Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam Room P 3.26, +31 20 5256095 jjoosten@phil.uu.nl www.phil.uu.nl/~jjoosten

 $\textbf{ Source} \quad \textbf{Consider again degrees } \mathcal{D} \text{ of Turing equivalent sets }$

- $\textbf{ Source} \quad \textbf{ Consider again degrees } \mathcal{D} \text{ of Turing equivalent sets }$
- \bullet s well defined on these degrees by

 $\deg(A) \leq \deg(B) \quad \Leftrightarrow A \leq_T B$

- $\textbf{ Source} \quad \textbf{ Consider again degrees } \mathcal{D} \text{ of Turing equivalent sets }$
- \bullet s well defined on these degrees by

```
\deg(A) \leq \deg(B) \quad \Leftrightarrow A \leq_T B
```

• Thus, \leq defines a partial ordering on \mathcal{D}

- $\textbf{ Source} \quad \textbf{ Consider again degrees } \mathcal{D} \text{ of Turing equivalent sets }$
- \bullet < is well defined on these degrees by

 $\deg(A) \leq \deg(B) \quad \Leftrightarrow A \leq_T B$

- Thus, \leq defines a partial ordering on \mathcal{D}
- Hamkins: what does \mathcal{D} look like?

- $\ \ \, \hbox{ of Turing equivalent sets }$
- \bullet < is well defined on these degrees by

 $\deg(A) \le \deg(B) \quad \Leftrightarrow A \le_T B$

- Hamkins: what does \mathcal{D} look like?
- First simple question: how many degrees are there?

- $\ \ \, \hbox{ of Turing equivalent sets }$
- \bullet < is well defined on these degrees by

 $\deg(A) \le \deg(B) \quad \Leftrightarrow A \le_T B$

- Hamkins: what does \mathcal{D} look like?
- First simple question: how many degrees are there?
- Answer: there are uncountably many degrees

● Cantor: $2^{\mathbb{N}}$ is not countable

- Cantor: $2^{\mathbb{N}}$ is not countable

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S := \{x \mid x \notin X_x\}$
- If $S = X_e$ for some e, we would have a problem

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S := \{x \mid x \notin X_x\}$
- If $S = X_e$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S := \{x \mid x \notin X_x\}$
- If $S = X_e$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_0 many sets (deg(A) $\subseteq \{\Phi_i^A \mid i \in \mathbb{N}\}$)

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S := \{x \mid x \notin X_x\}$
- If $S = X_e$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_0 many sets (deg(A) $\subseteq \{\Phi_i^A \mid i \in \mathbb{N}\}$)
- Each set is contained in precisely one degree

- Cantor: $2^{\mathbb{N}}$ is not countable
- Proof: consider $S := \{x \mid x \notin X_x\}$
- If $S = X_e$ for some e, we would have a problem
- Again, draw the diagram to see why this is called a diagonal argument!
- Each degree contains precisely \aleph_0 many sets (deg(A) $\subseteq \{\Phi_i^A \mid i \in \mathbb{N}\}$)
- Each set is contained in precisely one degree
- However, a countable union of countable sets is again countable via coding

Likewise, we have

 $|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0$

Likewise, we have

$$|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0$$

 \checkmark Is this an indication that $\mathcal D$ is necessarily broad?

$$|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0$$

- \checkmark Is this an indication that $\mathcal D$ is necessarily broad?
- No: look at the set of all countable ordinals

```
|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0
```

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_0 many predecessors

```
|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0
```

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_0 many predecessors
- However, $|\{b \mid b \leq a\}| \leq \aleph_0$ does imply that there is no maximal element

```
|\{\mathbf{b} \mid \mathbf{b} \le \mathbf{a}\}| \le \aleph_0
```

- Is this an indication that \mathcal{D} is necessarily broad?
- No: look at the set of all countable ordinals
- This is a linearly ordered uncountable set where each element only has \aleph_0 many predecessors
- However, $|\{b \mid b \leq a\}| \leq \aleph_0$ does imply that there is no maximal element
- Aside: also in \mathcal{D} there is a minimal element 0

