Solutions for Exercise 6.2.9

Daisuke Ikegami

November 9, 2006

Exercise 6.2.9. Let f be a natural number. Prove that there exist two c.e. sets B_{0}, B_{1} such that

1. $B_{0} \cup B_{1}=W_{f}$,
2. $B_{0} \cap B_{1}=\emptyset$,
3. for any natural number e, if $W_{e} \searrow W_{f}$ is infinite, then $W_{e} \cap B_{0} \neq \emptyset$ and $W_{e} \cap B_{1} \neq \emptyset$.

Solution 1 (By Erica Neutel).
Proof. Observe the following:

- $W_{f, s+1}-W_{f, s}$ is finite for any natural number s,
- $\left\{W_{f, s+1}-W_{f, s} \mid s \in \mathbb{N}\right\}$ is pairwise disjoint,
- $W_{f}=\bigcup_{s \in \mathbb{N}}\left(W_{f, s+1}-W_{f, s}\right)$.

Construction
We will simultaneously construct $\left\langle B_{0}^{s} \mid s \in \mathbb{N}\right\rangle,\left\langle B_{1}^{s} \mid s \in \mathbb{N}\right\rangle$, and
$\left\langle\chi_{s}:\{0, \cdots, s-1\} \rightarrow\{\right.$ available, unavailable $\left.\} \mid s \in \mathbb{N}\right\rangle$ by induction on $s \in \mathbb{N}$.
At stage $0, B_{0}^{0}=B_{1}^{0}=\emptyset, \chi_{0}$ is the empty function.
At stage $s+1$, for $s \in \mathbb{N}$, we will add every $x \in W_{f, s+1}-W_{f, s}$ into either B_{0}^{s} or B_{1}^{s} by using χ_{s}.

For any $x \in W_{f, s+1}-W_{f, s}$, define $g(x)$ as follows:

$$
g(x)=\mu e<s\left[x \in W_{e, s} \text { and } \chi_{s}(e)=\text { available. }\right]
$$

- Note: rigorously, we have to revise $B_{0}^{s+1}, B_{1}^{s+1}, \chi_{s+1}$ at every time when we deal with each $x \in W_{f, s+1}-W_{f, s}$ separately. But we will skip that because I am lazy.

If $g(x)$ does not exist or if $g(x)$ exists and $W_{g(x), s} \cap B_{0}^{s}=\emptyset$, then $B_{0}^{s+1}=$ $B_{0}^{s} \cup\{x\}, B_{1}^{s+1}=B_{1}^{s}, \chi_{s+1}=\chi_{s} \cup\{(s$, available $)\}$.

If $g(x)$ exists and $W_{g(x), s} \cap B_{0}^{s} \neq \emptyset$, then $B_{0}^{s+1}=B_{0}^{s}, B_{1}^{s+1}=B_{1}^{s} \cup\{x\}$, $\chi_{s+1}=\left(\chi_{s}-\{(g(x)\right.$, available $\left.)\}\right) \cup\{(g(x)$, unavailable $),(s$, available $)\}$.

Set

$$
B_{0}=\bigcup_{s \in \mathbb{N}} B_{0}^{s}, \quad B_{1}=\bigcup_{s \in \mathbb{N}} B_{1}^{s} .
$$

Verification

Since we give an effective algorithm to construct B_{0}, B_{1}, they are c.e. Also $B_{0} \cap B_{1}=\emptyset$ because we only add new elements to either B_{0}^{s} or B_{1}^{s} at any stage $s+1$. Moreover, by the above observation and construction of B_{0} and B_{1}, $W_{f}=B_{0} \cup B_{1}$. Finally we have to check 3. Given any natural number e such that $W_{e} \searrow W_{f}$ is infinite. We will show that $W_{e} \cap B_{0} \neq \emptyset$ and $W_{e} \cap B_{1} \neq \emptyset$.

