
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/21



Enrollment

===============================
- de studenten zonder coll.krt.nr kunnen alleen
ingeschreven worden als ze daadwerkelijk ingeschreven
staan;
- Scorelle: onduidelijk welke opleiding
- Dorrestijn: idem
- Tom, wsch Kemper: idem
- Bashan Michel: idem
- Nina: idem
- Neutel: idem
- Tsai: idem

Recursion Theory – p.2/21



Extra announcements

Next friday, lecture by Sebastiaan Terwijn on the
Medvedev Lattice
See
http://www.math.uu.nl/people/jvoosten/seminar.html

Recursion Theory – p.3/21



Extra announcements

Next friday, lecture by Sebastiaan Terwijn on the
Medvedev Lattice
See
http://www.math.uu.nl/people/jvoosten/seminar.html

16:00 sharp at Wiskundegebouw, Room K11 (take
stairs down)

Recursion Theory – p.3/21



Howework

Confusion about exercise 2.2.11

Recursion Theory – p.4/21



Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Recursion Theory – p.4/21



Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ

Recursion Theory – p.4/21



Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ

Bounded quantification up to p can not be done using p

many disjunctions!

Recursion Theory – p.4/21



Howework

Confusion about exercise 2.2.11

There is NO need to work within a formal system

Confusion: ∃ϕ ∀n versus ∀n ∃ϕ

Bounded quantification up to p can not be done using p

many disjunctions!

Students can go back to Daisuke with their homework
to get a higher mark

Recursion Theory – p.4/21



Unlimited Register Machines

Other computational models need to be introduced

Recursion Theory – p.5/21



Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications

Recursion Theory – p.5/21



Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications (and general education)

Recursion Theory – p.5/21



Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications (and general education)

URMs are also/better known as RAM: Random Access
Machines

Recursion Theory – p.5/21



Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications (and general education)

URMs are also/better known as RAM: Random Access
Machines

Hardware: unbounded array of registers of unbounded
capacity (starting at R1)

Recursion Theory – p.5/21



Unlimited Register Machines

Other computational models need to be introduced

For sake of later applications (and general education)

URMs are also/better known as RAM: Random Access
Machines

Hardware: unbounded array of registers of unbounded
capacity (starting at R1)

Software: Four types of instructions

Recursion Theory – p.5/21



URMs

Software: Four types of instructions

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)

Programs are numbered lists of instructions always
executing the next instruction unless told otherwise by a
Jump operation

Recursion Theory – p.6/21



URMs

Software: Four types of instructions

Zero: Z(n)

Successor: S(n)

Transfer: T (m,n): rn becomes rm

Jump: J(m,n, q) (If, then, else)

Programs are numbered lists of instructions always
executing the next instruction unless told otherwise by a
Jump operation

A program stops if it enters a line with no program line
on it

Recursion Theory – p.6/21



URM computable

Input output convention

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2

URM Program P computes a function f

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2

URM Program P computes a function f

Function f is URM computable

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2 (totality can be relaxed)

URM Program P computes a function f

Function f is URM computable

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2 (totality can be relaxed)

URM Program P computes a function f

Function f is URM computable

What is the class of URM computable functions?

Recursion Theory – p.7/21



URM computable

Input output convention

Definition 2.3.2 (totality can be relaxed)

URM Program P computes a function f

Function f is URM computable

What is the class of URM computable functions?

That is, find another – equivalent – characterization

Recursion Theory – p.7/21



URM computable functions

Conjecture: URM Computable = Recursive

Recursion Theory – p.8/21



URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Recursion Theory – p.8/21



URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

Recursion Theory – p.8/21



URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!

Recursion Theory – p.8/21



URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!

Basic case

Recursion Theory – p.8/21



URM computable functions

Conjecture: URM Computable = Recursive

How to prove this?

Two parts!

One part: By induction!

Basic case

and constructions

Recursion Theory – p.8/21



URM computable functions

Closure under composition

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form

Problem/solution 2: renumber

Recursion Theory – p.9/21



URM computable functions

Closure under composition

Example: for one variable

Intuitive idea: concatenate programs

Three problems:

Pg may halt somewhere in the middle of Pf

Solution: assume programs are in standard form

Problem/solution 2: renumber

Problem 3: Input/Output convention: how many
registers are used?

Recursion Theory – p.9/21



URM computable functions

Proof by intimidation

Recursion Theory – p.10/21



URM computable functions

Proof by intimidation

Proof by hand waving

Recursion Theory – p.10/21



URM computable functions

Proof by intimidation

Proof by hand waving

Thm: f is URM computable iff f is Recursive

Recursion Theory – p.10/21



URM computable functions

Proof by intimidation

Proof by hand waving

Thm: f is URM computable iff f is Recursive

By relaxing Definition 2.3.2 you can describe Partial
Recursive

Recursion Theory – p.10/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions

better name would have been “deterministic”

Recursion Theory – p.11/21



Turing machines: a classical paradigm

Hardware: two sided infinite tape with reading/writing
head

Language: tape symbols, set of internal states, action
symbols

Instructions are quadruples

Q = 〈qiSAqj〉

A program is a consistent set of instructions

better name would have been “deterministic”

A program Halts if it runs out of instructions

Recursion Theory – p.11/21



Turing machines

How to compute a function

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Again, define M computing a function, and a function
being computable

Recursion Theory – p.12/21



Turing machines

How to compute a function

Input/output conventions

Input is unary (which is not a good choice)

Input: n is represented by n + 1 consecutive 1’s

Output: number of 1’s on the tape

Again, define M computing a function, and a function
being computable

Successor function becomes very easy!