Structure gets inherited through relativization

- Structure gets inherited through relativization
- We can consider A-c.e. sets:

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: *B* is *A*-c.e., iff $B = W_e^A$ for some *e*

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: *B* is *A*-c.e., iff $B = W_e^A$ for some *e*
- We can now again consider the A-computable approximations

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- Lemma: *B* is *A*-c.e., iff $B = W_e^A$ for some *e*
- We can now again consider the A-computable approximations

•
$$\Phi_{e,s}^A$$
 and $W_{e,s}$

- Structure gets inherited through relativization
- We can consider A-c.e. sets:
- the sets that can be computably enumerated using queries to A
- **J** Lemma: *B* is *A*-c.e., iff $B = W_e^A$ for some *e*
- We can now again consider the A-computable approximations
- $\Phi_{e,s}^A$ and $W_{e,s}$
- Likewise, we define the notions Σ_1^A and Π_1^A

● X is A-computable \Rightarrow X is A-c.e.

- X is A-computable \Rightarrow X is A-c.e.
- X is A-computable \Leftrightarrow both X and \overline{X} are A-c.e.

- X is A-computable \Rightarrow X is A-c.e.
- X is A-computable \Leftrightarrow both X and \overline{X} are A-c.e.
- $\Rightarrow X \in \Delta_1^A$

- X is A-computable \Rightarrow X is A-c.e.
- X is A-computable \Leftrightarrow both X and \overline{X} are A-c.e.
- As A-c.e. coincides with Σ_1^A

Summarizing the above, we can state the relativized NFT:

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable
- X is W_e^A for some e

- Summarizing the above, we can state the relativized NFT:
- The following three statements are equivalent
- X is A-computably enumerable
- $I X is W_e^A for some e$
- $X \text{ is } \Sigma_1^A$

• We can define $A' = \{ \langle x, y \rangle \mid x \in W_y^A \} \ (= K_0^A)$

- We can define $A' = \{ \langle x, y \rangle \mid x \in W_y^A \} \ (= K_0^A)$
- \checkmark A' is A-c.e., but not A-computable

- We can define $A' = \{ \langle x, y \rangle \mid x \in W_y^A \} \ (= K_0^A)$
- A' is A-c.e., but not A-computable
- K_0^A is called the jump of A and is also denoted by A'

- We can define $A' = \{ \langle x, y \rangle \mid x \in W_y^A \} \ (= K_0^A)$
- A' is A-c.e., but not A-computable
- K_0^A is called the jump of A and is also denoted by A'
- We can iterate jumps

● *A*′ is *A*-c.e.

- A' is A-c.e.
- B is A-c.e. iff $B \leq_m A'$

- A' is A-c.e.
- B is A-c.e. iff $B \leq_m A'$
- $A' \not\leq_T A$

- A' is A-c.e.
- B is A-c.e. iff $B \leq_m A'$
- $A' \not\leq_T A$
- \checkmark So we have proved once more that there is no maximal element in $\mathcal D$

Can we lift the Jump operation to degrees

- Can we lift the Jump operation to degrees
- \checkmark If \mathbf{a} is a degree, is \mathbf{a}' well defined?

- Can we lift the Jump operation to degrees
- If \mathbf{a} is a degree, is \mathbf{a}' well defined?
- Direct approach would use a false assumption:

- Can we lift the Jump operation to degrees
- If \mathbf{a} is a degree, is \mathbf{a}' well defined?
- Direct approach would use a false assumption:
- $A' = W_e^A = W_e^B$ so A' is *B*-c.e., whence $\leq_m B'$

- Can we lift the Jump operation to degrees
- If \mathbf{a} is a degree, is \mathbf{a}' well defined?
- Direct approach would use a false assumption:
- $A' = W_e^A = W_e^B$ so A' is *B*-c.e., whence $\leq_m B'$
- It is not true that: $A \equiv_T B$ implies $W_e^A = W_e^B$!

