Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 20 5256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten
Computeability and provability

The book, price is 38.28, not 41.50
The book, price is 38.28, not 41.50

Computability of problems:
The book, price is 38.28, not 41.50

Computability of problems: how is it computable? (Hilbert)
Computability and provability

- The book, price is 38.28, not 41.50
- Computability of problems: how is it computable? (Hilbert); (more modern) is it computable?
Computability and provability

- The book, price is 38.28, not 41.50
- Computability of problems: how is it computable? (Hilbert) ; (more modern) is it computable?
- Nowadays, incomputability does not come as a shock (virus scanner)
Computability and provability

- The book, price is 38.28, not 41.50
- Computability of problems: how is it computable? (Hilbert) ; (more modern) is it computable?
- Nowadays, incomputability does not come as a shock (virus scanner)
- At the time of Hilbert it did!
Computability and provability

- The book, price is 38.28, not 41.50
- Computability of problems: how is it computable? (Hilbert) ; (more modern) is it computable?
- Nowadays, incomputability does not come as a shock (virus scanner)
- At the time of Hilbert it did!
- Hilbert’s two themes
Computability and provability

The book, price is 38.28, not 41.50

Computability of problems: how is it computable? (Hilbert) ; (more modern) is it computable?

Nowadays, incomputability does not come as a shock (virus scanner)

At the time of Hilbert it did!

Hilbert’s two themes
 - Computability
 - Provability
Hibert’s programme
Hibert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
Hibert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
- Double blow to Hilbert’s programme (both themes)
Hibert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
- Double blow to Hilbert’s programme (both themes)
- Gödel introduced a first attempt of classifying computable functions
Hilbert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
- Double blow to Hilbert’s programme (both themes)
- Gödel introduced a first attempt of classifying computable functions
- Later classifications turned out all to yield equivalent classes
Hibert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
- Double blow to Hilbert’s programme (both themes)
 - Gödel introduced a first attempt of classifying computable functions
 - Later classifications turned out all to yield equivalent classes
- Church-Turing thesis
Hibert’s programme

- Hilbert’s programme
- Gödel’s incompleteness theorems
- Double blow to Hilbert’s programme (both themes)
 - Gödel introduced a first attempt of classifying computable functions
 - Later classifications turned out all to yield equivalent classes
- Church-Turing thesis
- We shall study some notions but the emphasis will not be on the computational models themselves
Primitive recursive functions

Basic definition
Primitive recursive functions

- Basic (inductive!) definition
Primitive recursive functions

- Basic (inductive!) definition
- Examples: plus and times are in PRIM
Primitive recursive functions

- Basic (inductive!) definition
- Examples: plus and times are in PRIM
- More examples you have seen: predecessor δ
Primitive recursive functions

- Basic (inductive!) definition
- Examples: plus and times are in PRIM
- More examples you have seen: predecessor δ
- Recursive difference, absolute difference and, very useful, a sign function $sg(n)$
Primitive recursive functions

- Basic (inductive!) definition
- Examples: plus and times are in PRIM
- More examples you have seen: predecessor δ
- Recursive difference, absolute difference and, very useful, a sign function $sg(n)$ (homework)
The remainder function: $rm(m, n)$ is the remainder of dividing n by m
The remainder function: \(\text{rm}(m, n) \) is the remainder of dividing \(n \) by \(m \)

Recursive step:
\[
\text{rm}(m, n + 1) = \text{rm}(m, n)' \times \text{sg}(|m - \text{rm}(m, n)'|)
\]
More in PRIM

- The remainder function: \(rm(m, n) \) is the remainder of dividing \(n \) by \(m \)

- Recursive step:
 \[
 rm(m, n + 1) = rm(m, n)' \times sg(|m - rm(m, n)'|)
 \]

- Bounded Sums
The remainder function: $rm(m, n)$ is the remainder of dividing n by m

Recursive step:
$$rm(m, n + 1) = rm(m, n)' \times sg(|m - rm(m, n)'|)$$

Bounded Sums

Bounded Products
The remainder function: \(rm(m, n) \) is the remainder of dividing \(n \) by \(m \)

Recursive step:
\[
rm(m, n + 1) = rm(m, n)' \times sg(|m - rm(m, n)'|)
\]

Bounded Sums
Bounded Products
We are building up a repertoire...