflection for T is the following scheme, Rfn(T),

 $\Box_T(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n \left(\Box_T (\lceil \varphi(\dot{x}_1, \ldots, \dot{x}_n) \rceil) \to \varphi(x_1, \ldots, x_n) \right)$

for each formula $\varphi(x_1,\ldots,x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- For each theory *T*, *elementary presented*, we consider formulas
 - $Prf_T(y, x)$ expressing "y is (codes) a proof of x in T"

$$\Box_T(x) \equiv \exists y \operatorname{Prf}_T(y, x)$$

• Local Reflection for T is the following scheme, Rfn(T),

$$\exists \tau (\ulcorner \varphi \urcorner) \to \varphi$$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n (\Box_{\mathcal{T}} (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \rightarrow \varphi(x_1, \ldots, x_n))$

for each formula $\varphi(x_1,\ldots,x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► The basic theory is EA (Elementary Arithmetic) with language L_{exp} = {0, S, +, ·, exp, <}</p>
- For each theory *T*, *elementary presented*, we consider formulas
 - $Prf_T(y, x)$ expressing "y is (codes) a proof of x in T"

$$\Box_T(x) \equiv \exists y \operatorname{Prf}_T(y, x)$$

• Local Reflection for T is the following scheme, Rfn(T),

$$\exists \tau (\ulcorner \varphi \urcorner) \to \varphi$$

for each sentence φ .

► Uniform Reflection for T is the following scheme, RFN(T),

 $\forall x_1 \ldots \forall x_n \left(\Box_T (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \to \varphi(x_1, \ldots, x_n) \right)$

for each formula $\varphi(x_1, \ldots, x_n)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Partial Reflection

Partial Reflection: Reflection scheme restricted to a class of formulas $\boldsymbol{\Sigma}.$

• Partial Local Reflection, $Rfn_{\Sigma}(T)$ is given by

 $\Box_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for every $\varphi \in \Sigma \cap \mathsf{Sent}$

▶ Partial Uniform Reflection, $RFN_{\Sigma}(T)$ is given by

 $\forall x_1 \dots \forall x_n \left(\Box_T (\ulcorner \varphi(\dot{x}_1, \dots, \dot{x}_n) \urcorner) \to \varphi(x_1, \dots, x_n) \right)$

for all $\varphi(\vec{x}) \in \Sigma$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Partial Reflection

Partial Reflection: Reflection scheme restricted to a class of formulas $\boldsymbol{\Sigma}.$

• Partial Local Reflection, $Rfn_{\Sigma}(T)$ is given by

 $\Box_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for every $\varphi \in \Sigma \cap \mathsf{Sent}$

• Partial Uniform Reflection, $RFN_{\Sigma}(T)$ is given by

 $\forall x_1 \ldots \forall x_n \left(\Box_T (\ulcorner \varphi(\dot{x}_1, \ldots, \dot{x}_n) \urcorner) \to \varphi(x_1, \ldots, x_n) \right)$

for all $\varphi(\vec{x}) \in \Sigma$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- For each n ≥ 1 and each theory T, elementary presented, we consider the formulas
- $\operatorname{Prf}_{T}^{n}(y, x)$ expressing

"y is (codes) a proof of x in $T + Th_{\Pi_n}(\mathcal{N})$ "

$$[n]_T(x) \equiv \exists y \operatorname{Prf}^n_T(y, x)$$

► Relativized Local Reflection for T is the scheme, Rfnⁿ(T),

 $[n]_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

▶ Relativized Uniform Reflection for T, RFNⁿ(T) is defined in a similar way. On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- For each n ≥ 1 and each theory T, elementary presented, we consider the formulas
- $\operatorname{Prf}_{T}^{n}(y, x)$ expressing

"y is (codes) a proof of x in $T + Th_{\Pi_n}(\mathcal{N})$ "

- $\blacktriangleright [n]_T(x) \equiv \exists y \operatorname{Prf}^n_T(y, x)$
- Relativized Local Reflection for T is the scheme, Rfnⁿ(T),

 $[n]_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

▶ Relativized Uniform Reflection for T, RFNⁿ(T) is defined in a similar way. On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- For each n ≥ 1 and each theory T, elementary presented, we consider the formulas
- $\operatorname{Prf}_{T}^{n}(y, x)$ expressing

"y is (codes) a proof of x in $T + Th_{\Pi_n}(\mathcal{N})$ "

$$\blacktriangleright [n]_T(x) \equiv \exists y \operatorname{Prf}^n_T(y, x)$$

▶ Relativized Local Reflection for T is the scheme, Rfnⁿ(T),

 $[n]_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$

for each sentence φ .

 Relativized Uniform Reflection for T, RFNⁿ(T) is defined in a similar way. On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► For each n ≥ 1 and each theory T, elementary presented, we consider the formulas
- $\operatorname{Prf}_{T}^{n}(y, x)$ expressing

"y is (codes) a proof of x in $T + Th_{\Pi_n}(\mathcal{N})$ "

$$\blacktriangleright [n]_T(x) \equiv \exists y \operatorname{Prf}^n_T(y, x)$$

 Relativized Local Reflection for T is the scheme, Rfnⁿ(T),

$$[n]_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$$

- for each sentence φ .
- Relativized Uniform Reflection for T, RFNⁿ(T) is defined in a similar way.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► For each n ≥ 1 and each theory T, elementary presented, we consider the formulas
- $\operatorname{Prf}_{T}^{n}(y, x)$ expressing

"y is (codes) a proof of x in $T + Th_{\Pi_n}(\mathcal{N})$ "

$$\blacktriangleright [n]_T(x) \equiv \exists y \operatorname{Prf}^n_T(y, x)$$

 Relativized Local Reflection for T is the scheme, Rfnⁿ(T),

$$[n]_{\mathcal{T}}(\ulcorner\varphi\urcorner) \to \varphi$$

for each sentence φ .

 Relativized Uniform Reflection for T, RFNⁿ(T) is defined in a similar way. On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

• Metareflection Rule, $RR^n(T)$:

 $\frac{\varphi}{\langle n \rangle_T(\varphi)}$

- ▶ Π_m -RRⁿ(T) is the rule RR(T) with the restriction that φ is a Π_m -sentence.
- If T is an elementary presented extension of EA, then for every m ≥ 1,

 $T_m^n \equiv [T, \Pi_{n+1} - \mathrm{RR}^n(T)]_m$

where $T_0^n = T$ and $T_{k+1}^n = T_k + \langle n \rangle_{T_k} \top$, and

- $[U, \Pi_{n+1} RR(T)]$ is the closure of U under first order logic and **unnested** applications of $\Pi_{n+1} RR(T)]$,
- $[T, \Pi_{n+1} RR(T)]_1 = [T, \Pi_{n+1} RR(T)],$ $[T, \Sigma_1 - IR]_{k+1} = [[T, \Sigma_1 - IR]_k, \Sigma_1 - IR].$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

• Metareflection Rule, $RR^n(T)$:

 $\frac{\varphi}{\langle n \rangle_T(\varphi)}$

- $\Pi_m RR^n(T)$ is the rule RR(T) with the restriction that φ is a Π_m -sentence.
- If T is an elementary presented extension of EA, then for every m ≥ 1,

 $T_m^n \equiv [T, \Pi_{n+1} - \mathrm{RR}^n(T)]_m$

where $T_0^n = T$ and $T_{k+1}^n = T_k + \langle n \rangle_{T_k} \top$, and

- $[U, \Pi_{n+1} RR(T)]$ is the closure of U under first order logic and **unnested** applications of $\Pi_{n+1} RR(T)]$,
- $[T, \Pi_{n+1} RR(T)]_1 = [T, \Pi_{n+1} RR(T)],$ $[T, \Sigma_1 - IR]_{k+1} = [[T, \Sigma_1 - IR]_k, \Sigma_1 - IR].$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

• Metareflection Rule, $RR^n(T)$:

 $\frac{\varphi}{\langle n \rangle_T(\varphi)}$

- $\Pi_m RR^n(T)$ is the rule RR(T) with the restriction that φ is a Π_m -sentence.
- If T is an elementary presented extension of EA, then for every m ≥ 1,

 $T_m^n \equiv [T, \Pi_{n+1} - \mathsf{RR}^n(T)]_m$

where $T_0^n = T$ and $T_{k+1}^n = T_k + \langle n \rangle_{T_k} \top$, and

- [U, Π_{n+1}−RR(T)] is the closure of U under first order logic and **unnested** applications of Π_{n+1}−RR(T)],
- $[T, \Pi_{n+1} RR(T)]_1 = [T, \Pi_{n+1} RR(T)],$ $[T, \Sigma_1 - IR]_{k+1} = [[T, \Sigma_1 - IR]_k, \Sigma_1 - IR].$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

• Metareflection Rule, $RR^n(T)$:

 $\frac{\varphi}{\langle n \rangle_T(\varphi)}$

- $\Pi_m RR^n(T)$ is the rule RR(T) with the restriction that φ is a Π_m -sentence.
- If T is an elementary presented extension of EA, then for every m ≥ 1,

$$T_m^n \equiv [T, \Pi_{n+1} - \mathsf{RR}^n(T)]_m$$

where $T_0^n = T$ and $T_{k+1}^n = T_k + \langle n \rangle_{T_k} \top$, and

[U, Π_{n+1}−RR(T)] is the closure of U under first order logic and unnested applications of Π_{n+1}−RR(T)],

