Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 205256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets
- \leq is well defined on these degrees by

$$
\operatorname{deg}(A) \leq \operatorname{deg}(B) \quad \Leftrightarrow A \leq_{T} B
$$

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets
- \leq is well defined on these degrees by

$$
\operatorname{deg}(A) \leq \operatorname{deg}(B) \quad \Leftrightarrow A \leq_{T} B
$$

- Thus, \leq defines a partial ordering on \mathcal{D}

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets
- \leq is well defined on these degrees by

$$
\operatorname{deg}(A) \leq \operatorname{deg}(B) \quad \Leftrightarrow A \leq_{T} B
$$

- Thus, \leq defines a partial ordering on \mathcal{D}
- Hamkins: what does \mathcal{D} look like?

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets
- \leq is well defined on these degrees by

$$
\operatorname{deg}(A) \leq \operatorname{deg}(B) \quad \Leftrightarrow A \leq_{T} B
$$

- Thus, \leq defines a partial ordering on \mathcal{D}
- Hamkins: what does \mathcal{D} look like?
- First simple question: how many degrees are there?

The Turing Universe

- Consider again degrees \mathcal{D} of Turing equivalent sets
- \leq is well defined on these degrees by

$$
\operatorname{deg}(A) \leq \operatorname{deg}(B) \quad \Leftrightarrow A \leq_{T} B
$$

- Thus, \leq defines a partial ordering on \mathcal{D}
- Hamkins: what does \mathcal{D} look like?
- First simple question: how many degrees are there?
- Answer: there are uncountably many degrees

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$
- If $S=X_{e}$ for some e, we would have a problem

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$
- If $S=X_{e}$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$
- If $S=X_{e}$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_{0} many sets $\left(\operatorname{deg}(A) \subseteq\left\{\Phi_{i}^{A} \mid i \in \mathbb{N}\right\}\right)$

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$
- If $S=X_{e}$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_{0} many sets $\left(\operatorname{deg}(A) \subseteq\left\{\Phi_{i}^{A} \mid i \in \mathbb{N}\right\}\right)$
- Each set is contained in precisely one degree

Countability revisited

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S:=\left\{x \mid x \notin X_{x}\right\}$
- If $S=X_{e}$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_{0} many sets $\left(\operatorname{deg}(A) \subseteq\left\{\Phi_{i}^{A} \mid i \in \mathbb{N}\right\}\right)$
- Each set is contained in precisely one degree
- However, a countable union of countable sets is again countable via coding

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

- Is this an indication that \mathcal{D} is necessarily broad?

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_{0} many predecessors

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_{0} many predecessors
- However, $|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}$ does imply that there is no maximal element

Countability revisited

- Likewise, we have

$$
|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}
$$

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_{0} many predecessors
- However, $|\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}| \leq \aleph_{0}$ does imply that there is no maximal element
- Aside: also in \mathcal{D} there is a minimal element 0

Relativizing continued

- Structure gets inherited through relativization

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: B is A-c.e., iff $B=W_{e}^{A}$ for some e

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: B is A-c.e., iff $B=W_{e}^{A}$ for some e
- We can now again consider the A-computable approximations

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: B is A-c.e., iff $B=W_{e}^{A}$ for some e
- We can now again consider the A-computable approximations
- $\Phi_{e, s}^{A}$ and $W_{e, s}$

Relativizing continued

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: B is A-c.e., iff $B=W_{e}^{A}$ for some e
- We can now again consider the A-computable approximations
- $\Phi_{e, s}^{A}$ and $W_{e, s}$
- Likewise, we define the notions Σ_{1}^{A} and Π_{1}^{A}

Relativazed complementation

- X is A-computable $\Rightarrow X$ is A-c.e.

Relativazed complementation

- X is A-computable $\Rightarrow X$ is A-c.e.
- X is A-computable \Leftrightarrow both X and \bar{X} are A-c.e.