First, note the following:

$$
x \in W_{e} \searrow W_{f} \Longleftrightarrow(\exists s \in \mathbb{N}) x \in W_{e, s} \text { and } x \in W_{f, s+1}-W_{f, s}
$$

Since there are only finitely many $e^{\prime}<e$ and $W_{e} \searrow W_{f}$ is infinite, at some stage $s+1$, every $e^{\prime}<e$ must be either unavailable or $W_{e^{\prime}, s} \cap\left(W_{f, s+1}-W_{f, s}\right)=\emptyset$, and there exists an $x \in W_{f, s+1}-W_{f, s}$ with $x \in W_{e, s}$. Hence $g(x)=e$ for such an x and $x \in B_{0}^{s+1}$ by the construction. Therefore, $W_{e} \cap B_{0} \neq \emptyset$.

Again, since $W_{e} \searrow W_{f}$ is infinite, there exists $s^{\prime}>s$ and there is an $x^{\prime} \in$ $W_{f, s^{\prime}+1}-W_{f, s^{\prime}}$ such that $x^{\prime} \in W_{e, s^{\prime}}$. By the definition of $g, g\left(x^{\prime}\right)=e$. Since we know that $W_{e, s^{\prime}} \cap B_{0}^{s^{\prime}} \neq \emptyset$, by the construction, $x \in B_{1}^{s^{\prime}+1}$. Hence $W_{e} \cap B_{1} \neq$ \emptyset.

Solution 2 (From the book "Recursively enumerable sets and degrees" written by Robert Soare in 1987, Springer Verlag, page 181-182).

Proof. Take an injective recursive function $h: \mathbb{N} \rightarrow \mathbb{N}$ such that $W_{f}=\operatorname{range}(h)$. As I told you in the class, we modify the definition of $\left\langle W_{f, s} \mid s \in \mathbb{N}\right\rangle$ as follows:

$$
W_{f, s}=\{h(0), \cdots, h(s-1)\} .
$$

Even if we modify it as above, we can prove Exercise 5.2 .18 by using the modified definition.

Construction

We will simultaneously construct $\left\langle B_{0}^{s} \mid s \in \mathbb{N}\right\rangle$ and $\left\langle B_{1}^{s} \mid s \in \mathbb{N}\right\rangle$ by induction on $s \in \mathbb{N}$.

At stage $0, B_{0}^{0}=B_{1}^{0}=\emptyset$.
At stage $s+1$ for $s \in \mathbb{N}$, we will add $h(s)$ to either B_{0}^{s} or B_{1}^{s}. Define $g(s)$ as follows:

$$
g(s)=\mu\langle e, i\rangle<s\left[h(s) \in W_{e, s} \text { and } W_{e, s} \cap B_{i}^{s}=\emptyset\right] .
$$

(Since we only search such a pair $\langle e, i\rangle$ up to s, this computation halts.)
If $g(s)$ exists, then $B_{i}^{s+1}=B_{i}^{s} \cup\{h(s)\}, B_{1-i}^{s+1}=B_{1-i}^{s}$. Otherwise $B_{0}^{s+1}=$ $B_{0}^{s} \cup\{h(s)\}, B_{1}^{s+1}=B_{1}^{s}$.

Set

$$
B_{0}=\bigcup_{s \in \mathbb{N}} B_{0}^{s}, \quad B_{1}=\bigcup_{s \in \mathbb{N}} B_{1}^{s}
$$

Verification

It is clear that B_{0} and B_{1} are c.e. Also since we took h as injective, $B_{0} \cap B_{1}=$ \emptyset. Since we have added all $h(s)^{\prime} s, B_{0} \cup B_{1}=W_{f}$. Finally we check 3. First, by the modification of the definition of $W_{f, s}$, the following holds:

$$
x \in W_{e} \searrow W_{f} \Longleftrightarrow(\exists s \in \mathbb{N}) x=h(s) \in W_{e, s} \text { for any } x \text { and } e
$$

Take any e with $W_{e} \searrow W_{f}$ infinite and $i=0$ or 1 . Since there are only finitely many $\left\langle e^{\prime}, i^{\prime}\right\rangle<\langle e, i\rangle$ and $W_{e} \searrow W_{f}$ is infinite, there exists an s such that $g(s)=\langle e, i\rangle$. Hence $h(s) \in B_{i}^{s+1} \cap W_{e, s}$. Therefore, $W_{e} \cap B_{i} \neq \emptyset$.

