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Talk by Terwijn

Tuesday November 14, 16.00-17.00

P 327

Intervals in the Medvedev lattice

Link intuitionism/computability theory

Do come!

Later (April-June) there are lectures by Hamkins on

Advanced Topics in Recursion Theory

And projects in June
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Rice’s Theorem
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Rice’s Theorem

If A is an index set – not equal to ∅ or N–, then A is
incomputable

First step: it is sufficient to show that either K ≤m A or
K ≤m A

Case distinction ∅ has no code in A, or it has

By assumption, there is some e ∈ A and some e′ ∈ A

First idea: Define f(x) := e if x ∈ K and

f(x) := e′ if x /∈ K

Then: K ≤m A :x ∈ K ⇔ f(x) ∈ A

Alas: f is not computable
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Rice’s Theorem

Second idea: Define f(x) := e if x ∈ K and

and undefined otherwise.

Now f is partially computable.

and: x ∈ K ⇔ f(x) ↓∈ A

But f is not total, so no reduction

Final idea: Wf(x) := We if x ∈ K

and ∅ otherwise.

The case that ∅ has a code in A goes similar (misprint)
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Rice applications

Fin

Inf

Cof

Virus scanner does not exist and cannot exist!!!

and much more
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m-degrees

≡m is an equivalence (reflexive, transitive, symmetric)
relation , so, we divide it out

am := deg(A) with ≤

Notice that it is a well defined notion

We always exclude ∅ and N as members of m-degrees

≤ defines a partial order (refl., trans., antisymm.)

We call this the ordering of m-degrees

and denote it Dm
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Properties of Dm

There is a minimal element in Dm:

If A is decidable, and B 6= ∅, N, then A ≤m B

However, there is no such thing as a maximal m-degree
as we shall see later

Moreover, Dm does not have such a well-behaved
structure as, say, the distributive lattice 〈E ,⊆〉 or the
Boolean algebra 〈P(X),⊆〉

It is a very interesting and complex (its first order theory
is of complexity 0

ω
m!) structure
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C.e. m-degrees

The structure Em does have a maximal element

A is c.e. iff A ≤m K0 !

We shall now proof that deg(K0) (we shall write 0
′

m) is
inhabited precisely by all the creative sets

If C is creative, and C ≤m A then A is creative too.
Recall that we now only consider c.e. sets, whence, A is
by definition c.e.

Proof: if C is creative with creative function f and
g : C ≤m A

use g−1 to get a set to apply f to, to obtain a new
element. Use g again to get the element where is
should be.
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Creative sets

Corollary: there is some a with 0m <m a < 0
′

m

Every creative set C is m-complete (John Myhill, 1955)

Collecting ingredients to find a proof strategy:

We should find for every c.e. A some reduction
g : A ≤m C, thus

y ∈ A ⇒ g(y) ∈ C

y ∈ A ⇒ g(y) ∈ C

Notice, for f the creative function: f(e) ∈ C if We = ∅

How can we make sure that g(y) ∈ C?

Well, if Wg(y) = {f(g(y))}!!!
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