Relativazed complementation

- X is A-computable $\Rightarrow X$ is A-c.e.
- X is A-computable \Leftrightarrow both X and \bar{X} are A-c.e.
- $\Leftrightarrow X \in \Delta_{1}^{A}$

Relativazed complementation

- X is A-computable $\Rightarrow X$ is A-c.e.
- X is A-computable \Leftrightarrow both X and \bar{X} are A-c.e.
- $\Leftrightarrow X \in \Delta_{1}^{A}$
- As A-c.e. coincides with Σ_{1}^{A}

Relativized Normal Form

- Summarizing the above, we can state the relativized NFT:

Relativized Normal Form

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent

Relativized Normal Form

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable

Relativized Normal Form

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable
- X is W_{e}^{A} for some e

Relativized Normal Form

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable
- X is W_{e}^{A} for some e
- X is Σ_{1}^{A}

Halting problem relativized

- We can define $A^{\prime}=\left\{\langle x, y\rangle \mid x \in W_{y}^{A}\right\} \quad\left(=K_{0}^{A}\right)$

Halting problem relativized

- We can define $A^{\prime}=\left\{\langle x, y\rangle \mid x \in W_{y}^{A}\right\} \quad\left(=K_{0}^{A}\right)$
- A^{\prime} is A-c.e., but not A-computable

Halting problem relativized

- We can define $A^{\prime}=\left\{\langle x, y\rangle \mid x \in W_{y}^{A}\right\} \quad\left(=K_{0}^{A}\right)$
- A^{\prime} is A-c.e., but not A-computable
- K_{0}^{A} is called the jump of A and is also denoted by A^{\prime}

Halting problem relativized

- We can define $A^{\prime}=\left\{\langle x, y\rangle \mid x \in W_{y}^{A}\right\} \quad\left(=K_{0}^{A}\right)$
- A^{\prime} is A-c.e., but not A-computable
- K_{0}^{A} is called the jump of A and is also denoted by A^{\prime}
- We can iterate jumps

The Jump Theorem

- A^{\prime} is A-c.e.

The Jump Theorem

- A^{\prime} is A-c.e.
- B is A-c.e. iff $B \leq_{m} A^{\prime}$

The Jump Theorem

- A^{\prime} is A-c.e.
- B is A-c.e. iff $B \leq_{m} A^{\prime}$
- $A^{\prime} \not Z_{T} A$

The Jump Theorem

- A^{\prime} is A-c.e.
- B is A-c.e. iff $B \leq_{m} A^{\prime}$
- $A^{\prime} \not \mathbb{Z}_{T} A$
- So we have proved once more that there is no maximal element in \mathcal{D}

Jumps on degrees

- Can we lift the Jump operation to degrees

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:
- $A^{\prime}=W_{e}^{A}=W_{e}^{B}$ so A^{\prime} is B-c.e., whence $\leq_{m} B^{\prime}$

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:
- $A^{\prime}=W_{e}^{A}=W_{e}^{B}$ so A^{\prime} is B-c.e., whence $\leq_{m} B^{\prime}$
- It is not true that: $A \equiv_{T} B$ implies $W_{e}^{A}=W_{e}^{B}$!

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:
- $A^{\prime}=W_{e}^{A}=W_{e}^{B}$ so A^{\prime} is B-c.e., whence $\leq_{m} B^{\prime}$
- It is not true that: $A \equiv_{T} B$ implies $W_{e}^{A}=W_{e}^{B}$!
- However: $A \leq_{T} B$ and X is A-c.e., implies that X is B-c.e.

