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Natural examples of incomputability

Incomputable sets: K, K0, Simple sets

Are there mathematical examples?

Hilbert’s tenth problem

Diophantine equations (Alexandria, +- 250 AD) have
solutions?

{n | xn + yn = zn for some natural numbers x, y, z}
undecidable?

General definition of a Diophantine set (we can interpret
the integers into the natural numbers (and also the
other way around) )
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Matiasevich

Example: {x | x 6= 2(4)} is Diophantine
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Example: {x | x 6= 2(4)} is Diophantine

The polynomial that does it is: y2
1 − y2

2 − x by some
non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is
Diophantine.
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Matiasevich

Example: {x | x 6= 2(4)} is Diophantine

The polynomial that does it is: y2
1 − y2

2 − x by some
non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is
Diophantine.

Together with Putnam and Julia Robinson: almost
proved, provided there exists an exponential set which
is Diophantine
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Matiasevich, 1970: The Fibonacci sequence is
Diophantine ( Chudnovsky claims to have
simultaneously solved it (Post (21)/Gödel (31)) )

Matiasevich calls it the DPRM-theorem!

Fibonacci
sequence grows about as

1√
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Matiasevich

Matiasevich, 1970: The Fibonacci sequence is
Diophantine ( Chudnovsky claims to have
simultaneously solved it (Post (21)/Gödel (31)) )

Matiasevich calls it the DPRM-theorem!

Fibonacci (Liber Abaci, 1202, Leonardo Pisano)
sequence grows about as

1√
5
[
1

2
(1 +

√
5)]n+1

There is a nice exercise in Terwijn’s reader to the effect
that

an :=
1√
5
[
1

2
(1 +

√
5)]n+1 − 1√

5
[
1

2
(1 −

√
5)]n+1
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More on Hilbert 10

Fibonacci numbers are Diophantine with degree 3

Every c.e. set has at most degree 9

It is not known if this can be lowered

Corollary: there is a polynomial enumerating the primes

No polynomial for K has yet been found

Hilbert over algebraic fields is unknown

In particular: is Z Diophantine over Q?
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Natural simple sets

Randomness and Kolmogorov complexity (7.3 of reader
Terwijn)

Fix a universal TM U

Kolm. Compl. of a string σ is +- the length of the
shortest TM program that on empty input outputs σ

Is dependent on U but only in a O(1) sense

A string σ is k-random if C(σ) ≥ |σ| − k

The set of non-k-random strings is simple
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Comparing incomputability

Compare the incomputable sets

Are some sets less computable than others

Notion of many-one reducability

Important features:

B ≤m A and A decidable, then B decidable

B ≤m A and B undecidable, then A undecidable

B ≤m A and A c.e , then B c.e.

Application: K0 is undecidable (notcomputable)

Actually K ≤1 K0

A is c.e. iff A ≤m K0
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Index sets

A is an index set if e ∈ A and We = We′ implies e′ ∈ A
Examples: Tot and K1

K1 := {x | Wx 6= ∅}
Theorem: K is not an index set

Proof idea: make a singleton set consisting only of its
code e, using the padding lemma, find another code e′

of this set. Then, e ∈ K and e′ /∈ K.

Recursion Theory – p.8/11



Rice’s Theorem

If A is an index set – not equal to ∅ or N–, then A is
incomputable
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Rice’s Theorem

If A is an index set – not equal to ∅ or N–, then A is
incomputable

First step: it is sufficient to show that either K ≤m A or
K ≤m A

Case distinction ∅ has no code in A, or it has

By assumption, there is some e ∈ A and some e′ ∈ A

First idea: Define f(x) := e if x ∈ K and

f(x) := e′ if x /∈ K

Then: K ≤m A :x ∈ K ⇔ f(x) ∈ A

Alas: f is not computable
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Rice’s Theorem

Second idea: Define f(x) := e if x ∈ K and

and undefined otherwise.

Now f is partially computable.

and: x ∈ K ⇔ f(x) ↓∈ A

But f is not total, so no reduction

Final idea: Wf(x) := We if x ∈ K

and ∅ otherwise.

The case that ∅ has a code in A goes similar (misprint)
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Rice applications

Fin

Inf

Cof

Virus scanner does not exist and cannot exist!!!

and much more

Recursion Theory – p.11/11


	Natural examples of incomputability
	Matiasevich
	Matiasevich
	More on Hilbert 10
	Natural simple sets
	Comparing incomputability
	Index sets
	Rice's Theorem
	Rice's Theorem
	Rice applications

