Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam Room P 3.26, +31 20 5256095 jjoosten@phil.uu.nl www.phil.uu.nl/~jjoosten

Any questions?

- Any questions?
- Midterm exam next week

- Any questions?
- Midterm exam next week
- Different time slot

- Any questions?
- Midterm exam next week
- Different time slot
- tuesday October 24, 13.30-16.30, OMHP-C017 (OudeManHuisPoort 4-6)

- Any questions?
- Midterm exam next week
- Different time slot
- tuesday October 24, 13.30-16.30, OMHP-C017 (OudeManHuisPoort 4-6)
- Workgroup as normal?

- Any questions?
- Midterm exam next week
- Different time slot
- tuesday October 24, 13.30-16.30, OMHP-C017 (OudeManHuisPoort 4-6)
- Workgroup as normal?
- Or does someone have an exam at that time?

- Any questions?
- Midterm exam next week
- Different time slot
- tuesday October 24, 13.30-16.30, OMHP-C017 (OudeManHuisPoort 4-6)
- Workgroup as normal?
- Or does someone have an exam at that time?
- I will publish an exercise mid-term exam shortly on my webpage

We introduce some notation to characterize the c.e. sets

- We introduce some notation to characterize the c.e. sets
- **•** First: W_e , the halting set of e

- We introduce some notation to characterize the c.e. sets
- **•** First: W_e , the halting set of e
- Next: a relation being Σ_1^0 , Π_1^0 or Δ_1^0

- We introduce some notation to characterize the c.e. sets
- **•** First: W_e , the halting set of e
- Next: a relation being Σ_1^0 , Π_1^0 or Δ_1^0
- Example: for a given *e*, the set $\{x \mid \varphi_e(x) \downarrow\}$ is Σ_1

- We introduce some notation to characterize the c.e. sets
- **•** First: W_e , the halting set of e
- Next: a relation being Σ_1^0 , Π_1^0 or Δ_1^0
- Example: for a given *e*, the set $\{x \mid \varphi_e(x) \downarrow\}$ is Σ_1
- Proof: $\varphi_e(x) \downarrow \text{iff} (\exists s) (\exists y) \ \varphi_{e,s}(x) = y$

The NFT states the equivalence of the following three statements for any set A

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- **9** (2) A is Σ_1^0

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- **9** (2) A is Σ_1^0
- **9** (3) A is W_e for some e

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- **9** (2) A is Σ_1^0
- **9** (3) A is W_e for some e
- Proof:

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- **9** (2) A is Σ_1^0
- **9** (3) A is W_e for some e
- Proof:

A Universal c.e. set

Theorem (Enumeration Theorem for c.e. sets)

A Universal c.e. set

- Theorem (Enumeration Theorem for c.e. sets)
- **•** There exists a c.e. set K_0 such that

$$W_e = \{ x \mid \langle e, x \rangle \in K_0 \}$$

A Universal c.e. set

- Theorem (Enumeration Theorem for c.e. sets)
- **•** There exists a c.e. set K_0 such that

$$W_e = \{ x \mid \langle e, x \rangle \in K_0 \}$$

Proof: Define K₀ as expected and use the NFT to show that it is c.e.

J Theorem: *K* is an incomputable c.e. set

- **J** Theorem: *K* is an incomputable c.e. set
- Proof:

- **Theorem:** *K* is an incomputable c.e. set
- Proof:
- \blacksquare It is clear that K is c.e.

- **Theorem:** *K* is an incomputable c.e. set
- Proof:
- \checkmark It is clear that K is c.e.
- However, its complement \overline{K} is not.

- **Theorem**: *K* is an incomputable c.e. set
- Proof:
- It is clear that K is c.e.
- However, its complement \overline{K} is not.
- This is again a diagonal argument

- **Theorem:** *K* is an incomputable c.e. set
- Proof:
- \blacksquare It is clear that K is c.e.
- However, its complement \overline{K} is not.
- This is again a diagonal argument

Corollary: There is a Turing machine with an unsolvable halting problem

- **Theorem**: *K* is an incomputable c.e. set
- Proof:
- \blacksquare It is clear that K is c.e.
- However, its complement \overline{K} is not.
- This is again a diagonal argument

- Corollary: There is a Turing machine with an unsolvable halting problem
- Corollary: The halting problem for the universal TM is unsolvable

Busy beaver function

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?
- Lemma: for each n there are only finitely many functions described by programs containing no more than n lines.

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?
- Lemma: for each n there are only finitely many functions described by programs containing no more than n lines.
- B dominates all URM computable functions

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?
- Lemma: for each n there are only finitely many functions described by programs containing no more than n lines.
- B dominates all URM computable functions
- Can someone show $B(10) \ge 39$?

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?
- Lemma: for each n there are only finitely many functions described by programs containing no more than n lines.
- B dominates all URM computable functions
- Can someone show $B(10) \ge 39$?
- Note: B is strictly increasing

- Busy beaver function
- B(n) is the maximal output on input 0 of an URM whose program contains at most n lines
- Well defined?
- Lemma: for each n there are only finitely many functions described by programs containing no more than n lines.
- B dominates all URM computable functions
- Can someone show $B(10) \ge 39$?
- Note: B is strictly increasing
- Lemma: $B(n+5) \ge 2 \cdot n$

Lemma: every URM computable function is dominated by some strictly increasing URM computable function

- Lemma: every URM computable function is dominated by some strictly increasing URM computable function
- Tibor Radó (1962): The BB function dominates any URM computable function

- Lemma: every URM computable function is dominated by some strictly increasing URM computable function
- Tibor Radó (1962): The BB function dominates any URM computable function
- Proof:

- Lemma: every URM computable function is dominated by some strictly increasing URM computable function
- Tibor Radó (1962): The BB function dominates any URM computable function
- **Proof:** Suppose P_g has k_0 lines
- Then $B(n+k_0) \ge g(B(n))$

- Lemma: every URM computable function is dominated by some strictly increasing URM computable function
- Tibor Radó (1962): The BB function dominates any URM computable function
- **Proof:** Suppose P_g has k_0 lines
- Then $B(n+k_0) \ge g(B(n))$
- composing with other facts yields the answer