Mid-term exam
 Recursion Theory

Joost J. Joosten

October 23, 2006

1. Give the input/output convention for URM's. Next, write a URM that calculates $x+2 y$.
2. A set $A \subseteq \mathbb{N}$ is called creative if the following two requirements hold.

- A is c.e.;
- There is a computable function f such that for each e

$$
W_{e} \subseteq \bar{A} \Rightarrow f(e) \in \bar{A} \backslash W_{e}
$$

This f is called the creative function of A.
Prove the following facts about creative sets.
(a) A creative set has non-empty complement. (Hint: consider W_{e} for some TM e that loops on any input.)
(b) Prove that the set K is creative ${ }^{1}$ and that its creative function is the identity function.
(c) Prove that a creative set cannot be computable.
(d) Prove that the complement of a creative set contains an infinite computably enumerable subset.
(e) Prove that the complement of a creative set contains an infinite computable subset.
3. Prove that there exists a TM that, on any input, outputs its own code. (Hint: use the fixed point theorem.)
4. We define the notion of a c.é. set as follows. A set A is c.é. if there is a partial computable characteristic function χ_{A} such that

$$
x \in A \Leftrightarrow \chi_{A}(x)=\downarrow 1 \text {. }
$$

[^0]Note that this definition is very similar to the notion of a computable set, where we demand a computable (and hence total) function χ_{A} such that

$$
x \in A \Leftrightarrow \chi_{A}(x)=1
$$

and

$$
x \notin A \Leftrightarrow \chi_{A}(x)=0 .
$$

Prove the following theorem.
Theorem: A is c.e. $\Longleftrightarrow A$ is c.é.
5. Let f be a (possibly partially defined) map, $f: \mathbb{N} \rightarrow \mathbb{N}$. Consider the following implications and say if they are true or false. If the implication is true, give a short (at most a couple of lines) proof. If it is false, give a counter-example, briefly outlining that, indeed, it is a counter-example.
(a) f is computable $\Rightarrow \operatorname{Graph}(f)$ is Δ_{1}^{0}
(b) f is computable $\Leftarrow \operatorname{Graph}(f)$ is Δ_{1}^{0}
(c) f is partially computable $\Rightarrow \operatorname{Graph}(f)$ is Σ_{1}^{0}
(d) f is partially computable $\Leftarrow \operatorname{Graph}(f)$ is Σ_{1}^{0}
(e) f is partially computable $\Leftarrow \operatorname{Graph}(f)$ is Δ_{1}^{0}
(f) f is partially computable $\Rightarrow \operatorname{Graph}(f)$ is Δ_{1}^{0}

[^0]: ${ }^{1}$ Daisuke convinced me that I should repeat the definition of K here. As this is not the final exam but the midterm, I shall do so: $K:=\left\{x \mid x \in W_{x}\right\}$.