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:
- $A^{\prime}=W_{e}^{A}=W_{e}^{B}$ so A^{\prime} is B-c.e., whence $\leq_{m} B^{\prime}$
- It is not true that: $A \equiv_{T} B$ implies $W_{e}^{A}=W_{e}^{B}$!
- However: $A \leq_{T} B$ and X is A-c.e., implies that X is B-c.e.
- This yields the required: $A \equiv_{T} B \Rightarrow A^{\prime} \equiv_{T} B^{\prime}$

Jumps on degrees

- Can we lift the Jump operation to degrees
- If a is a degree, is a^{\prime} well defined?
- Direct approach would use a false assumption:
- $A^{\prime}=W_{e}^{A}=W_{e}^{B}$ so A^{\prime} is B-c.e., whence $\leq_{m} B^{\prime}$
- It is not true that: $A \equiv_{T} B$ implies $W_{e}^{A}=W_{e}^{B}$!
- However: $A \leq_{T} B$ and X is A-c.e., implies that X is B-c.e.
- This yields the required: $A \equiv_{T} B \Rightarrow A^{\prime} \equiv_{T} B^{\prime}$
- In particular:

$$
0<0^{\prime}<0^{\prime \prime}<0^{\prime \prime \prime}<0^{\prime \prime \prime \prime} \ldots
$$

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0 .

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set
- We shall see that there is a tight connection between the $\varnothing^{(n)}$ and the Σ_{n} definable sets.

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set
- We shall see that there is a tight connection between the $\varnothing^{(n)}$ and the Σ_{n} definable sets.
- This is one of Post's famous theorems:

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set
- We shall see that there is a tight connection between the $\varnothing^{(n)}$ and the Σ_{n} definable sets.
- This is one of Post's famous theorems:
- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete (a generalization of m-completeness)

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set
- We shall see that there is a tight connection between the $\varnothing^{(n)}$ and the Σ_{n} definable sets.
- This is one of Post's famous theorems:
- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete (a generalization of m-completeness)
- A set A is Σ_{n} complete if it is Σ_{n}, and for any other Σ_{n} set B we have that $B \leq_{m} A$

Higher up in the hierarchy

- We define the Σ_{n}^{0} and the Π_{n}^{0}, and often omit the superscript 0.
- Example: Tot is a Π_{2}^{0}-set
- We shall see that there is a tight connection between the $\varnothing^{(n)}$ and the Σ_{n} definable sets.
- This is one of Post's famous theorems:
- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete (a generalization of m-completeness)
- A set A is Σ_{n} complete if it is Σ_{n}, and for any other Σ_{n} set B we have that $B \leq_{m} A$
- To prove Post's Theorem we need the following lemma

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y R(x, y)$

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y R(x, y)$
- That is $A \in \Sigma_{1}^{\bar{R}}$, where \bar{R} is Σ_{n+1}

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y R(x, y)$
- That is $A \in \Sigma_{1}^{\bar{R}}$, where \bar{R} is Σ_{n+1}
- $\mathrm{IH}: \bar{R}$ is c.e. in \varnothing^{n}

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y R(x, y)$
- That is $A \in \Sigma_{1}^{\bar{R}}$, where \bar{R} is Σ_{n+1}
- $\mathrm{IH}: \bar{R}$ is c.e. in \varnothing^{n}
- By Jump-Theorem: $\bar{R} \leq_{m} \varnothing^{n+1}$

$\varnothing^{(n)}$-Relativizing Principle

- The $\varnothing^{(n)}$-Relativizing Principle:
- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Proof: by induction on n
- $n=0$ is already established
- Assume $A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y R(x, y)$
- That is $A \in \Sigma_{1}^{\bar{R}}$, where \bar{R} is Σ_{n+1}
- $\mathrm{IH}: \bar{R}$ is c.e. in \varnothing^{n}
- By Jump-Theorem: $\bar{R} \leq_{m} \varnothing^{n+1}$
- So, $A \in \Sigma_{1}^{\varnothing^{n+1}}$ and by NFT c.e. in \varnothing^{n+1}

$\varnothing^{(n)}$-Relativizing Principle

- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.

$\varnothing^{(n)}$-Relativizing Principle

- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Suppose A is c.e. in $\varnothing^{(n+1)}$, i.e., $A=W_{i}^{\varnothing^{(n+1)}}$.

