Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 205256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option
- Self reference was central to paradoxes (Russell)

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option
- Self reference was central to paradoxes (Russell)
- But also to subtle and beautiful theorems (Gödel)

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option
- Self reference was central to paradoxes (Russell)
- But also to subtle and beautiful theorems (Gödel)
- How can theories talk about "themselves"?

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option
- Self reference was central to paradoxes (Russell)
- But also to subtle and beautiful theorems (Gödel)
- How can theories talk about "themselves"?
- How can TM's talk about "themselves"?

Scaling up TM's

- In 1936 Turing showed how on TM could be input to another TM
- Even self reference became an option
- Self reference was central to paradoxes (Russell)
- But also to subtle and beautiful theorems (Gödel)
- How can theories talk about "themselves"?
- How can TM's talk about "themselves"?
- Gödel numbers!

Gödel numbers

- We will represent TM's by numbers

Gödel numbers

- We will represent TM's by numbers
- What are TM's?

Gödel numbers

- We will represent TM's by numbers
- What are TM's? : list of instructions over some language

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$
- We code: $\operatorname{gn}(L)=p_{0}$

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$
- We code: $\operatorname{gn}(L)=p_{0}$
- We code: $\operatorname{gn}(R)=p_{1}$

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$
- We code: $\operatorname{gn}(L)=p_{0}$
- We code: $\operatorname{gn}(R)=p_{1}$
- We code: $\operatorname{gn}\left(q_{i}\right)=p_{2 i+2}$
- And likewise for the S_{i} (see book)

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$
- We code: $\operatorname{gn}(L)=p_{0}$
- We code: $\operatorname{gn}(R)=p_{1}$
- We code: $\operatorname{gn}\left(q_{i}\right)=p_{2 i+2}$
- And likewise for the S_{i} (see book)
- We code: $\operatorname{gn}(Q)=p_{0}^{g n\left(q_{i}\right)} \cdot p_{1}^{g n(S)} \cdot p_{2}^{g n(A)} \cdot p_{3}^{g n\left(q_{j}\right)}$

Gödel numbers

- An action consists of $\left\langle q_{i}, S, A, q_{j}\right\rangle$
- We code: $\operatorname{gn}(L)=p_{0}$
- We code: $\operatorname{gn}(R)=p_{1}$
- We code: $\operatorname{gn}\left(q_{i}\right)=p_{2 i+2}$
- And likewise for the S_{i} (see book)
- We code: $\operatorname{gn}(Q)=p_{0}^{g n\left(q_{i}\right)} \cdot p_{1}^{g n(S)} \cdot p_{2}^{g n(A)} \cdot p_{3}^{g n\left(q_{j}\right)}$
- We code: $\operatorname{gn}\left(\left\langle Q_{0}, Q_{1}, \ldots, Q_{n}\right\rangle\right)=p_{0}^{\operatorname{gn}\left(Q_{0}\right)} \cdot \ldots \cdot p_{n}^{\operatorname{gn}\left(Q_{n}\right)}$

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$
- We omit k whenever $k=1$

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$
- We omit k whenever $k=1$
- Enumeration Theorem:

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$
- We omit k whenever $k=1$
- Enumeration Theorem:
- There is a p.c. $\varphi_{z}(x)$ that maps $\langle z, x\rangle$ to the output that the $z^{\text {th }}$ TM would have on input x

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$
- We omit k whenever $k=1$
- Enumeration Theorem:
- There is a p.c. $\varphi_{z}(x)$ that maps $\langle z, x\rangle$ to the output that the $z^{\text {th }}$ TM would have on input x
- Proof:

Enumerating TM's

- The $e^{\text {th }}$ TM is empty program if e does not code a TM and is P if e is a code gn of some program P
- Instead of $\varphi_{T}^{(k)}$ we write $\varphi_{e}^{(k)}$
- We omit k whenever $k=1$
- Enumeration Theorem:
- There is a p.c. $\varphi_{z}(x)$ that maps $\langle z, x\rangle$ to the output that the $z^{\text {th }}$ TM would have on input x
- Proof:
- Long live the Church Turing Thesis!

Tm's and codes

- Enumeration Theorem uses the concept of a Universal Turing Machine!!!

Tm's and codes

- Enumeration Theorem uses the concept of a Universal Turing Machine!!!
- Note that we cannot get a version of the Enumeration Theorem for recursive functions

Tm's and codes

- Enumeration Theorem uses the concept of a Universal Turing Machine!!!
- Note that we cannot get a version of the Enumeration Theorem for recursive functions
- Diagonal argument again

Tm's and codes

- Enumeration Theorem uses the concept of a Universal Turing Machine!!!
- Note that we cannot get a version of the Enumeration Theorem for recursive functions
- Diagonal argument again
- Another fact about code of programs: Every p.c. function has infinitely many different codes (Padding Lemma)

Tm's and codes

- Looks strange, but useful: The S_{n}^{m}-theorem

Tm's and codes

- Looks strange, but useful: The S_{n}^{m}-theorem
- If $f(x, y)$ is a p.c. function, for some computable g, $f(x, y)=\varphi_{g(x)}(y)$.

Tm's and codes

- Looks strange, but useful: The S_{n}^{m}-theorem
- If $f(x, y)$ is a p.c. function, for some computable g, $f(x, y)=\varphi_{g(x)}(y)$.
- More general: for each $m, n \in \mathbb{N}$, there is a function S_{n}^{m} such that

$$
\varphi_{e}^{m+n}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)=\varphi_{S_{n}^{m}\left(e, x_{1}, \ldots, x_{m}\right)}\left(y_{1}, \ldots, y_{n}\right)
$$

The fixed point theorem

- Kleene's Fixed point theorem (1938)

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that
$\varphi_{f(k)}=\varphi_{k}$

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that
$\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$
- So, we can take k to be $h(e)$

The fixed point theorem

- Kleene's Fixed point theorem (1938)
- For all computable f, there exists a k such that $\varphi_{f(k)}=\varphi_{k}$
- Proof: consider the function h such that $\varphi_{h(x)}=\varphi_{\varphi_{x}(x)}$ (again this diagonal!)
- Note: we do not say $h(x)=\varphi_{x}(x)$
- $f \circ h$ has code e, that is, $(f \circ h)(x)=\varphi_{e}(x)$
- So, we can take k to be $h(e)$ (here we use that h should be total!)

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!
- Example: there is a program that only halts on its own input

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!
- Example: there is a program that only halts on its own input
- Proof: consider the function f that maps x to the code of a TM that halts if the input equals x and loops otherwise.

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!
- Example: there is a program that only halts on its own input
- Proof: consider the function f that maps x to the code of a TM that halts if the input equals x and loops otherwise.
- Next, apply the FP THM to f.

Fixed points

- Note: the diagonal construction $\varphi_{x}(x)$ allows us to view the very same number both as the input of a program and as a program
- This allows some sort of self reference!
- Example: there is a program that only halts on its own input
- Proof: consider the function f that maps x to the code of a TM that halts if the input equals x and loops otherwise.
- Next, apply the FP THM to f.

Recap

- Coding: representing programs by numbers

Recap

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine

Recap

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem

Recap

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem
- Fixed point theorem

Recap

- Coding: representing programs by numbers
- Enumeration Theorem/Universal Turing Machine
- Padding Lemma
- S_{n}^{m}-theorem
- Fixed point theorem

