Final exam; practice version Recursion Theory

Joost J. Joosten

December 6, 2006

Practice exam

- 1. Let f be a computable function. Determine for each of the following implications if they are true or false. If true, give a very short proof, and if false, give a counterexample and a very short proof that, indeed, it is a counter example.
 - (a) X is computable $\Rightarrow f(X)$ is computable
 - (b) X is c.e. $\Rightarrow f^{-1}(X)$ is c.e.
 - (c) f(X) is computable $\Rightarrow X$ is c.e.
 - (d) X is computable $\Rightarrow f^{-1}(X)$ is computable
- 2. Let C be a creative set and f a creative function for f. Find a different function f' which is also creative for C.
- 3. Prove that $A \in \sum_{n=1}^{0} \Leftrightarrow A$ is c.e. in $\emptyset^{(n)}$.
- 4. We call R(x, y) a universal computable relation whenever it satisfies the following property. R(x, y) is computable, and if S(y) is a computable relation, then there is a natural number k such that S(y) is true if and only if R(k, y) is true.
 - (a) Show that there exists no universal computable relation. (Hint: employ diogonalization.)
 - (b) Use the previous exercise to show that $\{gn(\varphi) \mid T \vdash \varphi\}$ and $\{gn(\varphi) \mid T \vdash \neg\varphi\}$ are computably inseparable whenever T is a consistent theory extending Robinson's Arithmetic. (Hint: use representability of the computable relations in Q.)
- 5. (Separation principle for Π_1^0 -sets.)

Let A, B be disjoint Π_1^0 -sets. Prove that there exists a computable relation C such that $A \subseteq C$ and $C \cap B = \emptyset$. (Hint:use the Reduction Principle for Σ_1^0 -sets)

6. Describe why it is so that there exists some number e such that for all $X \subseteq \mathbb{N}$ we have that $W_e^X = X'$.