$\varnothing^{(n)}$-Relativizing Principle

- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Suppose A is c.e. in $\varnothing^{(n+1)}$, i.e., $A=W_{i}^{\varnothing^{(n+1)}}$.
- As $\varnothing^{(n+1)}$ is c.e. in $\varnothing^{(n)}$, by the IH: $\varnothing^{(n+1)} \in \Sigma_{n+1}$.

$\varnothing^{(n)}$-Relativizing Principle

- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Suppose A is c.e. in $\varnothing^{(n+1)}$, i.e., $A=W_{i}^{\gamma^{(n+1)}}$.
- As $\varnothing^{(n+1)}$ is c.e. in $\varnothing^{(n)}$, by the $\mathrm{IH}: \varnothing^{(n+1)} \in \Sigma_{n+1}$.
- Now, $x \in A$
iff
$\exists s$ and some oracle queries to $\varnothing^{(n+1)}$ and its complement such that: $x \in W_{i, a}^{\varnothing^{(n+1)}}$

$\varnothing^{(n)}$-Relativizing Principle

- A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.
- Suppose A is c.e. in $\varnothing^{(n+1)}$, i.e., $A=W_{i}^{\varnothing^{(n+1)}}$.
- As $\varnothing^{(n+1)}$ is c.e. in $\varnothing^{(n)}$, by the $\mathrm{IH}: \varnothing^{(n+1)} \in \Sigma_{n+1}$.
- Now, $x \in A$
iff
$\exists s$ and some oracle queries to $\varnothing^{(n+1)}$ and its complement such that: $x \in W_{i, a}^{\gamma^{(n+1)}}$
- Bringing this into prenex normal form gives us $A \in \Sigma_{n+2}$.

Post's Theorem

- $A \in \Delta_{n+1} \Leftrightarrow A, \bar{A} \leq_{T} \varnothing^{(0)}$

Post's Theorem

- $A \in \Delta_{n+1} \Leftrightarrow A, \bar{A} \leq_{T} \varnothing^{(0)}$
- Proof: By the relativized Complementation Lemma and using that A is $\Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\varnothing^{(n)}$.

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-Complete

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-Complete
- Proof: If $A \in \Sigma_{n+1}$ then, by previous lemma: A is c.e. in $\varnothing^{(n)}$

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete
- Proof: If $A \in \Sigma_{n+1}$ then, by previous lemma: A is c.e. in $\varnothing^{(n)}$
- By Jump Theorem: $A \leq_{m}\left(\varnothing^{(n)}\right)^{\prime} \quad\left(=\varnothing^{(n+1)}\right)$

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete
- Proof: If $A \in \Sigma_{n+1}$ then, by previous lemma: A is c.e. in $\varnothing^{(n)}$
- By Jump Theorem: $A \leq_{m}\left(\varnothing^{(n)}\right)^{\prime} \quad\left(=\varnothing^{(n+1)}\right)$
- Each quantifier adds new complexity!

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete
- Proof: If $A \in \Sigma_{n+1}$ then, by previous lemma: A is c.e. in $\varnothing^{(n)}$
- By Jump Theorem: $A \leq_{m}\left(\varnothing^{(n)}\right)^{\prime} \quad\left(=\varnothing^{(n+1)}\right)$
- Each quantifier adds new complexity!
- Informational content grows

Post's Theorem

- $\varnothing^{(n+1)}$ is Σ_{n+1}-complete
- Proof: If $A \in \Sigma_{n+1}$ then, by previous lemma: A is c.e. in $\varnothing^{(n)}$
- By Jump Theorem: $A \leq_{m}\left(\varnothing^{(n)}\right)^{\prime} \quad\left(=\varnothing^{(n+1)}\right)$
- Each quantifier adds new complexity!
- Informational content grows
- To go beyond ω we need hyperarithmetic sets and second order logic

