Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 205256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$
- So, we can take k to be $h(e)$

The fixed point theorem

- Kleene's Fixed point theorem (1938) is very important!
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$
- So, we can take k to be $h(e)$ (here we use that h should be total!)

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!
- Fixed points and a map of Amsterdam

Computable approximations

- We shall see (more or less, we have already seen) that $\varphi_{e}(x) \downarrow$ and $\varphi_{e}(x)=y$ is incomputable

Computable approximations

- We shall see (more or less, we have already seen) that $\varphi_{e}(x) \downarrow$ and $\varphi_{e}(x)=y$ is incomputable
- However, $\varphi_{e, s}(x)=y$ is of course computable

Computable approximations

- We shall see (more or less, we have already seen) that $\varphi_{e}(x) \downarrow$ and $\varphi_{e}(x)=y$ is incomputable
- However, $\varphi_{e, s}(x)=y$ is of course computable
- We shall use these approximations later

Recap of previous lecture

- Coding: representing programs by numbers

Recap of previous lecture

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine

Recap of previous lecture

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem

Recap of previous lecture

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem
- Fixed point theorem

Recap of previous lecture

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem
- Fixed point theorem
- Computable approximations of uncomputable problems

Computably enumerable sets

- We are in need of the notion of a set that is not necessarily computable, but rather computably enumerable

Computably enumerable sets

- We are in need of the notion of a set that is not necessarily computable, but rather computably enumerable
- Motivation

Computably enumerable sets

- We are in need of the notion of a set that is not necessarily computable, but rather computably enumerable
- Motivation
- Consider $\{x \in \mathbb{N} \mid$ there is a sequence of at least x 7's in the decimal expansion of $\pi\}$

Computably enumerable sets

- We are in need of the notion of a set that is not necessarily computable, but rather computably enumerable
- Motivation
- Consider $\{x \in \mathbb{N} \mid$ there is a sequence of at least x 7's in the decimal expansion of $\pi\}$
- Next, consider $\{x \in \mathbb{N} \mid$ there is a sequence of exactly x (and no more) 7's in the decimal expansion of $\pi\}$

Computably enumerable sets

- We are in need of the notion of a set that is not necessarily computable, but rather computably enumerable
- Motivation
- Consider $\{x \in \mathbb{N} \mid$ there is a sequence of at least x 7's in the decimal expansion of $\pi\}$
- Next, consider $\{x \in \mathbb{N} \mid$ there is a sequence of exactly x (and no more) 7's in the decimal expansion of $\pi\}$
- Although the latter is not computable, it is enumerable in an effective way.

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE
- Introduced by Emil Post (1897-1954)

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE
- Introduced by Emil Post (1897-1954) (almost proved Gödel 1, was a high-school teacher for some period of time)

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE
- Introduced by Emil Post (1897-1954) (almost proved Gödel 1, was a high-school teacher for some period of time)
- Theorem: If A is computable, it is also computably enumerable

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE
- Introduced by Emil Post (1897-1954) (almost proved Gödel 1, was a high-school teacher for some period of time)
- Theorem: If A is computable, it is also computably enumerable
- Theorem: A is computable iff both A and \bar{A} are CE

Computably enumerable

- Formal definition of A being c.e.: it is the range of a computable function (or empty)
- Under the CT-thesis we also are allowed to call this RE
- Introduced by Emil Post (1897-1954) (almost proved Gödel 1, was a high-school teacher for some period of time)
- Theorem: If A is computable, it is also computably enumerable
- Theorem: A is computable iff both A and \bar{A} are CE
- This is the famous complemantiation theorem.

Closure properties of CE functions

- If A and B are both CE, then also $A \cup B$ is CE

Closure properties of CE functions

- If A and B are both CE, then also $A \cup B$ is CE
- If A and B are both CE, then also $A \cap B$ is CE

Closure properties of CE functions

- If A and B are both CE, then also $A \cup B$ is CE
- If A and B are both CE, then also $A \cap B$ is CE
- We shall prove the latter formally in the workgroup

Closure properties of CE functions

- If A and B are both CE, then also $A \cup B$ is CE
- If A and B are both CE, then also $A \cap B$ is CE
- We shall prove the latter formally in the workgroup
- What about complements?