 $[T, \Pi_{n+1} - RR(T)]_1 = [T, \Pi_{n+1} - RR(T)],$ $[T, \Sigma_1 - IR]_{k+1} = [[T, \Sigma_1 - IR]_k, \Sigma_1 - IR].$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

• Metareflection Rule, $RR^n(T)$:

 $\frac{\varphi}{\langle n \rangle_T(\varphi)}$

- $\Pi_m RR^n(T)$ is the rule RR(T) with the restriction that φ is a Π_m -sentence.
- If T is an elementary presented extension of EA, then for every m ≥ 1,

$$T_m^n \equiv [T, \Pi_{n+1} - \mathsf{RR}^n(T)]_n$$

where $T_0^n = T$ and $T_{k+1}^n = T_k + \langle n \rangle_{T_k} \top$, and

- [U, Π_{n+1}−RR(T)] is the closure of U under first order logic and unnested applications of Π_{n+1}−RR(T)],
- $[T, \Pi_{n+1} \mathsf{RR}(T)]_1 = [T, \Pi_{n+1} \mathsf{RR}(T)],$ $[T, \Sigma_1 - \mathsf{IR}]_{k+1} = [[T, \Sigma_1 - \mathsf{IR}]_k, \Sigma_1 - \mathsf{IR}].$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model-theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► (Beklemishev) If U is a Π_{n+2}-axiomatized extension of EA then
 - ► $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Π_{n+1} -conservative over $U + \Pi_{n+1} \operatorname{RR}^n(T)$.
 - ► $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Σ_{n+2} -conservative over $U + \operatorname{Rfn}_{\Sigma_{n+1}}^n(T)$.
- (Goryachev, Beklemishev) Let φ₁,..., φ_m a finite set of sentences. Then for every ψ ∈ Π_{n+1},

$$T + \mathsf{Rfn}_{\varphi_1}^n(T) + \dots + \mathsf{Rfn}_{\varphi_m}^n(T) \vdash \psi \implies T_m^n \vdash \psi$$

(hence $[T, \Pi_{n+1} - \operatorname{RR}^n(T)]_m \vdash \psi$).

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► (Beklemishev) If U is a Π_{n+2}-axiomatized extension of EA then
 - ► $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Π_{n+1} -conservative over $U + \Pi_{n+1} - \operatorname{RR}^n(T)$.
 - $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Σ_{n+2} -conservative over $U + \operatorname{Rfn}_{\Sigma_{n+1}}^n(T)$.
- (Goryachev, Beklemishev) Let φ₁,..., φ_m a finite set of sentences. Then for every ψ ∈ Π_{n+1},

$$T + \mathsf{Rfn}_{\varphi_1}^n(T) + \dots + \mathsf{Rfn}_{\varphi_m}^n(T) \vdash \psi \implies T_m^n \vdash \psi$$

(hence $[T, \Pi_{n+1} - \operatorname{RR}^n(T)]_m \vdash \psi$).

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► (Beklemishev) If U is a Π_{n+2}-axiomatized extension of EA then
 - ► $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Π_{n+1} -conservative over $U + \Pi_{n+1} - \operatorname{RR}^n(T)$.
 - $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Σ_{n+2} -conservative over $U + \operatorname{Rfn}_{\Sigma_{n+1}}^n(T)$.
- (Goryachev, Beklemishev) Let φ₁,..., φ_m a finite set of sentences. Then for every ψ ∈ Π_{n+1},

$$T + \mathsf{Rfn}_{\varphi_1}^n(T) + \dots + \mathsf{Rfn}_{\varphi_m}^n(T) \vdash \psi \implies T_m^n \vdash \psi$$

(hence $[T, \Pi_{n+1} - \operatorname{RR}^n(T)]_m \vdash \psi$).

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► (Beklemishev) If U is a Π_{n+2}-axiomatized extension of EA then
 - ► $U + \operatorname{RFN}_{\Sigma_{n+1}}(T)$ is Π_{n+1} -conservative over $U + \Pi_{n+1} - \operatorname{RR}^n(T)$.
 - $U + \mathsf{RFN}_{\Sigma_{n+1}}(T)$ is Σ_{n+2} -conservative over $U + \mathsf{Rfn}_{\Sigma_{n+1}}^n(T)$.
- (Goryachev, Beklemishev) Let φ₁,..., φ_m a finite set of sentences. Then for every ψ ∈ Π_{n+1},

$$T + \mathsf{Rfn}_{\varphi_1}^n(T) + \dots + \mathsf{Rfn}_{\varphi_m}^n(T) \vdash \psi \implies T_m^n \vdash \psi$$

(hence $[T, \Pi_{n+1}-\mathsf{RR}^n(T)]_m \vdash \psi$).

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- Σ_{n+1}-closed models provide a simple and clear method to obtain conservation results.
- ▶ **Definition**. Let *T* be a theory. We say that $\mathfrak{A} \models T$ is a Σ_{n+1} -closed model of *T* if for each $\mathfrak{B} \models T$,

 $\mathfrak{A} \prec_n \mathfrak{B} \implies \mathfrak{A} \prec_{n+1} \mathfrak{B}$

- ▶ It generalizes the notion of an *existentially closed model*.
- Proposition. (Existence) Let T be a Π_{n+2}-axiomatizable theory and 𝔅 ⊨ T countable. Then there exists 𝔅 ⊨ T such that 𝔅 ≺_n 𝔅 and 𝔅 is Σ_{n+1}-closed for T.
- Corollary. Every consistent and Π_{n+2}-axiomatizable theory has a Σ_{n+1}-closed model.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► ∑_{n+1}-closed models provide a simple and clear method to obtain conservation results.
- ▶ **Definition**. Let *T* be a theory. We say that $\mathfrak{A} \models T$ is a Σ_{n+1} -closed model of *T* if for each $\mathfrak{B} \models T$,

 $\mathfrak{A} \prec_n \mathfrak{B} \implies \mathfrak{A} \prec_{n+1} \mathfrak{B}$

- ▶ It generalizes the notion of an *existentially closed model*.
- Proposition. (Existence) Let T be a Π_{n+2}-axiomatizable theory and 𝔅 ⊨ T countable. Then there exists 𝔅 ⊨ T such that 𝔅 ≺_n 𝔅 and 𝔅 is Σ_{n+1}-closed for T.
- Corollary. Every consistent and Π_{n+2}-axiomatizable theory has a Σ_{n+1}-closed model.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► ∑_{n+1}-closed models provide a simple and clear method to obtain conservation results.
- ▶ **Definition**. Let *T* be a theory. We say that $\mathfrak{A} \models T$ is a Σ_{n+1} -closed model of *T* if for each $\mathfrak{B} \models T$,

 $\mathfrak{A} \prec_n \mathfrak{B} \implies \mathfrak{A} \prec_{n+1} \mathfrak{B}$

It generalizes the notion of an existentially closed model.

Proposition. (Existence) Let T be a Π_{n+2}-axiomatizable theory and 𝔅 ⊨ T countable. Then there exists 𝔅 ⊨ T such that 𝔅 ≺_n 𝔅 and 𝔅 is Σ_{n+1}-closed for T.

► Corollary. Every consistent and Π_{n+2}-axiomatizable theory has a Σ_{n+1}-closed model.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► ∑_{n+1}-closed models provide a simple and clear method to obtain conservation results.
- ▶ **Definition**. Let *T* be a theory. We say that $\mathfrak{A} \models T$ is a Σ_{n+1} -closed model of *T* if for each $\mathfrak{B} \models T$,

$$\mathfrak{A} \prec_n \mathfrak{B} \implies \mathfrak{A} \prec_{n+1} \mathfrak{B}$$

- It generalizes the notion of an existentially closed model.
- Proposition. (Existence) Let T be a Π_{n+2}-axiomatizable theory and 𝔅 ⊨ T countable. Then there exists 𝔅 ⊨ T such that 𝔅 ≺_n 𝔅 and 𝔅 is Σ_{n+1}-closed for T.
- Corollary. Every consistent and Π_{n+2}-axiomatizable theory has a Σ_{n+1}-closed model.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- ► ∑_{n+1}-closed models provide a simple and clear method to obtain conservation results.
- ▶ **Definition**. Let *T* be a theory. We say that $\mathfrak{A} \models T$ is a Σ_{n+1} -closed model of *T* if for each $\mathfrak{B} \models T$,

$$\mathfrak{A} \prec_n \mathfrak{B} \implies \mathfrak{A} \prec_{n+1} \mathfrak{B}$$

- It generalizes the notion of an existentially closed model.
- Proposition. (Existence) Let T be a Π_{n+2}-axiomatizable theory and 𝔅 ⊨ T countable. Then there exists 𝔅 ⊨ T such that 𝔅 ≺_n 𝔅 and 𝔅 is Σ_{n+1}-closed for T.
- Corollary. Every consistent and Π_{n+2}-axiomatizable theory has a Σ_{n+1}-closed model.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

The basic device is the following result:

Theorem (Avigad,'02)

Let T_1 be a \prod_{n+2} -axiomatizable theory such that every \sum_{n+1} -closed model for T_1 is a model of \mathbf{T}_2 . Then T_2 is \prod_{n+1} -conservative over T_1 .