- Can we lift the Jump operation to degrees
- If \mathbf{a} is a degree, is \mathbf{a}' well defined?
- Direct approach would use a false assumption:
- $A' = W_e^A = W_e^B$ so A' is *B*-c.e., whence $\leq_m B'$
- It is not true that: $A \equiv_T B$ implies $W_e^A = W_e^B$!
- However: $A \leq_T B$ and X is A-c.e., implies that X is B-c.e.

- Can we lift the Jump operation to degrees
- If a is a degree, is a' well defined?
- Direct approach would use a false assumption:
- $A' = W_e^A = W_e^B$ so A' is *B*-c.e., whence $\leq_m B'$
- It is not true that: $A \equiv_T B$ implies $W_e^A = W_e^B$!
- However: $A \leq_T B$ and X is A-c.e., implies that X is B-c.e.
- This yields the required: $A \equiv_T B \Rightarrow A' \equiv_T B'$

- Can we lift the Jump operation to degrees
- If \mathbf{a} is a degree, is \mathbf{a}' well defined?
- Direct approach would use a false assumption:
- $A' = W_e^A = W_e^B$ so A' is *B*-c.e., whence $\leq_m B'$
- It is not true that: $A \equiv_T B$ implies $W_e^A = W_e^B$!
- However: $A \leq_T B$ and X is A-c.e., implies that X is B-c.e.
- This yields the required: $A \equiv_T B \Rightarrow A' \equiv_T B'$
- In particular:

$$0 < 0' < 0'' < 0''' < 0''''$$
 . .

• We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- **•** Example: Tot is a Π_2^0 -set

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- Example: Tot is a Π_2^0 -set
- We shall see that there is a tight connection between the $\emptyset^{(n)}$ and the Σ_n definable sets.

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- Example: Tot is a Π_2^0 -set
- We shall see that there is a tight connection between the $\emptyset^{(n)}$ and the Σ_n definable sets.
- This is one of Post's famous theorems:

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- **•** Example: Tot is a Π_2^0 -set
- We shall see that there is a tight connection between the $\emptyset^{(n)}$ and the Σ_n definable sets.
- This is one of Post's famous theorems:
- $\emptyset^{(n+1)}$ is Σ_{n+1} -complete (a generalization of m-completeness)

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- **•** Example: Tot is a Π_2^0 -set
- We shall see that there is a tight connection between the $\emptyset^{(n)}$ and the Σ_n definable sets.
- This is one of Post's famous theorems:
- $\emptyset^{(n+1)}$ is Σ_{n+1} -complete (a generalization of m-completeness)
- A set A is Σ_n complete if it is Σ_n , and for any other Σ_n set B we have that $B \leq_m A$

- We define the Σ_n^0 and the Π_n^0 , and often omit the superscript 0.
- **•** Example: Tot is a Π_2^0 -set
- We shall see that there is a tight connection between the $\emptyset^{(n)}$ and the Σ_n definable sets.
- This is one of Post's famous theorems:
- $\emptyset^{(n+1)}$ is Σ_{n+1} -complete (a generalization of m-completeness)
- A set A is Σ_n complete if it is Σ_n , and for any other Σ_n set B we have that $B \leq_m A$
- To prove Post's Theorem we need the following lemma

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established
- $\textbf{SSUME } A \in \Sigma_{n+2}$

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \bullet n = 0 is already established
- $\textbf{ Assume } A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y \ R(x, y)$

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established
- $\textbf{ Assume } A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y \ R(x, y)$
- That is $A \in \Sigma_1^{\overline{R}}$, where \overline{R} is Σ_{n+1}

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established
- $\textbf{ Assume } A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y \ R(x, y)$
- That is $A \in \Sigma_1^{\overline{R}}$, where \overline{R} is Σ_{n+1}
- IH: \overline{R} is c.e. in \emptyset^n

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established
- $\textbf{ Assume } A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y \ R(x, y)$
- That is $A \in \Sigma_1^{\overline{R}}$, where \overline{R} is Σ_{n+1}
- IH: \overline{R} is c.e. in \emptyset^n
- **9** By Jump-Theorem: $\overline{R} \leq_m \emptyset^{n+1}$

