
Recursion Theory
Joost J. Joosten

Institute for Logic Language and Computation

University of Amsterdam

Plantage Muidergracht 24

1018 TV Amsterdam

Room P 3.26, +31 20 5256095

jjoosten@phil.uu.nl

www.phil.uu.nl/∼jjoosten

Recursion Theory – p.1/??



Questions and remarks

Enrollment (regular) possible till September 25

Recursion Theory – p.2/??



Questions and remarks

Enrollment (regular) possible till September 25

After that, probably also possible, but harder

Recursion Theory – p.2/??



Questions and remarks

Enrollment (regular) possible till September 25

After that, probably also possible, but harder

Poblems/questions: contact Tanja Kassenaar and me.
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Non primitive recursive functions

Loads of them

Best example: the Ackermann function

A(m, 0) = m + 1

A(m, 1) = m + 2

A(m, 2) = 2 × m + 3

A(m, 3) = 2m+3 − 3

Each next step iterates over the previous one
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More fast growing than any function in PRIM

However, it is somehow computable
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Recursive functions: an aside

And what about Ackermann?

We need coding tricks!

MDRP-Theorem: one application of minimalisation in
the end suffices (In theory)
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Church’s Thesis (CT thesis)

Effectively computable coincides with p.r. (What is said
here?)

(Total and Eff. comp.) coincides with recursive

Eff. comp. in some intuitive sense

Long holding thesis

We shall see some more protocols of computing

How to use CTT in practice?

Very, very useful

There is no equally undisputed thesis for primitive
recursive around
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Closure properties

Closed under the Boolean connectives

Theorem: every finite set is in PRIM

Closure under bounded quantification

And a lot more!
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Coding techniques

Important for coding: pn

p0 = 2

pn+1 = µz[z > pn ∧Pr(z)] ( can we have them PRIM ? )

There is a PRIM recursive pairing function

With PRIM recursive inverses πi

We can even code finite arbitrary sequences in a PRIM
way!

(m)i can be used for (de)coding strings of arbitrary
length: 〈a0, . . . , an〉 7→ pn

0 · pa0

1
· . . . · pan

n+1

Important first application of coding techniques:
Course-of-Values Recursion
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