Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 20 5256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten
Hamkin’s Course

Studying informational degrees via Turing Degrees
Studying informational degrees via Turing Degrees
What is the order and how complex is it?
Hamkin’s Course

- Studying informational degrees via Turing Degrees
- What is the order and how complex is it?
- Computable tree with no computable branch
Hamkin’s Course

- Studying informational degrees via Turing Degrees
- What is the order and how complex is it?
- Computable tree with no computable branch
- Some computable model theory: e.g., does every computable consistent theory have a computable model?
Hamkin’s Course

- Studying informational degrees via Turing Degrees
- What is the order and how complex is it?
- Computable tree with no computable branch
- Some computable model theory: e.g., does every computable consistent theory have a computable model?
- Infinite time Turing Machines
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.
Gödel’s first

- Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts
- The second can not!
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA and which is ω-consistent, any such theory is incomplete.
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \nvdash \psi$ and $T \nvdash \neg \psi$
Gödel’s first

Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts

The second can not!

Gödel 1: Any axiomatizable theory \(T \) which extends PA (or even a lot weaker is sufficient) and which is \(\omega \)-consistent, any such theory is incomplete.

Incomplete: for some \(\psi \) we have that \(T \nvdash \psi \) and \(T \nvdash \neg \psi \)

Omega-inconsistent: for some \(\psi(x) \) we have
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \nvdash \psi$ and $T \nvdash \neg \psi$

Omega-inconsistent: for some $\psi(x)$ we have

$T \vdash \exists x \psi(x)$
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts. The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \nvdash \psi$ and $T \nvdash \neg \psi$

Omega-inconsistent: for some $\psi(x)$ we have

$T \vdash \exists x \psi(x)$

$\forall m \ T \vdash \neg \psi(m)$
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \nvdash \psi$ and $T \nvdash \neg \psi$

Omega-inconsistent: for some $\psi(x)$ we have

- $T \vdash \exists x \psi(x)$
- $\forall m \, T \vdash \neg \psi(m)$

Omega-consistent is (not Omega-inconsistent)
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \not\vdash \psi$ and $T \not\vdash \neg \psi$

Omega-inconsistent: for some $\psi(x)$ we have

- $T \vdash \exists x \psi(x)$
- $\forall m \ T \vdash \neg \psi(m)$

Omega-consistent is (not Omega-inconsistent)

Axiomatisable: the set of axioms is computable.
Gödel’s first incompleteness theorem can be seen as a corollary from computational complexity facts.

The second can not!

Gödel 1: Any axiomatizable theory T which extends PA (or even a lot weaker is sufficient) and which is ω-consistent, any such theory is incomplete.

Incomplete: for some ψ we have that $T \nvdash \psi$ and $T \nvdash \neg \psi$

Omega-inconsistent: for some $\psi(x)$ we have

- $T \vdash \exists x \psi(x)$
- $\forall m \ T \vdash \neg \psi(m)$

Omega-consistent is (not Omega-inconsistent)

Axiomatisable: the set of axioms is computable (c.e. is suff.)
Proving Gödel 1

It is a direct consequence of the *Semi-Representability Theorem*
Proving Gödel 1

It is a direct consequence of the *Semi-Representability Theorem*.

A set S is semi-representable in a theory T whenever there is some formula $\varphi(x)$ in the language of T such that

$$x \in S \iff T \vdash \varphi(x).$$
It is a direct consequence of the *Semi-Representability Theorem*

A set S is semi-representable in a theory T whenever there is some formula $\varphi(x)$ in the language of T such that

$$x \in S \iff T \vdash \varphi(x).$$

SRT: The following are equivalent (provided PA is Omega-consistent)
Proving Gödel 1

It is a direct consequence of the Semi-Representability Theorem

A set S is semi-representable in a theory T whenever there is some formula $\varphi(x)$ in the language of T such that

$$x \in S \iff T \vdash \varphi(x).$$

SRT: The following are equivalent (provided PA is Omega-consistent)

S is c.e.
Proving Gödel 1

- It is a direct consequence of the *Semi-Representability Theorem*

- A set S is semi-representable in a theory T whenever there is some formula $\varphi(x)$ in the language of T such that

\[x \in S \iff T \vdash \varphi(x). \]