Other key ingredient in most applications:

Lemma

Let \mathfrak{A} be a Σ_{n+1} -closed model for T. Let $\varphi(\vec{x}) \in \Pi_{n+1}$ and $\vec{a} \in \mathfrak{A}$ such that $\mathfrak{A} \models \varphi(\vec{a})$. Then there exist $\theta(v, \vec{x}) \in \Pi_n$ and $b \in \mathfrak{A}$ such that

 $\mathfrak{A} \models heta(b, \vec{a}) \quad and \quad T \vdash heta(v, \vec{x})
ightarrow arphi(\vec{x})$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

The basic device is the following result:

Theorem (Avigad,'02)

Let T_1 be a \prod_{n+2} -axiomatizable theory such that every \sum_{n+1} -closed model for T_1 is a model of \mathbf{T}_2 . Then T_2 is \prod_{n+1} -conservative over T_1 .

Other key ingredient in most applications:

Lemma

Let \mathfrak{A} be a Σ_{n+1} -closed model for T. Let $\varphi(\vec{x}) \in \Pi_{n+1}$ and $\vec{a} \in \mathfrak{A}$ such that $\mathfrak{A} \models \varphi(\vec{a})$. Then there exist $\theta(v, \vec{x}) \in \Pi_n$ and $b \in \mathfrak{A}$ such that

 $\mathfrak{A}\models heta(b,ec{a})$ and $T\vdash heta(v,ec{x})
ightarrow arphi(ec{x})$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

The basic device is the following result:

Theorem (Avigad,'02)

Let T_1 be a \prod_{n+2} -axiomatizable theory such that every \sum_{n+1} -closed model for T_1 is a model of \mathbf{T}_2 . Then T_2 is \prod_{n+1} -conservative over T_1 .

Other key ingredient in most applications:

Lemma

Let \mathfrak{A} be a Σ_{n+1} -closed model for T. Let $\varphi(\vec{x}) \in \prod_{n+1}$ and $\vec{a} \in \mathfrak{A}$ such that $\mathfrak{A} \models \varphi(\vec{a})$. Then there exist $\theta(v, \vec{x}) \in \prod_n$ and $b \in \mathfrak{A}$ such that

 $\mathfrak{A} \models \theta(b, \vec{a})$ and $T \vdash \theta(v, \vec{x}) \rightarrow \varphi(\vec{x})$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

The basic device is the following result:

Theorem (Avigad,'02)

Let T_1 be a \prod_{n+2} -axiomatizable theory such that every \sum_{n+1} -closed model for T_1 is a model of \mathbf{T}_2 . Then T_2 is \prod_{n+1} -conservative over T_1 .

Other key ingredient in most applications:

Lemma

Let \mathfrak{A} be a \sum_{n+1} -closed model for T. Let $\varphi(\vec{x}) \in \prod_{n+1}$ and $\vec{a} \in \mathfrak{A}$ such that $\mathfrak{A} \models \varphi(\vec{a})$. Then there exist $\theta(v, \vec{x}) \in \prod_n$ and $b \in \mathfrak{A}$ such that

 $\mathfrak{A} \models \theta(b, \vec{a}) \quad and \quad T \vdash \theta(v, \vec{x}) \rightarrow \varphi(\vec{x})$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parsons's Theorem (I)

Theorem (Parsons, '72)

 $I\Sigma_1$ is Π_2 -conservative over $I\Delta_0 + \Sigma_1$ -IR.

▶ Σ_1 -Induction Rule, Σ_1 -IR:

$$\frac{\varphi(0) \land \forall x \, (\phi(x) \to \phi(x+1))}{\forall x \, \phi(x)}$$

► Let *T* be a Π_2 -axiomatizable finite extension of $I\Sigma_0$, $T = I\Sigma_0 + \forall x \exists y \forall u \leq x \exists v \leq y \sigma(u, v)$ for some $\sigma(x, y) \in \Delta_0$. Then, for each $m \geq 1$,

$$[T, \Sigma_1 - \mathsf{IR}]_m \equiv T + \forall x \exists y (F_m(x) = y) \vdash \psi$$

where $F_0(x) = (x + 1)^2 + (\mu y)(\sigma(x, y)),$ $F_{k+1}(x) = F_k(x)^{x+1}.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model—theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parsons's Theorem (I)

Theorem (Parsons, '72)

 $I\Sigma_1$ is Π_2 -conservative over $I\Delta_0 + \Sigma_1$ -IR.

• Σ_1 -Induction Rule, Σ_1 -IR:

$$\frac{\varphi(\mathbf{0}) \land \forall x \, (\phi(x) \to \phi(x+1))}{\forall x \, \phi(x)}$$

► Let *T* be a Π_2 -axiomatizable finite extension of $I\Sigma_0$, $T = I\Sigma_0 + \forall x \exists y \forall u \leq x \exists v \leq y \sigma(u, v)$ for some $\sigma(x, y) \in \Delta_0$. Then, for each $m \geq 1$,

$$[T, \Sigma_1 - \mathsf{IR}]_m \equiv T + \forall x \exists y (F_m(x) = y) \vdash \psi$$

where $F_0(x) = (x + 1)^2 + (\mu y)(\sigma(x, y)),$ $F_{k+1}(x) = F_k(x)^{x+1}.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parsons's Theorem (I)

Theorem (Parsons, '72)

 $I\Sigma_1$ is Π_2 -conservative over $I\Delta_0 + \Sigma_1$ -IR.

• Σ_1 -Induction Rule, Σ_1 -IR:

$$\frac{\varphi(0) \land \forall x \, (\phi(x) \to \phi(x+1))}{\forall x \, \phi(x)}$$

► Let *T* be a Π_2 -axiomatizable finite extension of $I\Sigma_0$, $T = I\Sigma_0 + \forall x \exists y \forall u \leq x \exists v \leq y \sigma(u, v)$ for some $\sigma(x, y) \in \Delta_0$. Then, for each $m \geq 1$,

$$[T, \Sigma_1 - \mathsf{IR}]_m \equiv T + \forall x \exists y (F_m(x) = y) \vdash \psi$$

where $F_0(x) = (x + 1)^2 + (\mu y)(\sigma(x, y))$, $F_{k+1}(x) = F_k(x)^{x+1}$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model—theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications
Parsons' Theorem (II)

Theorem

Let \mathfrak{A} be a Σ_{n+2} -closed model of $T + \Sigma_{n+1}$ -IR. Then $\mathfrak{A} \models I \Sigma_{n+1}$.

Proof. Let $\varphi(x) \in \Sigma_{n+1}$ such that

 $\mathfrak{A}\models\varphi(0)\wedge\forall x\,(\varphi(x)\rightarrow\varphi(x+1))$

Then there exist $a \in \mathfrak{A}$ and $\theta(u) \in \Pi_n$ such that

 $T + \Sigma_{n+1} - \mathsf{IR} \vdash \theta(u) \to \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))$ and $\mathfrak{A} \models \theta(a)$. Put $\psi(x, u) := \theta(u) \to \phi(x)$, Then

 $T + \Sigma_{n+1} - \mathsf{IR} \vdash \psi(0, u) \land \forall x \, (\psi(x, u) \to \psi(x+1, u))$

Hence, $T + \Sigma_{n+1} - IR \vdash \forall x \psi(x, u)$. As a consequence $\mathfrak{A} \models \forall x \psi(x, u)$. In particular, $\mathfrak{A} \models \theta(a) \rightarrow \forall x \varphi(x)$ and it follows that $\mathfrak{A} \models \forall x \varphi(x)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Jniform and Local Reflection

A model—theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parsons' Theorem (II)

Theorem Let \mathfrak{A} be a Σ_{n+2} -closed model of $T + \Sigma_{n+1}$ -IR. Then $\mathfrak{A} \models I \Sigma_{n+1}$.

Proof. Let $\varphi(x) \in \Sigma_{n+1}$ such that

 $\mathfrak{A}\models\varphi(0)\wedge\forall x\,(\varphi(x)\rightarrow\varphi(x+1))$

Then there exist $a \in \mathfrak{A}$ and $\theta(u) \in \Pi_n$ such that

 $T + \Sigma_{n+1} - \mathsf{IR} \vdash \theta(u) \to \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))$ and $\mathfrak{A} \models \theta(a)$. Put $\psi(x, u) := \theta(u) \to \phi(x)$, Then

 $T + \Sigma_{n+1} - \mathsf{IR} \vdash \psi(0, u) \land \forall x \, (\psi(x, u) \to \psi(x+1, u))$

Hence, $T + \Sigma_{n+1} - \mathbb{IR} \vdash \forall x \psi(x, u)$. As a consequence $\mathfrak{A} \models \forall x \psi(x, u)$. In particular, $\mathfrak{A} \models \theta(a) \rightarrow \forall x \varphi(x)$ and it follows that $\mathfrak{A} \models \forall x \varphi(x)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parsons' Theorem (II)

Theorem

Let \mathfrak{A} be a Σ_{n+2} -closed model of $T + \Sigma_{n+1}$ -IR. Then $\mathfrak{A} \models I \Sigma_{n+1}$.

