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Incomputable sets: K, Ky, Simple sets
Are there mathematical examples?
Hilbert’'s tenth problem

Diophantine equations (Alexandria, +- 250 AD) have
solutions?

{n | 2" 4+ y" = 2" for some natural numbers z,y, z}
undecidable?
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Incomputable sets: K, Ky, Simple sets
Are there mathematical examples?
Hilbert’'s tenth problem

Diophantine equations (Alexandria, +- 250 AD) have
solutions?

{n | 2" 4+ y" = 2" for some natural numbers z,y, z}
undecidable?

General definition of a Diophantine set (we can interpret
the integers into the natural numbers (and also the
other way around) )
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o Example: {z | x # 2(4)} is Diophantine
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® The polynomial that does it is: y* — 5 — x by some
non-trivial number theory
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Example: {z | x # 2(4)} Is Diophantine

The polynomial that does it is: 3% — y5 — x by some
non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is
Diophantine.
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Example: {z | x # 2(4)} Is Diophantine

The polynomial that does it is: 3% — y5 — x by some
non-trivial number theory

Conjecture of Martin Davis (1950): every c.e. set is
Diophantine.

Together with Putnam and Julia Robinson: almost
proved, provided there exists an exponential set which
IS Diophantine
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# Matiasevich, 1970: The Fibonacci sequence is
Diophantine Chudnovsky claims to have
simultaneously solved it )
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# Matiasevich, 1970: The Fibonacci sequence is
Diophantine ( Chudnovsky claims to have
simultaneously solved it (Post (21)/Godel (31)) )

® Matiasevich calls it the DPRM-theorem!

o |

Recursion Theory — p.4/11



M atiasevich

f # Matiasevich, 1970: The Fibonacci sequence is
Diophantine ( Chudnovsky claims to have
simultaneously solved it (Post (21)/Godel (31)) )

® Matiasevich calls it the DPRM-theorem!

® Fibonacci
sequence grows about as

11 n—+1
ﬁ[§(1+\/5)] "
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Matiasevich, 1970: The Fibonacci sequence is
Diophantine ( Chudnovsky claims to have
simultaneously solved it (Post (21)/Godel (31)) )

Matiasevich calls it the DPRM-theorem!

Fibonacci (Liber Abaci, 1202, Leonardo Pisano)
sequence grows about as

1 1
——12(1 i \/5 n+1
Z=l5 1+ V5)
There Is a nice exercise In Terwijn’s reader to the effect
that

1

(1 4+ \/5”77/—1—1 o ﬁ

Qp =

GO-VE
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# Fibonacci numbers are Diophantine with degree 3
#® Every c.e. set has at most degree 9
# Itis not known if this can be lowered
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# Itis not known if this can be lowered
# Corollary: there is a polynomial enumerating the primes
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Fibonacci numbers are Diophantine with degree 3
Every c.e. set has at most degree 9
It is not known if this can be lowered
Corollary: there is a polynomial enumerating the primes

No polynomial for K has yet been found
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Fibonacci numbers are Diophantine with degree 3
Every c.e. set has at most degree 9
It is not known if this can be lowered
Corollary: there is a polynomial enumerating the primes

No polynomial for K has yet been found
Hilbert over algebraic fields is unknown
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Moreon Hilbert 10
-

Fibonacci numbers are Diophantine with degree 3
Every c.e. set has at most degree 9
It is not known if this can be lowered
Corollary: there is a polynomial enumerating the primes

No polynomial for K has yet been found
Hilbert over algebraic fields is unknown
In particular: is Z Diophantine over Q7
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# Randomness and Kolmogorov complexity (7.3 of reader

Terwijn)

Natural smple sets
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Randomness and Kolmogorov complexity (7.3 of reader
Terwijn)

Fix a universal TM U

Kolm. Compl. of a string ¢ is +- the length of the
shortest TM program that on empty input outputs o

Is dependent on U
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Kolm. Compl. of a string ¢ is +- the length of the
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Is dependent on U but only in a O(1) sense
A string o is k-random if C(o) > |o| — k
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Natural smple sets
5

