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Studying informational degrees via Turing Degrees

What is the order and how complex is it?

Computable tree with no computable branch

Some computable model theory: e.g., does every
computable consistent theory have a computable
model?

Infinite time Turing Machines
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Gödel’s first

Gödel’s first incompleteness theorem can be seen as a
corollary from computational complexity facts

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA

( or even a lot weaker is sufficient) and which is
ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that T 6⊢ ψ and T 6⊢ ¬ψ

Omega-inconsistent: for some ψ(x) we have
T ⊢ ∃x ψ(x)

∀m T ⊢ ¬ψ(m)

Omega-consistent is (not Omega-inconsistent)

Axiomatisable: the set of axioms is computable (c.e. is
suff.)
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that

x ∈ S ⇔ T ⊢ ϕ(x).

SRT: The following are equivalent (provided PA is
Omega-consistent)

S is c.e.
S is semi-representable in PA

S ≤m TPA

Recursion Theory – p.4/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

where ϕ(x) semi-represents K

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

where ϕ(x) semi-represents K

so, for some x ∈ K we have PA 0 ¬ϕ(x)

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

where ϕ(x) semi-represents K

so, for some x ∈ K we have PA 0 ¬ϕ(x)

Natural incomplete sentences are hard to find

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

where ϕ(x) semi-represents K

so, for some x ∈ K we have PA 0 ¬ϕ(x)

Natural incomplete sentences are hard to find

Goodstein’s sequences!

Recursion Theory – p.5/9



Proving Gödel 1

Corollary 1: theoremhood of PA is not computable
(undecidable)

Corollary 2: PA is incomplete

Proof: K is not semi-representable in PA, so certainly
not by ¬ϕ(x)

where ϕ(x) semi-represents K

so, for some x ∈ K we have PA 0 ¬ϕ(x)

Natural incomplete sentences are hard to find

Goodstein’s sequences!

There is an interesting link from strange attractors in
chaos theory to Goodstein’s process.
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PA is creative

What does it mean for a theory to be creative?

We know that K ≤m PA

Most other theories are also creative

Can we carve out a decidable piece out of PA?

Maybe a bit surprising, but NO, we can not

Pure Predicate Calculus is undecidable

Can be done directly by coding the halting problem, we
give a shorter proof
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simple set, then that theory is decidable!

Vaught’s completeness test

:if categorical in some cardinal, then decidable
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Alonzo Church: PC is undecidable

Two main ingredients

(1) There is a finitely axiomatized creative theory
(Raphael Robinson)

(2) If T ′ is a finite extension of T , then

TT ′ ≤m TT

The proof of (2) is easy via the computable version of
the deduction lemma

The proof of (1) is a bit more involved
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Induction can be reduced to:

x 6= 0 → ∃y x = y′.

One now can check that all the c.e. sets are
semi-representable in Q (provided ω-consistency)

Thus, we get
K ≤m TQ ≤m TPC−

An easy lemma teaches us that (via the embedding)

TPC− ≤m TPC

Thus we obtain that PC is creative!
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