Proof. Let $\varphi(x) \in \Sigma_{n+1}$ such that

$$\mathfrak{A}\models arphi(\mathsf{0})\wedge orall x\,(arphi(x)
ightarrow arphi(x+1))$$

Then there exist $a \in \mathfrak{A}$ and $\theta(u) \in \prod_n$ such that

$$T + \Sigma_{n+1} - \mathsf{IR} \vdash \theta(u) \to \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))$$

and $\mathfrak{A} \models \theta(a)$. Put $\psi(x, u) := \theta(u) \to \phi(x)$, Then

$$\mathcal{T} + \Sigma_{n+1} - \mathsf{IR} \vdash \psi(0, u) \land \forall x (\psi(x, u) \rightarrow \psi(x+1, u))$$

Hence, $T + \sum_{n+1} - \text{IR} \vdash \forall x \psi(x, u)$. As a consequence $\mathfrak{A} \models \forall x \psi(x, u)$. In particular, $\mathfrak{A} \models \theta(a) \rightarrow \forall x \varphi(x)$ and it follows that $\mathfrak{A} \models \forall x \varphi(x)$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models

Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Conditional axioms

Let *L* denote the language of First Order Arithmetic.

Definition

A set of *L*-formulas, *E*, is a set of **conditional axioms** if each element of *E* is a formula of the form $\alpha(\vec{v}) \rightarrow \beta(\vec{v})$.

Let T be an L-theory and E be a set of conditional axioms.

- ► T + E is obtained by adding to T the universal closure of each formula in E.
- **Example**: $T + E = I\Sigma_1$, for $T = I\Delta_0$ and

 $E = \{ I_{\varphi,x}(\vec{v}) : \varphi(x,\vec{v}) \in \Sigma_1 \}$

where $I_{\varphi,x}(\vec{v})$ is the induction scheme

$$\underbrace{\varphi(0,\vec{v}) \land \forall x \left(\varphi(x,\vec{v}) \to \varphi(x+1,\vec{v})\right)}_{\alpha} \to \underbrace{\forall x \, \varphi(x,\vec{v})}_{\beta}$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model<mark>-theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Conditional axioms

Let *L* denote the language of First Order Arithmetic.

Definition

A set of *L*-formulas, *E*, is a set of **conditional axioms** if each element of *E* is a formula of the form $\alpha(\vec{v}) \rightarrow \beta(\vec{v})$.

Let T be an L-theory and E be a set of conditional axioms.

- T + E is obtained by adding to T the universal closure of each formula in E.
- **Example**: $T + E = I \Sigma_1$, for $T = I \Delta_0$ and

 $E = \{I_{\varphi,x}(\vec{v}): \varphi(x,\vec{v}) \in \Sigma_1\}$

where $I_{\varphi,x}(\vec{v})$ is the induction scheme

$$\underbrace{\varphi(0,\vec{v}) \land \forall x \left(\varphi(x,\vec{v}) \to \varphi(x+1,\vec{v})\right)}_{\alpha} \to \underbrace{\forall x \varphi(x,\vec{v})}_{\beta}$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Conditional axioms

Let *L* denote the language of First Order Arithmetic.

Definition

A set of *L*-formulas, *E*, is a set of **conditional axioms** if each element of *E* is a formula of the form $\alpha(\vec{v}) \rightarrow \beta(\vec{v})$.

Let T be an L-theory and E be a set of conditional axioms.

- ► T + E is obtained by adding to T the universal closure of each formula in E.
- **Example**: $T + E = I\Sigma_1$, for $T = I\Delta_0$ and

$$E = \{I_{\varphi,x}(\vec{v}): \varphi(x,\vec{v}) \in \Sigma_1\}$$

where $I_{\varphi,x}(\vec{v})$ is the induction scheme

$$\underbrace{\varphi(0,\vec{v}) \land \forall x \left(\varphi(x,\vec{v}) \to \varphi(x+1,\vec{v})\right)}_{\alpha} \to \underbrace{\forall x \, \varphi(x,\vec{v})}_{\beta}$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- We can associate to each set of conditional axioms, E, two auxiliary sets of conditional axioms:
 - $E^- = E \cap \text{Sent}$, and
 - $\blacktriangleright UE = \{ \forall \vec{v} \, \alpha(\vec{v}) \to \forall \vec{v} \, \beta(\vec{v}) : \ \alpha(\vec{v}) \to \beta(\vec{v}) \in E \}$
- ► The theories T + UE and T + E⁻ are obtained by adding to T the sentences in UE and E⁻ respectively.
- **Example**: For $E = I\Delta_1$ we have:

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- We can associate to each set of conditional axioms, E, two auxiliary sets of conditional axioms:
 - $E^- = E \cap \text{Sent}$, and
 - $\blacktriangleright UE = \{ \forall \vec{v} \, \alpha(\vec{v}) \to \forall \vec{v} \, \beta(\vec{v}) : \ \alpha(\vec{v}) \to \beta(\vec{v}) \in E \}$
- ► The theories T + UE and T + E⁻ are obtained by adding to T the sentences in UE and E⁻ respectively.
- **Example**: For $E = I\Delta_1$ we have:

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- We can associate to each set of conditional axioms, E, two auxiliary sets of conditional axioms:
 - $E^- = E \cap \text{Sent}$, and
 - $UE = \{ \forall \vec{v} \, \alpha(\vec{v}) \rightarrow \forall \vec{v} \, \beta(\vec{v}) : \alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E \}$
- ► The theories T + UE and T + E⁻ are obtained by adding to T the sentences in UE and E⁻ respectively.
- **Example**: For $E = I\Delta_1$ we have:

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- We can associate to each set of conditional axioms, E, two auxiliary sets of conditional axioms:
 - $E^- = E \cap \text{Sent}$, and
 - $UE = \{ \forall \vec{v} \, \alpha(\vec{v}) \rightarrow \forall \vec{v} \, \beta(\vec{v}) : \alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E \}$
- ► The theories T + UE and T + E⁻ are obtained by adding to T the sentences in UE and E⁻ respectively.

• **Example**: For $E = I\Delta_1$ we have:

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- We can associate to each set of conditional axioms, E, two auxiliary sets of conditional axioms:
 - $E^- = E \cap \text{Sent}$, and

•
$$UE = \{ \forall \vec{v} \, \alpha(\vec{v}) \rightarrow \forall \vec{v} \, \beta(\vec{v}) : \alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E \}$$

- ► The theories T + UE and T + E⁻ are obtained by adding to T the sentences in UE and E⁻ respectively.
- **Example**: For $E = I\Delta_1$ we have:

$$E = \{\underbrace{\forall x \left(\varphi(x, \vec{v}) \leftrightarrow \psi(x, \vec{v})\right)}_{\alpha(\vec{v})} \rightarrow \underbrace{I_{\varphi, x}(\vec{v})}_{\beta(\vec{v})} : \ \varphi \in \Sigma_1, \ \psi \in \Pi_1\}$$

 $UE = \{ \forall \vec{v} (\forall x (\varphi(x, \vec{v}) \leftrightarrow \psi(x, \vec{v}))) \rightarrow \forall \vec{v} I_{\varphi, x}(\vec{v}) : \varphi \in \Sigma_1, \psi \in \Pi_1 \}$

$$E^{-} = \{ \forall x (\varphi(x) \leftrightarrow \psi(x)) \to I_{\varphi,x} : \varphi(x) \in \Sigma_{1}^{-}, \psi(x) \in \Pi_{1}^{-} \}$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Conditional axioms: Inference rules

We also define an inference rule, E-Rule, with instances

$$rac{lpha(ec{m{v}})}{eta(ec{m{v}})}, \hspace{0.5cm} ext{ for each } lpha(ec{m{v}}) o eta(ec{m{v}}) \in m{E}$$

- ► [T, E-Rule] denotes the closure of T under first order logic and unnested applications of E-Rule.
- ► T + E-Rule denotes the closure of T under first order logic and (nested) applications of E-Rule.
- ▶ We denote by E⁻-Rule the inference rule associated to the set of conditional axioms E⁻.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Conditional axioms: Inference rules

We also define an inference rule, E-Rule, with instances

$$rac{lpha(ec{m{v}})}{eta(ec{m{v}})}, \hspace{0.5cm} ext{ for each } lpha(ec{m{v}}) o eta(ec{m{v}}) \in m{E}$$

- ► [T, E-Rule] denotes the closure of T under first order logic and unnested applications of E-Rule.
- ► T + E-Rule denotes the closure of T under first order logic and (nested) applications of E-Rule.
- ▶ We denote by E⁻-Rule the inference rule associated to the set of conditional axioms E⁻.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Conditional axioms: Inference rules

We also define an inference rule, E-Rule, with instances

$$rac{lpha(ec{m{v}})}{eta(ec{m{v}})}, \hspace{0.5cm} ext{ for each } lpha(ec{m{v}}) o eta(ec{m{v}}) \in m{E}$$

- ► [T, E-Rule] denotes the closure of T under first order logic and unnested applications of E-Rule.
- ► T + E-Rule denotes the closure of T under first order logic and (nested) applications of E-Rule.
- ► We denote by E⁻-Rule the inference rule associated to the set of conditional axioms E⁻.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - ▶ $\alpha(\vec{v}) \in \forall \neg \Pi$, and
 - $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - $\alpha(\vec{v}) \in \forall \neg \Pi$, and
 - $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - $\alpha(\vec{v}) \in \forall \neg \Pi$, and
 - $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - $\alpha(\vec{v}) \in \forall \neg \Pi$, and
 - $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under disjunctions and conjunctions, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - $\alpha(\vec{v}) \in \forall \neg \Pi$, and • $\beta(\vec{v}) \in \forall \exists \Pi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if
 - $\alpha(\vec{v}) \in \forall \neg \Pi$, and
 - $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Let us fix a countable first order language L.

