
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!
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Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk
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The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)
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The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)
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The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)
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The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)
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The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e)

Recursion Theory – p.2/14



The fixed point theorem

Kleene’s Fixed point theorem (1938) is very important!

For all computable f , there exists a k such that
ϕf(k) = ϕk

Proof: consider the function h such that ϕh(x) = ϕϕx(x)

(again this diagonal!)

Note: we do not say h(x) = ϕx(x)

f ◦ h has code e, that is, (f ◦ h)(x) = ϕe(x)

So, we can take k to be h(e) (here we use that h should
be total!)
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Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program
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Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!
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Fixed points

Note: the diagonal construction ϕx(x) allows us to view
the very same number both as the input of a program
and as a program

This allows some sort of self reference!

Fixed points and a map of Amsterdam
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Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable
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Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable

However, ϕe,s(x) = y is of course computable

Recursion Theory – p.4/14



Computable approximations

We shall see (more or less, we have already seen) that
ϕe(x) ↓ and ϕe(x) = y is incomputable

However, ϕe,s(x) = y is of course computable

We shall use these approximations later
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Recap of previous lecture

Coding: representing programs by numbers
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Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine
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Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem
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Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem
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Recap of previous lecture

Coding: representing programs by numbers

Enumeration Theorem/Universal Turing Machine

Padding Lemma

Sm
n -theorem

Fixed point theorem

Computable approximations of uncomputable problems
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Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable
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Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation
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Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }
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Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }

Next, consider {x ∈ N | there is a sequence of exactly x

(and no more) 7’s in the decimal expansion of π }
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Computably enumerable sets

We are in need of the notion of a set that is not
necessarily computable, but rather computably
enumerable

Motivation

Consider {x ∈ N | there is a sequence of at least x 7’s in
the decimal expansion of π }

Next, consider {x ∈ N | there is a sequence of exactly x

(and no more) 7’s in the decimal expansion of π }

Although the latter is not computable, it is enumerable
in an effective way.
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Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)
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Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE
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Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954)
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Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)
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Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable
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Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable

Theorem: A is computable iff both A and A are CE

Recursion Theory – p.7/14



Computably enumerable

Formal definition of A being c.e.: it is the range of a
computable function (or empty)

Under the CT-thesis we also are allowed to call this RE

Introduced by Emil Post (1897-1954) (almost proved
Gödel 1, was a high-school teacher for some period of
time)

Theorem: If A is computable, it is also computably
enumerable

Theorem: A is computable iff both A and A are CE

This is the famous complemantiation theorem.
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Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE
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Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE
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Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup
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Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup

What about complements?
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Closure properties of CE functions

If A and B are both CE, then also A ∪ B is CE

If A and B are both CE, then also A ∩ B is CE

We shall prove the latter formally in the workgroup

What about complements? (Stay tuned!)
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof:
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" :
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" :
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:
h(0) = f(0)
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CE sets and increasing functions

Increasing function: f(x + 1) > f(x)

By induction: f(x) ≥ x

Theorem: An infinite A is computable iff A is
enumerated by an increasing computable function

Theorem: (Exercise 5.1.11) An infinite set is CE iff it is
enumerated by a one-one computable function.

Proof: "⇐" : easy

"⇒" : if CE, then it is the range of some computable f

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])
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How formal should we be?

We consider again:
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after
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How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after

In case of doubt: choose the formal solution

Recursion Theory – p.10/14



How formal should we be?

We consider again:

We use f to define a 1-1 h:
h(0) = f(0)

h(x + 1) = f(µy [∀ z≤xf(y) 6= h(z)])

Is this a definition of a computable function?

We shall just need to mention: by course-of-values
recursion

Is h total?

This we need to prove in exercises!!!!!

This is the level of formality we are after

In case of doubt: choose the formal solution (how much
risk do you allow?)
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Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets
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Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e
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Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1
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Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1

Example: for a given e, the set {x | ϕe(x) ↓} is Σ1
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Characterizing c.e. sets

We introduce some notation to characterize the c.e.
sets

First: We, the halting set of e

Next: a relation being Σ0
1, Π0

1 or ∆0
1

Example: for a given e, the set {x | ϕe(x) ↓} is Σ1

Proof: ϕe(x) ↓ iff (∃s)∃y ϕe,s(x) = y
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e

Proof:
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Normal Form Theorem

The NFT states the equivalence of the following three
statements for any set A

(1) A is c.e.

(2) A is Σ0
1

(3) A is We for some e

Proof:

(1) ⇒ (2) ⇒ (3) ⇒ (1)
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