Recursion Theory – p.12/21



Turing Machines

Very true statement in Cooper:

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

How to deal with composition?

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

How to deal with composition?

Hard problem (?): Output becomes Input

Recursion Theory – p.13/21



Turing Machines

Very true statement in Cooper:

Composing Turing Programs is much more rewarding
than reading them!

No Concrete Machines here

How to deal with composition?

Hard problem (?): Output becomes Input

Thm: Turing computable = Partial Recursive

Recursion Theory – p.13/21



Computations and theories

We shall now make a link between computations and
formal theories

Recursion Theory – p.14/21



Computations and theories

We shall now make a link between computations and
formal theories

This yields: yet another characterization of the
recursive functions

Recursion Theory – p.14/21



Computations and theories

We shall now make a link between computations and
formal theories

This yields: yet another characterization of the
recursive functions

Plus the precursor to Gödel’s first incompleteness
theorem

Recursion Theory – p.14/21



Formal theories

Specify three ingredients

Recursion Theory – p.15/21



Formal theories

Specify three ingredients

Language

Recursion Theory – p.15/21



Formal theories

Specify three ingredients

Language

Axioms

Recursion Theory – p.15/21



Formal theories

Specify three ingredients

Language

Axioms

Rules

Recursion Theory – p.15/21



Formal theories

Specify three ingredients

Language

Axioms

Rules

Model for idealized science

Recursion Theory – p.15/21



Peano Arithmetic

Well known arithmetical first order system

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms

The non-logical axioms

Recursion Theory – p.16/21



Peano Arithmetic

Well known arithmetical first order system

Chapter 3 (please send me corrections)

Language consists of {+, ′,×, 0,=}

Axioms, come in two groups

The Logical axioms

The non-logical axioms

The rules: (MP) and (GEN)

Recursion Theory – p.16/21



Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

Recursion Theory – p.17/21



Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like

Recursion Theory – p.17/21



Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like

Of course: standard model

Recursion Theory – p.17/21



Models of Peano Arithmetic

Note: there are infinitely many induction axioms (it is
proved that finitely many can never be enough)

What do models of PA look like

Of course: standard model

Many more models

Recursion Theory – p.17/21



Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model

Recursion Theory – p.18/21



Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model

The Compactness Theorem

Recursion Theory – p.18/21



Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model

The Compactness Theorem

The (downwards) Löwenheim-Skolem Theorem

Recursion Theory – p.18/21



Some model constructions

Gödel’s completeness theorem: Any consistent first
order theory has a model

The Compactness Theorem

The (downwards) Löwenheim-Skolem Theorem

What is countable?

Recursion Theory – p.18/21



What is countable?

Countable: there is a surjection from the natural
numbers

Recursion Theory – p.19/21



What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Recursion Theory – p.19/21



What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals

Recursion Theory – p.19/21



What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals

Finite sequences of natural numbers

Recursion Theory – p.19/21



What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals

Finite sequences of natural numbers

Are there uncountable sets?

Recursion Theory – p.19/21



What is countable?

Countable: there is a surjection from the natural
numbers

Examples: pairs

Rationals

Finite sequences of natural numbers

Are there uncountable sets?

Cantor: Yes, eg [0, 1]

Recursion Theory – p.19/21



Models of PA

There exists a non-standard model of PA

Recursion Theory – p.20/21



Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?

Recursion Theory – p.20/21



Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?

Order structure is unique

Recursion Theory – p.20/21



Models of PA

There exists a non-standard model of PA

What do these non-standard models look like?

Order structure is unique

However (Friedman) uncountably (continuous) many

Recursion Theory – p.20/21



PA and the representable functions

What does it mean to represent a function in PA?

Recursion Theory – p.21/21



PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Recursion Theory – p.21/21



PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Recursion Theory – p.21/21



PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Theorem: all recursive functions are representable in
PA

Recursion Theory – p.21/21



PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Theorem: all recursive functions are representable in
PA

Later we shall prove the reverse

Recursion Theory – p.21/21



PA and the representable functions

What does it mean to represent a function in PA?

Reduce it to relations

Which functions are representable in PA?

Theorem: all recursive functions are representable in
PA

Later we shall prove the reverse

Thus, we have yet another characterization of the
recursive functions

Recursion Theory – p.21/21


	Enrollment
	Extra announcements
	Howework
	Unlimited Register Machines
	URMs
	URM computable
	URM computable functions
	URM computable functions
	URM computable functions
	Turing machines: a classical paradigm
	Turing machines
	Turing Machines
	Computations and theories
	Formal theories
	Peano Arithmetic
	Models of Peano Arithmetic
	Some model constructions
	What is countable?
	Models of PA
	PA and the representable functions

