Recursion Theory

Joost J. Joosten

Institute for Logic Language and Computation
University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
Room P 3.26, +31 205256095
jjoosten@phil.uu.nl
www.phil.uu.nl/~jjoosten

Natural examples of incomputability

- Incomputable sets:

Natural examples of incomputability

- Incomputable sets: K,

Natural examples of incomputability

- Incomputable sets: K, K_{0},

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?
- Hilbert's tenth problem

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?
- Hilbert's tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?
- Hilbert's tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
- $\left\{n \mid x^{n}+y^{n}=z^{n}\right.$ for some natural numbers $\left.x, y, z\right\}$ undecidable?

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?
- Hilbert's tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
- $\left\{n \mid x^{n}+y^{n}=z^{n}\right.$ for some natural numbers $\left.x, y, z\right\}$ undecidable?
- General definition of a Diophantine set (we can interpret the integers into the natural numbers
)

Natural examples of incomputability

- Incomputable sets: K, K_{0}, Simple sets
- Are there mathematical examples?
- Hilbert's tenth problem
- Diophantine equations (Alexandria, +- 250 AD) have solutions?
- $\left\{n \mid x^{n}+y^{n}=z^{n}\right.$ for some natural numbers $\left.x, y, z\right\}$ undecidable?
- General definition of a Diophantine set (we can interpret the integers into the natural numbers (and also the other way around))

Matiasevich

- Example: $\{x \mid x \neq 2(4)\}$ is Diophantine

Matiasevich

- Example: $\{x \mid x \neq 2(4)\}$ is Diophantine
- The polynomial that does it is: $y_{1}^{2}-y_{2}^{2}-x$ by some non-trivial number theory

Matiasevich

- Example: $\{x \mid x \neq 2(4)\}$ is Diophantine
- The polynomial that does it is: $y_{1}^{2}-y_{2}^{2}-x$ by some non-trivial number theory
- Conjecture of Martin Davis (1950): every c.e. set is Diophantine.

Matiasevich

- Example: $\{x \mid x \neq 2(4)\}$ is Diophantine
- The polynomial that does it is: $y_{1}^{2}-y_{2}^{2}-x$ by some non-trivial number theory
- Conjecture of Martin Davis (1950): every c.e. set is Diophantine.
- Together with Putnam and Julia Robinson: almost proved, provided there exists an exponential set which is Diophantine

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine Chudnovsky claims to have simultaneously solved it

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
- Matiasevich calls it the DPRM-theorem!

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
- Matiasevich calls it the DPRM-theorem!
- Fibonacci sequence grows about as

$$
\frac{1}{\sqrt{5}}\left[\frac{1}{2}(1+\sqrt{5})\right]^{n+1}
$$

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
- Matiasevich calls it the DPRM-theorem!
- Fibonacci (Liber Abaci, 1202, Leonardo Pisano) sequence grows about as

$$
\frac{1}{\sqrt{5}}\left[\frac{1}{2}(1+\sqrt{5})\right]^{n+1}
$$

Matiasevich

- Matiasevich, 1970: The Fibonacci sequence is Diophantine (Chudnovsky claims to have simultaneously solved it (Post (21)/Gödel (31)))
- Matiasevich calls it the DPRM-theorem!
- Fibonacci (Liber Abaci, 1202, Leonardo Pisano) sequence grows about as

$$
\frac{1}{\sqrt{5}}\left[\frac{1}{2}(1+\sqrt{5})\right]^{n+1}
$$

- There is a nice exercise in Terwijn's reader to the effect that

$$
a_{n}:=\frac{1}{\sqrt{5}}\left[\frac{1}{2}(1+\sqrt{5})\right]^{n+1}-\frac{1}{\sqrt{5}}\left[\frac{1}{2}(1-\sqrt{5})\right]^{n+1}
$$

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes
- No polynomial for K has yet been found

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes
- No polynomial for K has yet been found
- Hilbert over algebraic fields is unknown

More on Hilbert 10

- Fibonacci numbers are Diophantine with degree 3
- Every c.e. set has at most degree 9
- It is not known if this can be lowered
- Corollary: there is a polynomial enumerating the primes
- No polynomial for K has yet been found
- Hilbert over algebraic fields is unknown
- In particular: is \mathbb{Z} Diophantine over \mathbb{Q} ?

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U but only in a $\mathcal{O}(1)$ sense

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U but only in a $\mathcal{O}(1)$ sense
- A string σ is k-random if $C(\sigma) \geq|\sigma|-k$

Natural simple sets

- Randomness and Kolmogorov complexity (7.3 of reader Terwijn)
- Fix a universal TM U
- Kolm. Compl. of a string σ is +- the length of the shortest TM program that on empty input outputs σ
- Is dependent on U but only in a $\mathcal{O}(1)$ sense
- A string σ is k-random if $C(\sigma) \geq|\sigma|-k$
- The set of non- k-random strings is simple

Comparing incomputability

- Compare the incomputable sets

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable
- $B \leq_{m} A$ and B undecidable, then A undecidable

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable
- $B \leq_{m} A$ and B undecidable, then A undecidable
- $B \leq_{m} A$ and A c.e, then B c.e.