- SRT: The following are equivalent (provided PA is Omega-consistent)
 - S is c.e.
 - S is semi-representable in PA
It is a direct consequence of the *Semi-Representability Theorem*

A set S is semi-representable in a theory T whenever there is some formula $\varphi(x)$ in the language of T such that

$$x \in S \iff T \vdash \varphi(x).$$

SRT: The following are equivalent (provided PA is Omega-consistent)

- S is c.e.
- S is semi-representable in PA
- $S \leq_m T_{PA}$
Corollary 1: theoremhood of PA is not computable
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \overline{K} is not semi-representable in PA, so certainly not by $\neg \varphi(x)$
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \(\overline{\overline{K}} \) is not semi-representable in PA, so certainly not by \(\neg \varphi(x) \)

where \(\varphi(x) \) semi-represents \(K \)
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \overline{K} is not semi-representable in PA, so certainly not by $\neg \varphi(x)$

where $\varphi(x)$ semi-represents K

so, for some $x \in \overline{K}$ we have PA $\not\models \neg \varphi(x)$
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \overline{K} is not semi-representable in PA, so certainly not by $\neg \varphi(x)$

where $\varphi(x)$ semi-represents K

so, for some $x \in \overline{K}$ we have PA $\not\vdash \neg \varphi(\overline{x})$

Natural incomplete sentences are hard to find
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \overline{K} is not semi-representable in PA, so certainly not by $\neg \varphi(x)$

where $\varphi(x)$ semi-represents K

so, for some $x \in \overline{K}$ we have $PA \nvdash \neg \varphi(x)$

Natural incomplete sentences are hard to find

Goodstein’s sequences!
Corollary 1: theoremhood of PA is not computable (undecidable)

Corollary 2: PA is incomplete

Proof: \(\overline{K} \) is not semi-representable in PA, so certainly not by \(\lnot \varphi(x) \)

where \(\varphi(x) \) semi-represents \(K \)

so, for some \(x \in \overline{K} \) we have \(\text{PA} \ \not\models \ \lnot \varphi(\overline{x}) \)

Natural incomplete sentences are hard to find

Goodstein’s sequences!

There is an interesting link from strange attractors in chaos theory to Goodstein’s process.
PA is creative

What does it mean for a theory to be creative?
PA is creative

- What does it mean for a theory to be creative?
- We know that $K \leq_m \text{PA}$
PA is creative

- What does it mean for a theory to be creative?
- We know that $K \leq_m PA$
- Most other theories are also creative
PA is creative

- What does it mean for a theory to be creative?
- We know that $K \leq_m \text{PA}$
- Most other theories are also creative
- Can we carve out a decidable piece out of PA?
PA is creative

- What does it mean for a theory to be creative?
- We know that $K \leq_m PA$
- Most other theories are also creative
- Can we carve out a decidable piece out of PA?
- Maybe a bit surprising, but NO, we can not
What does it mean for a theory to be creative?

We know that $K \leq_m PA$

Most other theories are also creative

Can we carve out a decidable piece out of PA?

Maybe a bit surprising, but NO, we can not

Pure Predicate Calculus is undecidable
PA is creative

What does it mean for a theory to be creative?

We know that $K \leq_m \text{PA}$

Most other theories are also creative

Can we carve out a decidable piece out of PA?

Maybe a bit surprising, but NO, we can not

Pure Predicate Calculus is undecidable

Can be done directly by coding the halting problem, we give a shorter proof
Decidable theories

- Not all theories are decidable
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
- Funny little fact: if a theory is many-one reducible to a simple set, then that theory is decidable!
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
- Funny little fact: if a theory is many-one reducible to a simple set, then that theory is decidable!
- Vaught’s completeness test
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
- Funny little fact: if a theory is many-one reducible to a simple set, then that theory is decidable!
- Vaught’s completeness test
- :if categorical in some cardinal, then decidable
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
- Funny little fact: if a theory is many-one reducible to a simple set, then that theory is decidable!
- Vaught’s completeness test
 - if categorical in some cardinal, then decidable
- Applications: dense linear ordering with no begin or end-points
Decidable theories

