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Enrollment

===============================
- de studenten zonder coll.krt.nr kunnen alleen
ingeschreven worden als ze daadwerkelijk ingeschreven
staan;
- Scorelle: onduidelijk welke opleiding
- Dorrestijn: idem
- Tom, wsch Kemper: idem
- Bashan Michel: idem
- Nina: idem
- Neutel: idem
- Tsai: idem
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Extra announcements

Next friday, lecture by Sebastiaan Terwijn on the
Medvedev Lattice
See
http://www.math.uu.nl/people/jvoosten/seminar.html
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Extra announcements

Next friday, lecture by Sebastiaan Terwijn on the
Medvedev Lattice
See
http://www.math.uu.nl/people/jvoosten/seminar.html

16:00 sharp at Wiskundegebouw, Room K11 (take
stairs down)
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Howework

Confusion about exercise 2.2.11
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There is NO need to work within a formal system
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Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ
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Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ

Bounded quantification up to p can not be done using p

many disjunctions!
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Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ

Bounded quantification up to p can not be done using p

many disjunctions!

Students can go back to Daisuke with their homework
to get a higher mark
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Unlimited Register Machines

Other computational models need to be introduced
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Other computational models need to be introduced

For sake of later applications (and general education)

URMs are also/better known as RAM: Random Access
Machines

Hardware: unbounded array of registers of unbounded
capacity (starting at R1)
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Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications (and general education)

URMs are also/better known as RAM: Random Access
Machines

Hardware: unbounded array of registers of unbounded
capacity (starting at R1)

Software: Four types of instructions
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URMs

Software: Four types of instructions
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URMs

Software: Four types of instructions

Zero: Z(n)
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URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)
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Successor: S(n)

Transfer: T (m,n): rn becomes rm
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URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)
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URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)

Programs are numbered lists of instructions always
executing the next instruction unless told otherwise by a
Jump operation
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URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)

Programs are numbered lists of instructions always
executing the next instruction unless told otherwise by a
Jump operation

A program stops if it enters a line with no program line
on it
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URM computable

Input output convention
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URM computable

Input output convention

Definition 2.3.2
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URM computable

Input output convention

Definition 2.3.2

URM Program P computes a function f
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URM Program P computes a function f
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URM computable

Input output convention

Definition 2.3.2 (totality can be relaxed)

URM Program P computes a function f

Function f is URM computable

What is the class of URM computable functions?
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URM computable

Input output convention

Definition 2.3.2 (totality can be relaxed)

URM Program P computes a function f

Function f is URM computable

What is the class of URM computable functions?

That is, find another – equivalent – characterization
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URM computable functions

Conjecture: URM Computable = Recursive
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URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?
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URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!
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URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!
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URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!

Basic case
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URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!

Basic case

and constructions
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URM computable functions

Closure under composition
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URM computable functions

Closure under composition

Example: for one variable
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Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf
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Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form
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URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form

Problem/solution 2: renumber
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URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form

Problem/solution 2: renumber

Problem 3: Input/Output convention: how many
registers are used?
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URM computable functions

Proof by intimidation
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URM computable functions

Proof by intimidation

Proof by hand waving
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URM computable functions

Proof by intimidation

Proof by hand waving

Thm: f is URM computable iff f is Recursive
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URM computable functions

Proof by intimidation

Proof by hand waving

Thm: f is URM computable iff f is Recursive

By relaxing Definition 2.3.2 you can describe Partial
Recursive
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Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head
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head

Language: tape symbols, set of internal states, action
symbols
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Q = 〈qiSAqj〉
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Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions
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Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions

better name would have been “deterministic”
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Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions

better name would have been “deterministic”

A program Halts if it runs out of instructions

Recursion Theory – p.11/21



Turing machines

How to compute a function
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Turing machines

How to compute a function

Input/output conventions
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How to compute a function
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Input is unary (which is not a good choice)
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How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s
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Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Again, define M computing a function, and a function
being computable
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Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Again, define M computing a function, and a function
being computable

Successor function becomes very easy!
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Turing Machines

Very true statement in Cooper:
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Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!
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Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

How to deal with composition?

Hard problem (?): Output becomes Input
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Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

How to deal with composition?

Hard problem (?): Output becomes Input

Thm: Turing computable = Partial Recursive
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Computations and theories

We shall now make a link between computations and
formal theories
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Computations and theories

We shall now make a link between computations and
formal theories

This yields: yet another characterization of the
recursive functions
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Computations and theories

We shall now make a link between computations and
formal theories

This yields: yet another characterization of the
recursive functions

Plus the precursor to Gödel’s first incompleteness
theorem
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Formal theories

Specify three ingredients
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Formal theories

Specify three ingredients

Language
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Formal theories

Specify three ingredients

Language

Axioms
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Formal theories

Specify three ingredients

Language

Axioms

Rules
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Formal theories

Specify three ingredients

Language

Axioms

Rules

Model for idealized science
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Peano Arithmetic

Well known arithmetical first order system
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Peano Arithmetic

Well known arithmetical first order system

Chapter 3
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Language consists of {+, ′,×, 0,=}
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Axioms, come in two groups
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Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms
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Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms

The non-logical axioms
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Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms

The non-logical axioms

The rules: (MP) and (GEN)

Recursion Theory – p.16/21



Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)
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Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like
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Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like

Of course: standard model
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Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like

Of course: standard model

Many more models
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Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model
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The (downwards) Löwenheim-Skolem Theorem
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Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model

The Compactness Theorem

The (downwards) Löwenheim-Skolem Theorem

What is countable?
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What is countable?

Countable: there is a surjection from the natural
numbers
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Countable: there is a surjection from the natural
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Examples: pairs
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What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals
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What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals

Finite sequences of natural numbers

Are there uncountable sets?

Cantor: Yes, eg [0, 1]
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Models of PA

There exists a non-standard model of PA
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Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?
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Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?

Order structure is unique
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Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?

Order structure is unique

However (Friedman) uncountably (continuous) many
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PA and the representable functions

What does it mean to represent a function in PA?
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PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations
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What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Theorem: all recursive functions are representable in
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Later we shall prove the reverse
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PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Theorem: all recursive functions are representable in
PA

Later we shall prove the reverse

Thus, we have yet another characterization of the
recursive functions
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