- Π will denote a fixed set of *L*-formulas such that:
 - 1. It contains all atomic formulas and is closed under subformulas.
 - 2. We assume that (modulo logical equivalence) Π is closed under **disjunctions** and **conjunctions**, and
 - 3. (modulo logical equivalence) $\neg \Pi \subseteq \exists \Pi$, (here $\neg \Pi$ is $\{\neg \varphi : \varphi \in \Pi\}$ and $\exists \Pi$ is $\{\exists \vec{x} \varphi(\vec{x}) : \varphi(\vec{x}) \in \Pi\}$).
- We say that a formula α(v) → β(v) is a normal conditional axiom w.r.t. Π if

•
$$\alpha(\vec{v}) \in \forall \neg \Pi$$
, and

 $\blacktriangleright \ \beta(\vec{v}) \in \forall \exists \Pi.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

 For each set of formulas Π, we introduce the rule E^Π-Rule given by the instances

$$\frac{\theta(\vec{v}, \vec{z}) \to \alpha(\vec{v})}{\theta(\vec{v}, \vec{z}) \to \beta(\vec{v})}$$

for each $\alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E$ and $\theta(\vec{v}, \vec{z}) \in \Pi$.

Lemma

Let T be a theory and E a set of conditional axioms such that

(S1) For every $\alpha(\vec{v}) \to \beta(\vec{v}) \in E$, $\alpha(\vec{v}) \in \exists \forall \neg \Pi$. (S2) $T + E^{\Pi}$ -Rule is $\forall \exists \Pi$ -axiomatizable.

Then T + E is $\forall \neg \Pi$ -conservative over $T + E^{\Pi}$ -Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

 For each set of formulas Π, we introduce the rule E^Π-Rule given by the instances

$$\frac{\theta(\vec{v}, \vec{z}) \to \alpha(\vec{v})}{\theta(\vec{v}, \vec{z}) \to \beta(\vec{v})}$$

for each $\alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E$ and $\theta(\vec{v}, \vec{z}) \in \Pi$.

Lemma

Let T be a theory and E a set of conditional axioms such that

(S1) For every $\alpha(\vec{v}) \to \beta(\vec{v}) \in E$, $\alpha(\vec{v}) \in \exists \forall \neg \Pi$. (S2) $T + E^{\Pi}$ -Rule is $\forall \exists \Pi$ -axiomatizable.

Then T + E is $\forall \neg \Pi$ -conservative over $T + E^{\Pi}$ -Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

 For each set of formulas Π, we introduce the rule E^Π-Rule given by the instances

$$\frac{\theta(\vec{v}, \vec{z}) \to \alpha(\vec{v})}{\theta(\vec{v}, \vec{z}) \to \beta(\vec{v})}$$

for each $\alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E$ and $\theta(\vec{v}, \vec{z}) \in \Pi$.

Lemma

Let T be a theory and E a set of conditional axioms such that

(S1) For every
$$\alpha(\vec{v}) \to \beta(\vec{v}) \in E$$
, $\alpha(\vec{v}) \in \exists \forall \neg \Pi$.
(S2) $T + E^{\Pi} - Rule$ is $\forall \exists \Pi - axiomatizable$.

Then T + E is $\forall \neg \Pi$ -conservative over $T + E^{\Pi}$ -Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

 For each set of formulas Π, we introduce the rule E^Π-Rule given by the instances

$$\frac{\theta(\vec{v}, \vec{z}) \to \alpha(\vec{v})}{\theta(\vec{v}, \vec{z}) \to \beta(\vec{v})}$$

for each $\alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E$ and $\theta(\vec{v}, \vec{z}) \in \Pi$.

Lemma

Let T be a theory and E a set of conditional axioms such that

(S1) For every
$$\alpha(\vec{v}) \rightarrow \beta(\vec{v}) \in E$$
, $\alpha(\vec{v}) \in \exists \forall \neg \Pi$.
(S2) $T + E^{\Pi}$ -Rule is $\forall \exists \Pi$ -axiomatizable.
Then $T + E$ is $\forall \neg \Pi$ -conservative over $T + E^{\Pi}$ -Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ► It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi} - \text{Rule}] \equiv [U, E - \text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of norma conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.
- If every ∀∃⊓-axiomatizable extension of T + E⁻ is closed under E-Rule, then T + E is ∃∀¬П-conservative over T + E⁻

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ▶ It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi}-\text{Rule}] \equiv [U, E-\text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of norma conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.
- If every ∀∃⊓-axiomatizable extension of T + E⁻ is closed under E-Rule, then T + E is ∃∀¬П-conservative over T + E⁻

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ▶ It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi}-\text{Rule}] \equiv [U, E-\text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of normal conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.
- If every ∀∃⊓-axiomatizable extension of T + E⁻ is closed under E-Rule, then T + E is ∃∀¬П-conservative over T + E⁻

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ▶ It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- ► E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi}-\text{Rule}] \equiv [U, E-\text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of normal conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.
- If every ∀∃Π−axiomatizable extension of T + E[−] is closed under E−Rule, then T + E is ∃∀¬Π−conservative over T + E[−]

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ▶ It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- ► E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi} - \text{Rule}] \equiv [U, E - \text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of normal conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.

 If every ∀∃⊓-axiomatizable extension of T + E⁻ is closed under E-Rule, then T + E is ∃∀¬П-conservative over T + E⁻

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

- ▶ It holds that $[U, E-Rule] \subseteq [U, E^{\Pi}-Rule]$.
- ► E is Π-reducible modulo T if for every theory U extending T, it holds

 $[U, E^{\Pi} - \text{Rule}] \equiv [U, E - \text{Rule}]$

Theorem

Let T be a $\forall \exists \Pi$ -axiomatizable theory and E a set of normal conditional axioms w.r.t. Π . Assume that E is Π -reducible modulo T. Then

- 1. T + E is $\forall \neg \Pi$ -conservative over T + E-Rule.
- 2. T + E is $\exists \forall \neg \Pi$ -conservative over T + UE.
- If every ∀∃⊓-axiomatizable extension of T + E⁻ is closed under E-Rule, then T + E is ∃∀¬П-conservative over T + E⁻

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1. $Th_{\prod_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - IR.$ 2. $Th_{\sum_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

*I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:

1. $Th_{\Pi_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1} - IR.$ 2. $Th_{\Sigma_{n+2}}(T + I\Delta_{n+1}) \equiv T + UI\Delta_{n+1}.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1.
$$Th_{\prod_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - \mathsf{IR}.$$

2. $Th_{\sum_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

- *I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:
 - 1. $Th_{\prod_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1}$ -IR. 2. $Th_{\sum_{n+3}}(T + I\Delta_{n+1}) \equiv T + UI\Delta_{n+1}$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1.
$$Th_{\Pi_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - IR.$$

2. $Th_{\Sigma_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

- *I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:
 - 1. $Th_{\Pi_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1}$ -IR. 2. $Th_{\Gamma_{n+2}}(T + I\Delta_{n+1}) \equiv T + UI\Delta_{n+1}$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1.
$$Th_{\prod_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - IR.$$

2. $Th_{\sum_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

*I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:

1. $Th_{\prod_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1}$ -IR. 2. $Th_{\sum_{n+3}}(T + I\Delta_{n+1}) \equiv T + UI\Delta_{n+1}$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1.
$$Th_{\prod_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - IR.$$

2. $Th_{\sum_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

*I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:

1.
$$Th_{\prod_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1}$$
-IR.
2. $Th_{\sum_{n=1}^{n}}(T + I\Delta_{n+1}) \equiv T + UI\Delta_{n+1}$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications
Examples

For Σ_{n+1} -induction:

IΣ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π_{n+1}-reducible modulo IΔ₀. Hence, for every Π_{n+2}-axiomatizable theory T extending IΔ₀:

1.
$$Th_{\prod_{n+2}}(T + I\Sigma_{n+1}) \equiv T + \Sigma_{n+1} - IR.$$

2. $Th_{\sum_{n+3}}(T + I\Sigma_{n+1}) \equiv T + I\Sigma_{n+1}^{-}.$

For Δ_{n+1} -induction:

*I*Δ_{n+1} is a set of normal conditional axioms w.r.t. Π_{n+1} and it is Π₁-reducible modulo *I*Δ₀. Hence, for every Π_{n+2}-axiomatizable theory *T* extending *I*Δ₀:

1.
$$Th_{\Pi_{n+2}}(T + I\Delta_{n+1}) \equiv T + \Delta_{n+1} - \mathsf{IR}$$

2.
$$Th_{\Sigma_{n+3}}(T+I\Delta_{n+1})\equiv T+UI\Delta_{n+1}$$
.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

The finite case

Theorem

Let F be a set of normal conditional sentences w.r.t. Π . Then, for every $\forall \exists \Pi$ -axiomatizable theory T it holds that

 $Th_{\forall \neg \Pi}(T+F) \subseteq [T, F^{\Pi}-Rule]_m$

where m is the number of elements of F.

