Final exam; practice version Recursion Theory

Joost J. Joosten

December 6, 2006

Practice exam

1. Let f be a computable function. Determine for each of the following implications if they are true or false. If true, give a very short proof, and if false, give a counterexample and a very short proof that, indeed, it is a counter example.
(a) X is computable $\Rightarrow f(X)$ is computable
(b) X is c.e. $\Rightarrow f^{-1}(X)$ is c.e.
(c) $f(X)$ is computable $\Rightarrow X$ is c.e.
(d) X is computable $\Rightarrow f^{-1}(X)$ is computable
2. Let C be a creative set and f a creative function for f. Find a different function f^{\prime} which is also creative for C.
3. Prove that $A \in \Sigma_{n+1}^{0} \Leftrightarrow A$ is c.e. in $\emptyset^{(n)}$.
4. We call $R(x, y)$ a universal computable relation whenever it satisfies the following property. $R(x, y)$ is computable, and if $S(y)$ is a computable relation, then there is a natural number k such that $S(y)$ is true if and only if $R(k, y)$ is true.
(a) Show that there exists no universal computable relation. (Hint: employ diogonalization.)
(b) Use the previous exercise to show that $\{\operatorname{gn}(\varphi) \mid T \vdash \varphi\}$ and $\{\operatorname{gn}(\varphi) \mid$ $T \vdash \neg \varphi\}$ are computably inseparable whenever T is a consistent theory extending Robinson's Arithmetic. (Hint: use representability of the computable relations in Q.)
5. (Separation principle for Π_{1}^{0}-sets.)

Let A, B be disjoint Π_{1}^{0}-sets. Prove that there exists a computable relation C such that $A \subseteq C$ and $C \cap B=\emptyset$. (Hint:use the Reduction Principle for Σ_{1}^{0}-sets)
6. Describe why it is so that there exists some number e such that for all $X \subseteq \mathbb{N}$ we have that $W_{e}^{X}=X^{\prime}$.