Closure properties of CE functions

- If A and B are both CE, then also $A \cup B$ is CE
- If A and B are both CE, then also $A \cap B$ is CE
- We shall prove the latter formally in the workgroup
- What about complements? (Stay tuned!)

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof:

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow " :

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow " : easy

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow ": easy
- " \Rightarrow "

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow ": easy
- " \Rightarrow " : if CE, then it is the range of some computable f

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow ": easy
- " \Rightarrow " : if CE, then it is the range of some computable f
- We use f to define a 1-1 h :

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow ": easy
- " \Rightarrow " : if CE, then it is the range of some computable f
- We use f to define a 1-1 h :
- $h(0)=f(0)$

CE sets and increasing functions

- Increasing function: $f(x+1)>f(x)$
- By induction: $f(x) \geq x$
- Theorem: An infinite A is computable iff A is enumerated by an increasing computable function
- Theorem: (Exercise 5.1.11) An infinite set is CE iff it is enumerated by a one-one computable function.
- Proof: " \Leftarrow ": easy
- " \Rightarrow " : if CE, then it is the range of some computable f
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$

How formal should we be?

- We consider again:

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion
- Is h total?

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion
- Is h total?
- This we need to prove in exercises!!!!!

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion
- Is h total?
- This we need to prove in exercises!!!!!
- This is the level of formality we are after

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion
- Is h total?
- This we need to prove in exercises!!!!!
- This is the level of formality we are after
- In case of doubt: choose the formal solution

How formal should we be?

- We consider again:
- We use f to define a 1-1 h :
- $h(0)=f(0)$
- $h(x+1)=f(\mu y[\forall z \leq x f(y) \neq h(z)])$
- Is this a definition of a computable function?
- We shall just need to mention: by course-of-values recursion
- Is h total?
- This we need to prove in exercises!!!!!
- This is the level of formality we are after
- In case of doubt: choose the formal solution (how much risk do you allow?)

Characterizing c.e. sets

- We introduce some notation to characterize the c.e. sets

Characterizing c.e. sets

- We introduce some notation to characterize the c.e. sets
- First: W_{e}, the halting set of e

Characterizing c.e. sets

- We introduce some notation to characterize the c.e. sets
- First: W_{e}, the halting set of e
- Next: a relation being $\Sigma_{1}^{0}, \Pi_{1}^{0}$ or Δ_{1}^{0}

Characterizing c.e. sets

- We introduce some notation to characterize the c.e. sets
- First: W_{e}, the halting set of e
- Next: a relation being $\Sigma_{1}^{0}, \Pi_{1}^{0}$ or Δ_{1}^{0}
- Example: for a given e, the set $\left\{x \mid \varphi_{e}(x) \downarrow\right\}$ is Σ_{1}

Characterizing c.e. sets

- We introduce some notation to characterize the c.e. sets
- First: W_{e}, the halting set of e
- Next: a relation being $\Sigma_{1}^{0}, \Pi_{1}^{0}$ or Δ_{1}^{0}
- Example: for a given e, the set $\left\{x \mid \varphi_{e}(x) \downarrow\right\}$ is Σ_{1}
- Proof: $\varphi_{e}(x) \downarrow$ iff $(\exists s) \exists y \varphi_{e, s}(x)=y$

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- (2) A is Σ_{1}^{0}

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- (2) A is Σ_{1}^{0}
- (3) A is W_{e} for some e

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- (2) A is Σ_{1}^{0}
- (3) A is W_{e} for some e
- Proof:

Normal Form Theorem

- The NFT states the equivalence of the following three statements for any set A
- (1) A is c.e.
- (2) A is Σ_{1}^{0}
- (3) A is W_{e} for some e
- Proof:
- $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$