Randomness and Kolmogorov complexity (7.3 of reader
Terwijn)

Fix a universal TM U

Kolm. Compl. of a string ¢ is +- the length of the
shortest TM program that on empty input outputs o

Is dependent on U but only in a O(1) sense
A string o is k-random if C(o) > |o| — k
The set of non-k-random strings is simple
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Compare the incomputable sets
Are some sets less computable than others

Important features:

o
o

# Notion of many-one reducability

o

® B <,, Aand A decidable, then B decidable
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Comparing incomputability

Compare the incomputable sets

Are some sets less computable than others
Notion of many-one reducability

Important features:

B <,, A and A decidable, then B decidable

B <,,, A and B undecidable, then A undecidable
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Comparing incomputability

Compare the incomputable sets

Are some sets less computable than others
Notion of many-one reducability

Important features:

B <,, A and A decidable, then B decidable

B <,,, A and B undecidable, then A undecidable
B <,, Aand A c.e, then B c.e.
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Comparing incomputability

Compare the incomputable sets

Are some sets less computable than others
Notion of many-one reducability

Important features:

B <,, A and A decidable, then B decidable

B <,,, A and B undecidable, then A undecidable
B <,, Aand A c.e, then B c.e.

Application: K is undecidable (notcomputable)
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Notion of many-one reducability
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Comparing incomputability

Compare the incomputable sets T
Are some sets less computable than others
Notion of many-one reducability

Important features:

B <,, A and A decidable, then B decidable

B <,,, A and B undecidable, then A undecidable
B <,, Aand A c.e, then B c.e.

Application: K is undecidable (notcomputable)
Actually K <; Ky

Alsc.e. Iff A <, Ky
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® Aisanindex setife € Aand W, = W, implies e’ € A
# Examples: Tot and K
o Ky ::{ZC‘WZC#@}
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® Aisanindexsetife e Aand W, = W, implies ¢’ € A
# Examples: Tot and K;

® Ky =A{x| W, # o}

® Theorem: K is not an index set
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Ais anindex setife €¢ A and W, = W, implies e’ € A
Examples: Tot and K;

Ky :={z| W, # o}

Theorem: K is not an index set

Proof idea: make a singleton set consisting only of its
code ¢, using the padding lemma, find another code ¢’
of this set. Then,e e K and ¢’ ¢ K.
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# If Ais anindex set — not equal to @ or N—, then A is
Incomputable
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f # If Ais anindex set — not equal to @ or N—, then A is T
Incomputable

# First step: it is sufficient to show that either K <,,, A or
K<, A
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Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A
Case distinction @ has no code in A, or it has

|

Recursion Theory — p.9/11



Rice’'s Theorem
-

If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
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First idea: Define f(x) := e if x € K and
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First step: it is sufficient to show that either K <,,, A or
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
f(z)=€ifx ¢ K

Then: K <, A
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) := e if x € K and
f(z)=€ifx ¢ K

Then: K <, A @wxe K& f(r)e A

|

Recursion Theory — p.9/11



°

© o o o o ©

Rice’'s Theorem
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If Ais an index set — not equal to @ or N—, then A Is
Incomputable

First step: it is sufficient to show that either K <,,, A or
K<, A

Case distinction @ has no code in A, or it has

By assumption, there is some e € A and some ¢’ € A
First idea: Define f(x) :=eif x € K and
f(z)=€ifx ¢ K

Then: K <, A @wxe K& f(r)e A

Alas: f is not computable
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# Second idea: Define f(x) :=elif z € K and
# and undefined otherwise.

# Now f Is partially computable.

® and:zr e K& f(z) le A
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Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction
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and undefined otherwise.
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and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K
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Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K

and @ otherwise.
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Rice’'s Theorem

Second idea: Define f(x) :=elif z € K and
and undefined otherwise.

Now f Is partially computable.

and: r € K < f(z) l€e A

But f is not total, so no reduction

Final idea: W,y =W, ifx € K

and @ otherwise.

The case that @ has a code in A goes similar (misprint)
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Rice applications
f Fin T

9
® Inf

o Cof

#® Virus scanner does not exist and cannot exist!!!
#® and much more
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