Corollary

Let E be a set of normal conditional sentences w.r.t. Π . Assume that E is Π -reducible modulo T. Then for every finite set of sentences F \subseteq E with m elements, it holds that

 $Th_{\forall \neg \Pi}(T+F) \subseteq [T, E-Rule]_m.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

The finite case

Theorem

Let F be a set of normal conditional sentences w.r.t. Π . Then, for every $\forall \exists \Pi$ -axiomatizable theory T it holds that

 $Th_{\forall \neg \Pi}(T+F) \subseteq [T, F^{\Pi}-Rule]_m$

where m is the number of elements of F.

Corollary

Let E be a set of normal conditional sentences w.r.t. Π . Assume that E is Π -reducible modulo T. Then for every finite set of sentences $F \subseteq E$ with m elements, it holds that

 $Th_{\forall \neg \Pi}(T+F) \subseteq [T, E-Rule]_m.$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model<mark>—theoretic</mark> proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Lemma

Let $E = \{\psi_1, \dots, \psi_m\}$ a finite set of closed conditional axioms w.r.t. Π . Then

 $T + E^{\Pi} - Rule \equiv [T, E^{\Pi} - Rule]_m$

If ψ is a sentence of the form α → β, with α ∈ ∀¬Π and β ∈ ∀∃Π, we define the rule

$$\psi^{\Pi}$$
-Rule : $\frac{\theta(u) \to \alpha}{\theta(u) \to \beta}$, $(\theta(u) \in \Pi)$.

► $T + \psi^{\Pi}$ -Rule $\equiv [T, \psi^{\Pi}$ -Rule].

It holds that for each sentence φ ∈ ∀¬Π, a proof of φ in T + E^Π-Rule only requires one application of each rule ψ^Π_j-Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Lemma

Let $E = \{\psi_1, \dots, \psi_m\}$ a finite set of closed conditional axioms w.r.t. Π . Then

 $T + E^{\Pi} - Rule \equiv [T, E^{\Pi} - Rule]_m$

If ψ is a sentence of the form α → β, with α ∈ ∀¬Π and β ∈ ∀∃Π, we define the rule

$$\psi^{\mathsf{\Pi}}$$
-Rule : $\frac{\theta(u) \to \alpha}{\theta(u) \to \beta}$, $(\theta(u) \in \mathsf{\Pi})$.

 $T + \psi^{\Pi} - \text{Rule} \equiv [T, \psi^{\Pi} - \text{Rule}].$

▶ It holds that for each sentence $\varphi \in \forall \neg \Pi$, a proof of φ in $T + E^{\Pi}$ -Rule only requires one application of each rule ψ_j^{Π} -Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Lemma

Let $E = \{\psi_1, \dots, \psi_m\}$ a finite set of closed conditional axioms w.r.t. Π . Then

 $T + E^{\Pi} - Rule \equiv [T, E^{\Pi} - Rule]_m$

If ψ is a sentence of the form α → β, with α ∈ ∀¬Π and β ∈ ∀∃Π, we define the rule

$$\psi^{\mathsf{\Pi}}$$
-Rule : $\frac{\theta(u) \to \alpha}{\theta(u) \to \beta}$, $(\theta(u) \in \mathsf{\Pi})$.

• $T + \psi^{\Pi}$ -Rule $\equiv [T, \psi^{\Pi}$ -Rule].

It holds that for each sentence φ ∈ ∀¬Π, a proof of φ in T + E^Π-Rule only requires one application of each rule ψ^Π_j-Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Lemma

Let $E = \{\psi_1, \dots, \psi_m\}$ a finite set of closed conditional axioms w.r.t. Π . Then

 $T + E^{\Pi} - Rule \equiv [T, E^{\Pi} - Rule]_m$

 If ψ is a sentence of the form α → β, with α ∈ ∀¬Π and β ∈ ∀∃Π, we define the rule

$$\psi^{\mathsf{\Pi}}$$
-Rule : $\frac{\theta(u) \to \alpha}{\theta(u) \to \beta}$, $(\theta(u) \in \mathsf{\Pi})$.

•
$$T + \psi^{\Pi}$$
-Rule $\equiv [T, \psi^{\Pi}$ -Rule]

It holds that for each sentence φ ∈ ∀¬Π, a proof of φ in T + E^Π-Rule only requires one application of each rule ψ^Π_j-Rule.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms

Normal conditional sentences

Some applications

Kaye's Theorem

Theorem

For every theory T extension of $I\Sigma_n$, $m \ge 1$ and $\varphi_1(x), \ldots, \varphi_m(x) \in \Sigma_{n+1}^-$,

 $Th_{\Pi_{n+2}}(T + I_{\varphi_1} + \dots + I_{\varphi_m}) \subseteq [T, \Sigma_{n+1} - IR]_m$

- ► $I\Sigma_{n+1}^-$ is a set of normal conditional sentences w.r.t. Π_{n+1} .
- ► $I\Sigma_{n+1}^{-}$ is Π_{n+1} -reducible modulo $I\Sigma_n$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Kaye's Theorem

Theorem

For every theory T extension of $I\Sigma_n$, $m \ge 1$ and $\varphi_1(x), \ldots, \varphi_m(x) \in \Sigma_{n+1}^-$,

$$Th_{\Pi_{n+2}}(T+I_{\varphi_1}+\cdots+I_{\varphi_m})\subseteq [T,\Sigma_{n+1}-IR]_m$$

- ► $I\Sigma_{n+1}^{-}$ is a set of normal conditional sentences w.r.t. Π_{n+1} .
- ► $I\Sigma_{n+1}^{-}$ is Π_{n+1} -reducible modulo $I\Sigma_n$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Kaye's Theorem

Theorem

For every theory T extension of $I\Sigma_n$, $m \ge 1$ and $\varphi_1(x), \ldots, \varphi_m(x) \in \Sigma_{n+1}^-$,

$$Th_{\Pi_{n+2}}(T+I_{\varphi_1}+\cdots+I_{\varphi_m})\subseteq [T,\Sigma_{n+1}-IR]_m$$

- ► $I\Sigma_{n+1}^{-}$ is a set of normal conditional sentences w.r.t. Π_{n+1} .
- $I\Sigma_{n+1}^{-}$ is Π_{n+1} -reducible modulo $I\Sigma_{n}$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

$\Delta_1 \text{--Induction}$

• $UI\Delta_1$ is a set of normal conditional axioms w.r.t. Π_1 .

• $UI\Delta_1$ is Π_1 -reducible modulo $I\Sigma_0$.

Theorem

Let T a Π_3 -axiomatizable extension of $I\Sigma_0$. Let $\varphi_1(x, u), \ldots, \varphi_m(x, u) \in \Sigma_1, \ \psi_1(x, u), \ldots, \psi_m(x, u) \in \Pi_1,$ and $\theta \in \Pi_2$ such that

$$T + UI_{\varphi_1,\psi_1} + \cdots + UI_{\varphi_m,\psi_m} \vdash$$

then $[T, \Delta_1 - IR]_m \vdash \theta$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

$\Delta_1 \text{--Induction}$

- $UI\Delta_1$ is a set of normal conditional axioms w.r.t. Π_1 .
- $UI\Delta_1$ is Π_1 -reducible modulo $I\Sigma_0$.

Theorem

Let T a Π_3 -axiomatizable extension of $I\Sigma_0$. Let $\varphi_1(x, u), \ldots, \varphi_m(x, u) \in \Sigma_1, \ \psi_1(x, u), \ldots, \psi_m(x, u) \in \Pi_1$ and $\theta \in \Pi_2$ such that

$$T + UI_{\varphi_1,\psi_1} + \cdots + UI_{\varphi_m,\psi_m} \vdash$$

then $[T, \Delta_1 - IR]_m \vdash \theta$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Δ_1 -Induction

- $UI\Delta_1$ is a set of normal conditional axioms w.r.t. Π_1 .
- $UI\Delta_1$ is Π_1 -reducible modulo $I\Sigma_0$.

Theorem

Let T a Π_3 -axiomatizable extension of $I\Sigma_0$. Let $\varphi_1(x, u), \ldots, \varphi_m(x, u) \in \Sigma_1, \ \psi_1(x, u), \ldots, \psi_m(x, u) \in \Pi_1$, and $\theta \in \Pi_2$ such that

$$T + UI_{\varphi_1,\psi_1} + \cdots + UI_{\varphi_m,\psi_m} \vdash 6$$

then $[T, \Delta_1 - IR]_m \vdash \theta$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Δ_1 -Induction

- $UI\Delta_1$ is a set of normal conditional axioms w.r.t. Π_1 .
- $UI\Delta_1$ is Π_1 -reducible modulo $I\Sigma_0$.