- The $\emptyset^{(n)}$ -Relativizing Principle:
- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- **Proof:** by induction on n
- \square n = 0 is already established
- $\textbf{ Assume } A \in \Sigma_{n+2}$
- that is, for some Π_{n+1} relation R we have $x \in A \Leftrightarrow \exists y \ R(x, y)$
- That is $A \in \Sigma_1^{\overline{R}}$, where \overline{R} is Σ_{n+1}
- IH: \overline{R} is c.e. in \emptyset^n
- **9** By Jump-Theorem: $\overline{R} \leq_m \varnothing^{n+1}$
- So, $A \in \Sigma_1^{\emptyset^{n+1}}$ and by NFT c.e. in \emptyset^{n+1}

• $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$

- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- Suppose A is c.e. in $\emptyset^{(n+1)}$, i.e., $A = W_i^{\emptyset^{(n+1)}}$.

- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- Suppose A is c.e. in $\emptyset^{(n+1)}$, i.e., $A = W_i^{\emptyset^{(n+1)}}$.
- As $\emptyset^{(n+1)}$ is c.e. in $\emptyset^{(n)}$, by the IH: $\emptyset^{(n+1)} \in \Sigma_{n+1}$.

- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- Suppose A is c.e. in $\emptyset^{(n+1)}$, i.e., $A = W_i^{\emptyset^{(n+1)}}$.
- As $\emptyset^{(n+1)}$ is c.e. in $\emptyset^{(n)}$, by the IH: $\emptyset^{(n+1)} \in \Sigma_{n+1}$.
- Now, $x \in A$ iff $\exists s \text{ and some oracle queries to } \varnothing^{(n+1)}$ and its complement such that: $x \in W_{i,a}^{\varnothing^{(n+1)}}$

- $A \text{ is } \Sigma_{n+1}^0 \Leftrightarrow A \text{ is c.e. in } \emptyset^{(n)}.$
- Suppose A is c.e. in $\emptyset^{(n+1)}$, i.e., $A = W_i^{\emptyset^{(n+1)}}$.
- As $\emptyset^{(n+1)}$ is c.e. in $\emptyset^{(n)}$, by the IH: $\emptyset^{(n+1)} \in \Sigma_{n+1}$.
- Now, $x \in A$ iff $\exists s \text{ and some oracle queries to } \varnothing^{(n+1)}$ and its complement such that: $x \in W_{i,a}^{\varnothing^{(n+1)}}$
- Bringing this into prenex normal form gives us $A \in \Sigma_{n+2}$.

• $A \in \Delta_{n+1} \Leftrightarrow A, \overline{A} \leq_T \emptyset^{(0)}$

- $A \in \Delta_{n+1} \iff A, \overline{A} \leq_T \emptyset^{(0)}$
- Proof: By the relativized Complementation Lemma and using that A is $\Sigma_{n+1}^0 \Leftrightarrow A$ is c.e. in $\emptyset^{(n)}$.

- $\mathscr{O}^{(n+1)}$ is Σ_{n+1} -complete

- $\mathscr{O}^{(n+1)}$ is Σ_{n+1} -complete
- By Jump Theorem: $A \leq_m (\emptyset^{(n)})'$ (= $\emptyset^{(n+1)}$)

- (n+1) is Σ_{n+1} -complete
- By Jump Theorem: $A \leq_m (\emptyset^{(n)})'$ (= $\emptyset^{(n+1)}$)
- Each quantifier adds new complexity!

- (n+1) is Σ_{n+1} -complete
- By Jump Theorem: $A \leq_m (\emptyset^{(n)})'$ (= $\emptyset^{(n+1)}$)
- Each quantifier adds new complexity!
- Informational content grows

- (n+1) is Σ_{n+1} -complete
- By Jump Theorem: $A \leq_m (\emptyset^{(n)})'$ (= $\emptyset^{(n+1)}$)
- Each quantifier adds new complexity!
- Informational content grows
- To go beyond ω we need hyperarithmetic sets and second order logic