
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/??

Questions and remarks

Enrollment (regular) possible till September 25

Recursion Theory – p.2/??

Questions and remarks

Enrollment (regular) possible till September 25

After that, probably also possible, but harder

Recursion Theory – p.2/??

Questions and remarks

Enrollment (regular) possible till September 25

After that, probably also possible, but harder

Poblems/questions: contact Tanja Kassenaar and me.

Recursion Theory – p.2/??

Non primitive recursive functions

Loads of them

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

A(m, 1) = m + 2

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

A(m, 1) = m + 2

A(m, 2) = 2 × m + 3

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

A(m, 1) = m + 2

A(m, 2) = 2 × m + 3

A(m, 3) = 2m+3 − 3

Recursion Theory – p.3/??

Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

A(m, 1) = m + 2

A(m, 2) = 2 × m + 3

A(m, 3) = 2m+3 − 3

Each next step iterates over the previous one

Recursion Theory – p.3/??

The Ackermann function

Play around a bit with it

Recursion Theory – p.4/??

The Ackermann function

Play around a bit with it

More fast growing than any function in PRIM

Recursion Theory – p.4/??

The Ackermann function

Play around a bit with it

More fast growing than any function in PRIM

However, it is somehow computable

Recursion Theory – p.4/??

The Ackermann function

Play around a bit with it

More fast growing than any function in PRIM

However, it is somehow computable

Thus, something was missing

Recursion Theory – p.4/??

The Ackermann function

Play around a bit with it

More fast growing than any function in PRIM

However, it is somehow computable

Thus, something was missing

Minimalisation

Recursion Theory – p.4/??

Minimalisation

Defined as a search query

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Is not allowed to jump over previous undefined values!

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Is not allowed to jump over previous undefined values!

Zero plays no essential role

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Is not allowed to jump over previous undefined values!

Zero plays no essential role

funny terminology: total partial

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Is not allowed to jump over previous undefined values!

Zero plays no essential role

funny terminology: total partial

Conjecture: this is all there is in a sense we shall
specify a bit more in a minute

Recursion Theory – p.5/??

Minimalisation

Defined as a search query

We loose totality

Functions in computability are a bit different than in
maths in that they don’t need to be total

Is not allowed to jump over previous undefined values!

Zero plays no essential role

funny terminology: total partial

Conjecture: this is all there is in a sense we shall
specify a bit more in a minute

Recursion Theory – p.5/??

Recursive functions: an aside

And what about Ackermann?

Recursion Theory – p.6/??

Recursive functions: an aside

And what about Ackermann?

We need coding tricks!

Recursion Theory – p.6/??

Recursive functions: an aside

And what about Ackermann?

We need coding tricks!

MDRP-Theorem: one application of minimalisation in
the end suffices

Recursion Theory – p.6/??

Recursive functions: an aside

And what about Ackermann?

We need coding tricks!

MDRP-Theorem: one application of minimalisation in
the end suffices (In theory)

Recursion Theory – p.6/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r.

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

We shall see some more protocols of computing

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

We shall see some more protocols of computing

How to use CTT in practice?

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

We shall see some more protocols of computing

How to use CTT in practice?

Very, very useful

Recursion Theory – p.7/??

Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

We shall see some more protocols of computing

How to use CTT in practice?

Very, very useful

There is no equally undisputed thesis for primitive
recursive around

Recursion Theory – p.7/??

Recursive relations

Relations R and their characteristic functions χR

Recursion Theory – p.8/??

Recursive relations

Relations R and their characteristic functions χR

E.g., χ<(m,n) = sg(m−̇n)

Recursion Theory – p.8/??

Recursive relations

Relations R and their characteristic functions χR

E.g., χ<(m,n) = sg(m−̇n)

Homework: χ= on N is PRIM

Recursion Theory – p.8/??

Recursive relations

Relations R and their characteristic functions χR

E.g., χ<(m,n) = sg(m−̇n)

Homework: χ= on N is PRIM

Again, we are going to build up a repertoire

Recursion Theory – p.8/??

Recursive relations

Relations R and their characteristic functions χR

E.g., χ<(m,n) = sg(m−̇n)

Homework: χ= on N is PRIM

Again, we are going to build up a repertoire

Number of divisors is PRIM (χm|n, sg, and bounded
sum)

Recursion Theory – p.8/??

Recursive relations

Relations R and their characteristic functions χR

E.g., χ<(m,n) = sg(m−̇n)

Homework: χ= on N is PRIM

Again, we are going to build up a repertoire

Number of divisors is PRIM (χm|n, sg, and bounded
sum)

Important: closure properties

Recursion Theory – p.8/??

Closure properties

Closed under the Boolean connectives

Recursion Theory – p.9/??

Closure properties

Closed under the Boolean connectives

Theorem: every finite set is in PRIM

Recursion Theory – p.9/??

Closure properties

Closed under the Boolean connectives

Theorem: every finite set is in PRIM

Closure under bounded quantification

Recursion Theory – p.9/??

Closure properties

Closed under the Boolean connectives

Theorem: every finite set is in PRIM

Closure under bounded quantification

And a lot more!

Recursion Theory – p.9/??

Coding techniques

Important for coding: pn

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧ Pr(z)]

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] (can we have them PRIM ?)

There is a recursive pairing function

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] (can we have them PRIM ?)

There is a recursive pairing function

With recursive inverses πi

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] (can we have them PRIM ?)

There is a PRIM recursive pairing function

With PRIM recursive inverses πi

We can even code finite arbitrary sequences in a PRIM
way!

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] (can we have them PRIM ?)

There is a PRIM recursive pairing function

With PRIM recursive inverses πi

We can even code finite arbitrary sequences in a PRIM
way!

(m)i can be used for (de)coding strings of arbitrary
length: 〈a0, . . . , an〉 7→ pn

0 · pa0

1
· . . . · pan

n+1

Recursion Theory – p.10/??

Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] (can we have them PRIM ?)

There is a PRIM recursive pairing function

With PRIM recursive inverses πi

We can even code finite arbitrary sequences in a PRIM
way!

(m)i can be used for (de)coding strings of arbitrary
length: 〈a0, . . . , an〉 7→ pn

0 · pa0

1
· . . . · pan

n+1

Important first application of coding techniques:
Course-of-Values Recursion

Recursion Theory – p.10/??

	Questions and remarks
	Non primitive recursive functions
	The Ackermann function
	Minimalisation
	Recursive functions: an aside
	Church's Thesis (CT thesis)
	Recursive relations
	Closure properties
	Coding techniques