Theorem

Let T a Π_3 -axiomatizable extension of $I\Sigma_0$. Let $\varphi_1(x, u), \ldots, \varphi_m(x, u) \in \Sigma_1$, $\psi_1(x, u), \ldots, \psi_m(x, u) \in \Pi_1$, and $\theta \in \Pi_2$ such that

$$T + UI_{\varphi_1,\psi_1} + \cdots + UI_{\varphi_m,\psi_m} \vdash \theta$$

then $[T, \Delta_1 - IR]_m \vdash \theta$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Local reflection

Let *T* an elementary presented theory. For each sentence *σ*, the local relativized reflection principle for *σ* wrt *T*, Rfnⁿ_σ(*T*) is equivalent to the sentence

 $\neg \sigma \to \langle n \rangle_T (\neg \sigma)$

- Rfnⁿ_{Σn+1}(T) can be axiomatized by a set of normal conditional sentences w.r.t. Π_n, and
- ▶ In addition, $Rfn_{\Sigma_{n+1}}^n(T)$ is Π_n -reducible modulo EA.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Local reflection

Let *T* an elementary presented theory. For each sentence *σ*, the local relativized reflection principle for *σ* wrt *T*, Rfnⁿ_σ(*T*) is equivalent to the sentence

 $\neg \sigma \to \langle n \rangle_T (\neg \sigma)$

- Rfnⁿ_{Σn+1}(T) can be axiomatized by a set of normal conditional sentences w.r.t. Π_n, and
- ▶ In addition, $\operatorname{Rfn}_{\Sigma_{n+1}}^n(T)$ is \prod_n -reducible modulo EA.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Local Reflection

Local reflection

Let *T* an elementary presented theory. For each sentence *σ*, the local relativized reflection principle for *σ* wrt *T*, Rfnⁿ_σ(*T*) is equivalent to the sentence

 $\neg \sigma \to \langle n \rangle_T (\neg \sigma)$

- Rfnⁿ_{Σ_{n+1}(T) can be axiomatized by a set of normal conditional sentences w.r.t. Π_n, and}
- ▶ In addition, $\operatorname{Rfn}_{\Sigma_{n+1}}^n(T)$ is \prod_n -reducible modulo EA.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Goryachev's theorem

Theorem

Let T be an elementary presented extension of EA and $\varphi_1, \ldots, \varphi_m$ a finite set of Σ_1 -sentences. Then for every Π_2 -axiomatized extension of EA $\psi \in \Pi_1$,

$$U + \mathsf{Rfn}_{\varphi_1}(T) + \cdots + \mathsf{Rfn}_{\varphi_m}(T) \vdash \psi \implies [U, \Pi_1 - \mathsf{RR}(T)]_m \vdash \psi$$

- This provides a weak version of Goryachev's theorem
- The full result can be obtained from a result by L. Beklemishev: For each sentence ψ ∈ Π₁, and sentences φ₁,...,φ_m such that

$$T + \mathsf{Rfn}_{\varphi_1}(T) + \cdots + \mathsf{Rfn}_{\varphi_m}(T) \vdash \psi$$

there exist sentences $\sigma_1, \ldots, \sigma_m \in \Sigma_1$ such that

$$T + \operatorname{Rfn}_{\sigma_1}(T) + \cdots + \operatorname{Rfn}_{\sigma_m}(T) \vdash \psi$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductior

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Local Reflection

Goryachev's theorem

Theorem

Let T be an elementary presented extension of EA and $\varphi_1, \ldots, \varphi_m$ a finite set of Σ_1 -sentences. Then for every Π_2 -axiomatized extension of EA $\psi \in \Pi_1$,

 $U + \mathsf{Rfn}_{\varphi_1}(T) + \dots + \mathsf{Rfn}_{\varphi_m}(T) \vdash \psi \implies [U, \Pi_1 - \mathsf{RR}(T)]_m \vdash \psi^{\mathsf{Indees}}$

This provides a weak version of Goryachev's theorem.

The full result can be obtained from a result by L. Beklemishev: For each sentence ψ ∈ Π₁, and sentences φ₁,...,φ_m such that

 $T + \operatorname{Rfn}_{\varphi_1}(T) + \cdots + \operatorname{Rfn}_{\varphi_m}(T) \vdash \psi$

there exist sentences $\sigma_1, \ldots, \sigma_m \in \Sigma_1$ such that

 $T + \operatorname{Rfn}_{\sigma_1}(T) + \cdots + \operatorname{Rfn}_{\sigma_m}(T) \vdash \psi$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction

Local Reflection

Goryachev's theorem

Theorem

Let T be an elementary presented extension of EA and $\varphi_1, \ldots, \varphi_m$ a finite set of Σ_1 -sentences. Then for every Π_2 -axiomatized extension of EA $\psi \in \Pi_1$,

 $U + \mathsf{Rfn}_{\varphi_1}(T) + \dots + \mathsf{Rfn}_{\varphi_m}(T) \vdash \psi \implies [U, \Pi_1 - \mathsf{RR}(T)]_m \vdash \psi^{\mathsf{Hodes}}$

- This provides a weak version of Goryachev's theorem.
- The full result can be obtained from a result by L. Beklemishev: For each sentence ψ ∈ Π₁, and sentences φ₁,...,φ_m such that

$$T + \mathsf{Rfn}_{\varphi_1}(T) + \cdots + \mathsf{Rfn}_{\varphi_m}(T) \vdash \psi$$

there exist sentences $\sigma_1, \ldots, \sigma_m \in \Sigma_1$ such that

$$T + \mathsf{Rfn}_{\sigma_1}(T) + \cdots + \mathsf{Rfn}_{\sigma_m}(T) \vdash \psi$$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction Local Reflection

We denote by I(Σ₁, K₁) the theory given by IΔ₀ together with the induction scheme

$$egin{aligned} &arphi(0)\wedgeorall x\left(arphi(x)
ightarrowarphi(x+1)
ight)
ightarrow\ &orall x_1, x_2\left(\delta(x_1)\wedge\delta(x_2)
ightarrow x_1=x_2
ight)
ightarrow orall x\left(\delta(x)
ightarrowarphi(x)
ight) \end{aligned}$$

where $\varphi(x) \in \Sigma_1$ and $\delta(x) \in \Sigma_1^-$.

• $(\Sigma_1, \mathcal{K}_1)$ -IR denotes the following inference rule:

 $\frac{\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))}{\forall x_1, x_2 (\delta(x_1) \land \delta(x_2) \to x_1 = x_2) \to \forall x (\delta(x) \to \varphi(x))}$

where $\varphi(x) \in \Sigma_1$ and $\delta(x) \in \Sigma_1^-$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductior

broof

Uniform and Local Reflection

A model–theoretic

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

We denote by I(Σ₁, K₁) the theory given by IΔ₀ together with the induction scheme

$$egin{aligned} &arphi(0)\wedgeorall x\left(arphi(x)
ightarrowarphi(x+1)
ight)
ightarrow\ &arphi_1,x_2\left(\delta(x_1)\wedge\delta(x_2)
ightarrow x_1=x_2
ight)
ightarrow orall x\left(\delta(x)
ightarrowarphi(x)
ight) \end{aligned}$$

where $\varphi(x) \in \Sigma_1$ and $\delta(x) \in \Sigma_1^-$.

• $(\Sigma_1, \mathcal{K}_1)$ –IR denotes the following inference rule:

$$\frac{\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1))}{\forall x_1, x_2 (\delta(x_1) \land \delta(x_2) \to x_1 = x_2) \to \forall x (\delta(x) \to \varphi(x))}$$

where $\varphi(x) \in \Sigma_1$ and $\delta(x) \in \Sigma_1^-$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductior

Uniform and Local Reflection

A model–theoretic

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- $I(\Sigma_1, \mathcal{K}_1)$ is set of normal conditional axioms w.r.t. Π_1 .
- $I(\Sigma_1, \mathcal{K}_1)$ is Π_1 -reducible modulo $I\Sigma_0$.
- $\blacktriangleright \ I\Pi_1^- \equiv I(\Sigma_1^-, \mathcal{K}_1)$
- Let us denote by $\Pi_1^- IR_0$ the rule

$$\frac{\forall x \left(\varphi(x) \to \varphi(x+1)\right)}{\varphi(0) \to \forall x \, \varphi(x)}, \qquad \varphi(x) \in \Pi_1^-$$

For every Π_2 -axiomatizable theory T extending $I\Sigma_0$,

 $[\mathcal{T}, (\Sigma_1^-, \mathcal{K}_1) - \mathsf{IR}] \equiv [\mathcal{T}, \Pi_1^- - \mathsf{IR}_0]$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- $I(\Sigma_1, \mathcal{K}_1)$ is set of normal conditional axioms w.r.t. Π_1 .
- $I(\Sigma_1, \mathcal{K}_1)$ is Π_1 -reducible modulo $I\Sigma_0$.
- $\blacktriangleright \ I\Pi_1^- \equiv I(\Sigma_1^-, \mathcal{K}_1)$
- Let us denote by $\Pi_1^- IR_0$ the rule

$$\frac{\forall x \left(\varphi(x) \to \varphi(x+1)\right)}{\varphi(0) \to \forall x \, \varphi(x)}, \qquad \varphi(x) \in \Pi_1^-$$