- Not all theories are decidable
- Any complete axiomatisable theory is decidable
- Funny little fact: if a theory is many-one reducible to a simple set, then that theory is decidable!
- Vaught’s completeness test
 - if categorical in some cardinal, then decidable
- Applications: dense linear ordering with no begin or end-points (Algebraically closed fields of given characteristic)
PC is undecidable

Alonzo Church: PC is undecidable
PC is undecidable

- Alonzo Church: PC is undecidable
- Two main ingredients
PC is undecidable

- Alonzo Church: PC is undecidable
- Two main ingredients
- (1) There is a finitely axiomatized creative theory (Raphael Robinson)
Alonzo Church: PC is undecidable

Two main ingredients

(1) There is a finitely axiomatized creative theory (Raphael Robinson)

(2) If \mathcal{T}' is a finite extension of \mathcal{T}, then

$$T_{\mathcal{T}'} \leq_m T_{\mathcal{T}}$$
PC is undecidable

- Alonzo Church: PC is undecidable
- Two main ingredients
 1. There is a finitely axiomatized creative theory (Raphael Robinson)
 2. If \mathcal{T}' is a finite extension of \mathcal{T}, then

\[
\mathcal{T}_{\mathcal{T}'} \leq_m \mathcal{T}_{\mathcal{T}}
\]

- The proof of (2) is easy via the computable version of the deduction lemma
PC is undecidable

- Alonzo Church: PC is undecidable
- Two main ingredients
- (1) There is a finitely axiomatized creative theory (Raphael Robinson)
- (2) If \mathcal{T}' is a finite extension of \mathcal{T}, then

$$\mathcal{T}_{\mathcal{T}'} \leq_m \mathcal{T}_{\mathcal{T}}$$

- The proof of (2) is easy via the computable version of the deduction lemma
- The proof of (1) is a bit more involved
Robinson’s Arithmetic

\(Q \) contains all the finite defining axioms of the symbols
Robinson’s Arithmetic

- \(\mathcal{Q} \) contains all the finite defining axioms of the symbols
- Induction can be reduced to:

\[
x \neq 0 \rightarrow \exists y \ x = y'.
\]
Robinson’s Arithmetic

- \mathbb{Q} contains all the finite defining axioms of the symbols

- Induction can be reduced to:

 $$x \neq 0 \rightarrow \exists y \ x = y'.$$

- One now can check that all the c.e. sets are semi-representable in \mathbb{Q}
Robinson’s Arithmetric

- \mathcal{Q} contains all the finite defining axioms of the symbols
- Induction can be reduced to:

$$x \neq 0 \rightarrow \exists y \ x = y'.$$

- One now can check that all the c.e. sets are semi-representable in \mathcal{Q} (provided ω-consistency)
Robinson’s Arithmetic

- \mathbb{Q} contains all the finite defining axioms of the symbols
- Induction can be reduced to:

 $$x \neq 0 \rightarrow \exists y \ x = y'. $$

- One now can check that all the c.e. sets are semi-representable in \mathbb{Q} (provided ω-consistency)
- Thus, we get

 $$K \leq_m T_Q \leq_m T_{PC}.$$
Robinson’s Arithmetic

- Q contains all the finite defining axioms of the symbols
- Induction can be reduced to:

$$x \neq 0 \rightarrow \exists y \ x = y'.$$

- One now can check that all the c.e. sets are semi-representable in Q (provided ω-consistency)
- Thus, we get

$$K \leq_m T_Q \leq_m T_{PC^{-}}.$$

- An easy lemma teaches us that (via the embedding)

$$T_{PC^{-}} \leq_m T_{PC}$$
Robinson’s Arithmetic

- \(Q \) contains all the finite defining axioms of the symbols
- Induction can be reduced to:

\[x \neq 0 \rightarrow \exists y \ x = y'. \]

- One now can check that all the c.e. sets are semi-representable in \(Q \) (provided \(\omega \)-consistency)
- Thus, we get

\[K \leq_m T_Q \leq_m T_{PC}^- \]

- An easy lemma teaches us that (via the embedding)

\[T_{PC}^- \leq_m T_{PC} \]

- Thus we obtain that PC is creative!