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable
- $B \leq_{m} A$ and B undecidable, then A undecidable
- $B \leq_{m} A$ and A c.e, then B c.e.
- Application: K_{0} is undecidable (notcomputable)

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable
- $B \leq_{m} A$ and B undecidable, then A undecidable
- $B \leq_{m} A$ and A c.e, then B c.e.
- Application: K_{0} is undecidable (notcomputable)
- Actually $K \leq_{1} K_{0}$

Comparing incomputability

- Compare the incomputable sets
- Are some sets less computable than others
- Notion of many-one reducability
- Important features:
- $B \leq_{m} A$ and A decidable, then B decidable
- $B \leq_{m} A$ and B undecidable, then A undecidable
- $B \leq_{m} A$ and A c.e, then B c.e.
- Application: K_{0} is undecidable (notcomputable)
- Actually $K \leq_{1} K_{0}$
- A is c.e. iff $A \leq_{m} K_{0}$

Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_{e}=W_{e^{\prime}}$ implies $e^{\prime} \in \mathcal{A}$

Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_{e}=W_{e^{\prime}}$ implies $e^{\prime} \in \mathcal{A}$
- Examples: Tot and K_{1}

Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_{e}=W_{e^{\prime}}$ implies $e^{\prime} \in \mathcal{A}$
- Examples: Tot and K_{1}
- $K_{1}:=\left\{x \mid W_{x} \neq \varnothing\right\}$

Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_{e}=W_{e^{\prime}}$ implies $e^{\prime} \in \mathcal{A}$
- Examples: Tot and K_{1}
- $K_{1}:=\left\{x \mid W_{x} \neq \varnothing\right\}$
- Theorem: K is not an index set

Index sets

- \mathcal{A} is an index set if $e \in \mathcal{A}$ and $W_{e}=W_{e^{\prime}}$ implies $e^{\prime} \in \mathcal{A}$
- Examples: Tot and K_{1}
- $K_{1}:=\left\{x \mid W_{x} \neq \varnothing\right\}$
- Theorem: K is not an index set
- Proof idea: make a singleton set consisting only of its code e, using the padding lemma, find another code e^{\prime} of this set. Then, $e \in K$ and $e^{\prime} \notin K$.

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$
- First idea: Define $f(x):=e$ if $x \in K$ and

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$
- First idea: Define $f(x):=e$ if $x \in K$ and
- $f(x):=e^{\prime}$ if $x \notin K$

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$
- First idea: Define $f(x):=e$ if $x \in K$ and
- $f(x):=e^{\prime}$ if $x \notin K$
- Then: $K \leq_{m} A$

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$
- First idea: Define $f(x):=e$ if $x \in K$ and
- $f(x):=e^{\prime}$ if $x \notin K$
- Then: $K \leq_{m} A \quad: x \in K \Leftrightarrow f(x) \in A$

Rice's Theorem

- If A is an index set - not equal to \varnothing or \mathbb{N}-, then A is incomputable
- First step: it is sufficient to show that either $K \leq_{m} A$ or $K \leq_{m} \bar{A}$
- Case distinction \varnothing has no code in A, or it has
- By assumption, there is some $e \in A$ and some $e^{\prime} \in \bar{A}$
- First idea: Define $f(x):=e$ if $x \in K$ and
- $f(x):=e^{\prime}$ if $x \notin K$
- Then: $K \leq_{m} A \quad: x \in K \Leftrightarrow f(x) \in A$
- Alas: f is not computable

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \Leftrightarrow f(x) \downarrow \in A$

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \Leftrightarrow f(x) \downarrow \in A$
- But f is not total, so no reduction

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \Leftrightarrow f(x) \downarrow \in A$
- But f is not total, so no reduction
- Final idea: $W_{f(x)}:=W_{e}$ if $x \in K$

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \Leftrightarrow f(x) \downarrow \in A$
- But f is not total, so no reduction
- Final idea: $W_{f(x)}:=W_{e}$ if $x \in K$
- and \varnothing otherwise.

Rice's Theorem

- Second idea: Define $f(x):=e$ if $x \in K$ and
- and undefined otherwise.
- Now f is partially computable.
- and: $x \in K \Leftrightarrow f(x) \downarrow \in A$
- But f is not total, so no reduction
- Final idea: $W_{f(x)}:=W_{e}$ if $x \in K$
- and \varnothing otherwise.
- The case that \varnothing has a code in A goes similar (misprint)

Rice applications

- Fin

Rice applications

- Fin
- Inf

Rice applications

- Fin
- Inf
- Cof

Rice applications

- Fin
- Inf
- Cof
- Virus scanner does not exist and cannot exist!!!

Rice applications

- Fin
- Inf
- Cof
- Virus scanner does not exist and cannot exist!!!
- and much more