For every Π_2 -axiomatizable theory T extending $I\Sigma_0$,

 $[\mathcal{T}, (\Sigma_1^-, \mathcal{K}_1) - \mathsf{IR}] \equiv [\mathcal{T}, \Pi_1^- - \mathsf{IR}_0]$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- $I(\Sigma_1, \mathcal{K}_1)$ is set of normal conditional axioms w.r.t. Π_1 .
- $I(\Sigma_1, \mathcal{K}_1)$ is Π_1 -reducible modulo $I\Sigma_0$.
- $\blacktriangleright \ I\Pi_1^- \equiv I(\Sigma_1^-, \mathcal{K}_1)$
- Let us denote by $\Pi_1^- IR_0$ the rule

$$\frac{\forall x \left(\varphi(x) \to \varphi(x+1)\right)}{\varphi(0) \to \forall x \, \varphi(x)}, \qquad \varphi(x) \in \Pi_1^-$$

For every Π_2 -axiomatizable theory T extending $I\Sigma_0$,

 $[T, (\Sigma_1^-, \mathcal{K}_1) - \mathsf{IR}] \equiv [T, \Pi_1^- - \mathsf{IR}_0]$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- $I(\Sigma_1, \mathcal{K}_1)$ is set of normal conditional axioms w.r.t. Π_1 .
- $I(\Sigma_1, \mathcal{K}_1)$ is Π_1 -reducible modulo $I\Sigma_0$.
- $\blacktriangleright \ I\Pi_1^- \equiv I(\Sigma_1^-, \mathcal{K}_1)$
- Let us denote by $\Pi_1^- IR_0$ the rule

$$\frac{\forall x \left(\varphi(x) \to \varphi(x+1)\right)}{\varphi(0) \to \forall x \, \varphi(x)}, \qquad \varphi(x) \in \mathsf{\Pi}_1^-$$

For every Π_2 -axiomatizable theory T extending $I\Sigma_0$,

 $[\mathcal{T}, (\Sigma_1^-, \mathcal{K}_1) - \mathsf{IR}] \equiv [\mathcal{T}, \Pi_1^- - \mathsf{IR}_0]$

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Jniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

- $I(\Sigma_1, \mathcal{K}_1)$ is set of normal conditional axioms w.r.t. Π_1 .
- $I(\Sigma_1, \mathcal{K}_1)$ is Π_1 -reducible modulo $I\Sigma_0$.
- $\blacktriangleright \ I\Pi_1^- \equiv I(\Sigma_1^-, \mathcal{K}_1)$
- Let us denote by $\Pi_1^- IR_0$ the rule

$$rac{orall x \left(arphi(x)
ightarrow arphi(x+1)
ight)}{arphi(0)
ightarrow orall x arphi(x)}, \qquad arphi(x) \in \mathsf{\Pi}_1^-$$

For every Π₂-axiomatizable theory T extending IΣ₀,

 $[\mathcal{T},(\Sigma_1^-,\mathcal{K}_1)\text{-}\mathsf{IR}]\equiv[\mathcal{T},\Pi_1^-\text{-}\mathsf{IR}_0]$

On an abstract approach

Cordón–Franco, Lara–Martín

Introductior

Jniform and Local Reflection

A model—theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.
- 3. $T + (\Sigma_1^-, \mathcal{K}_1) IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) IR].$
- 4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

niform and Local eflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.
- 3. $T + (\Sigma_1^-, \mathcal{K}_1) IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) IR].$
- 4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.
- 3. $T + (\Sigma_1^-, \mathcal{K}_1) IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) IR].$
- 4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.
- 3. $T + (\Sigma_1^-, \mathcal{K}_1) IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) IR].$
- 4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.
- 3. $T + (\Sigma_1^-, \mathcal{K}_1) IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) IR].$
- 4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Theorem

Let T be a $\mathcal{B}(\Sigma_1)$ -axiomatizable extension of $I\Delta_0$. Then.

- 1. $T + I(\Sigma_1, \mathcal{K}_1)$ is Π_2 -conservative over $T + (\Sigma_1, \mathcal{K}_1)$ -IR.
- 2. $T + (\Sigma_1, \mathcal{K}_1) IR$ is Σ_2 -conservative over $T + (\Sigma_1^-, \mathcal{K}_1) IR$.

3.
$$T + (\Sigma_1^-, \mathcal{K}_1) - IR \equiv [T, (\Sigma_1^-, \mathcal{K}_1) - IR].$$

4. $T + I(\Sigma_1, \mathcal{K}_1)$ is $\mathcal{B}(\Sigma_1)$ conservative over $T + I(\Sigma_1^-, \mathcal{K}_1)$.

Corollary

 $I\Pi_1^-$ is Π_2 -conservative over $I\Sigma_0 + (\Sigma_1, \mathcal{K}_1)$ -IR.

On an abstract approach

Cordón–Franco, Lara–Martín

Introductio

Iniform and Local deflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

$$I\Delta_0 + I_{\varphi_1} + \dots + I_{\varphi_m} \vdash \psi$$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-IR)]_m \vdash \psi$.

► If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1) - \mathsf{IR})]_m \vdash \psi$.

- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $\blacktriangleright \ I\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,..., r, over IΔ₀ + S_j, m unnested applications of Π₁⁻−IR₀ proves ψ.

For each $j = 1, \ldots, r$, $[I\Delta_0 + S_i, \Pi_1 - IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

 $I\Delta_0 + I_{\varphi_1} + \dots + I_{\varphi_m} \vdash \psi$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-\mathsf{IR})]_m \vdash \psi$.

- If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1)-IR)]_m \vdash \psi$.
- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $\blacktriangleright \ I\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,...,r, over IΔ₀ + S_j, m unnested applications of Π[−]₁−IR₀ proves ψ.

For each $j = 1, \ldots, r$, $[I\Delta_0 + S_i, \Pi_1 - IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

$$I\Delta_0 + I_{\varphi_1} + \cdots + I_{\varphi_m} \vdash \psi$$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-\mathsf{IR})]_m \vdash \psi$.

- ▶ If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1)-IR)]_m \vdash \psi$.
- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $\blacktriangleright \ /\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,..., r, over IΔ₀ + S_j, m unnested applications of Π₁⁻−IR₀ proves ψ.

For each $j = 1, \ldots, r$, $[I\Delta_0 + S_j, \Pi_1 - IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications
Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

$$I\Delta_0+I_{\varphi_1}+\cdots+I_{\varphi_m}\vdash\psi$$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-\mathsf{IR})]_m \vdash \psi$.

- If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1)-IR)]_m \vdash \psi$.
- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $I\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,..., r, over IΔ₀ + S_j, m unnested applications of Π₁[−]-IR₀ proves ψ.

For each j = 1, ..., r, $[I\Delta_0 + S_j, \Pi_1 - IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction Local Reflection Parameter free induction

Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

$$I\Delta_0+I_{\varphi_1}+\cdots+I_{\varphi_m}\vdash\psi$$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-\mathsf{IR})]_m \vdash \psi$.

- ► If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1)-IR)]_m \vdash \psi$.
- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $I\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,..., r, over IΔ₀ + S_j, m unnested applications of Π₁[−]-IR₀ proves ψ.
 - For each $j = 1, \ldots, r$, $[I\Delta_0 + S_j, \Pi_1 IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction Local Reflection Parameter free induction

Parameter free Π_1 -Induction

▶ Let $\varphi_1(x), \ldots, \varphi_m(x) \in \Pi_1^-$ and $\psi \in \Pi_2$ such that

$$I\Delta_0+I_{\varphi_1}+\cdots+I_{\varphi_m}\vdash\psi$$

Then $[I\Delta_0, (\Sigma_1, \mathcal{K}_1)-\mathsf{IR})]_m \vdash \psi$.

- ► If $\psi \in \mathcal{B}(\Sigma_1)$ then $[I\Delta_0, (\mathcal{B}(\Sigma_1)^-, \mathcal{K}_1)-IR)]_m \vdash \psi$.
- If ψ ∈ Π₁, then there exist sentences π₁,..., π_r ∈ Π₁ and σ₁,..., σ_r ∈ Σ₁ such that
 - $I\Delta_0 \vdash \bigvee_{j=1}^r (\sigma_j \wedge \pi_j).$
 - For each j = 1,..., r, over IΔ₀ + S_j, m unnested applications of Π₁[−]-IR₀ proves ψ.
 - For each $j = 1, \ldots, r$, $[I\Delta_0 + S_j, \Pi_1 IR]_m \vdash \psi$.

On an abstract approach

Cordón–Franco, Lara–Martín

Introduction

Uniform and Local Reflection

A model–theoretic proof

Existentially closed models Parsons's theorem

Conditional axioms and conservation

Conditional axioms Normal conditional sentences

Some applications

Induction Local Reflection Parameter free induction