(Extra) Exercises Week 3 Recursion Theory

Joost J. Joosten

September 21, 2006

1. In Example 2.1.4 from the book, write out the recursive scheme for times in a fully formal way as was done on the last two lines of Page 13. Of course, you are allowed to use plus as an already defined function.
2. (a) Define $<\subseteq \mathbb{N}^{2} \times \mathbb{N}^{2}$ as follows:

$$
\left(m_{1}, n_{1}\right)<\left(m_{2}, n_{2}\right) \text { if } n_{1}<n_{2} \text { or }\left(n_{1}=n_{2} \text { and } m_{1}<m_{2}\right) .
$$

Prove that for any non-empty subset P of \mathbb{N}^{2}, there is a <-least element in P. (Hint: Suppose this fails and derive a contradiction.)
(b) For any statement ϕ, prove the following:

$$
\begin{aligned}
& \left(\forall m, n \in \mathbb{N}\left(\forall\left(m^{\prime}, n^{\prime}\right)<(m, n) \phi\left(m^{\prime}, n^{\prime}\right)\right) \Longrightarrow \phi(m, n)\right) \\
& \quad \Longrightarrow \forall m, n \in \mathbb{N} \phi(m, n)
\end{aligned}
$$

(Hint: Suppose this fails and use the previous exercise to derive a contradiction.)
(c) Prove that Ackermann function is total. (Hint: Use the previous exercise.)
3. Prove that for each n, we have that $\alpha_{n} \in \operatorname{PRIM}$, where $\alpha_{n}(x):=A(x, n)$ for any $x \in \mathbb{N}$.
4. (a) Let k be a natural number with $k \geq 1$. For any k-ary functions f and $g, f \leq g$ if $f(\vec{x}) \leq g(\vec{x})$ for any \vec{x}. For a k-ary function f, f is increasing if $f\left(x_{1}, \cdots, x_{k}\right) \leq f\left(x_{1}^{\prime}, \cdots, x_{k}^{\prime}\right)$ holds if $x_{1} \leq x_{1}^{\prime}, \cdots, x_{k} \leq x_{k}^{\prime}$. Prove that for any k-ary primitive recursive function f, there is a k ary primitive recursive function g such that $f \leq g$ and g is increasing. (Hint: Use bounded sum.)
(b) Let f and f^{\prime} be l-ary functions obtained by the composition $h\left(g_{1}, \cdots, g_{k}\right)$ and $h^{\prime}\left(g_{1}^{\prime}, \cdots, g_{k}^{\prime}\right)$ respectively. Prove that if $h \leq h^{\prime}, g_{1} \leq g_{1}^{\prime}, \cdots, g_{k} \leq$ g_{k}^{\prime} hold and $h^{\prime}, g_{1}^{\prime}, \cdots, g_{k}^{\prime}$ are increasing, then $f \leq f^{\prime}$.
(c) Let f, f^{\prime} be $(k+1)$-ary functions, g, g^{\prime} be k-ary functions, h, h^{\prime} be $(k+2)$-ary functions and assume that f, f^{\prime} are obtained by primitive recursion scheme from g, h and g^{\prime}, h^{\prime} respectively. Prove that if $g \leq g^{\prime}, h \leq h^{\prime}$ hold and g^{\prime}, h^{\prime} are increasing, then $f \leq f^{\prime}$.
(d) For any natural numbers n, m with $n \geq 1$, prove the following:
i. $\alpha_{n}(m) \geq m+2$.
ii. $\alpha_{n}(m+1)>\alpha_{n}(m)$.
iii. $\alpha_{n+1}(m) \geq \alpha_{n}(m+1)$.
iv. $\alpha_{n+1}(m)>\alpha_{n}(m)$.
v. $\alpha_{n+1}(m) \geq \alpha_{n}(2 m)$.
(e) For a k-ary function f and a 1-ary function g, f is bounded by g if $f(m, \cdots, m) \leq g(m)$ holds for any natural number m. Prove that every primitive recursive function is bounded by some α_{n} for some n.
(f) Prove that the Ackermann function, as formulated by Rósza Péter, is not a primitive recursive function.
5. Prove (without referring to Church's Thesis) that the Ackermann function, as formulated by Rósza Péter, is a recursive function. (Hint: describe a (coded) sequence of sequences that describes the calculation of the Ackermann function. Use minimalisation to find the minimal such sequence and extract the necessary value from the sequence.)
6. Let $g(\vec{x}), h(\vec{x}, y) \in$ PRIM. Assume that for any \vec{x} there is a $y \leq g(\vec{x})$ such that $h(\vec{x}, y)=0$. Prove that the function $f(\vec{x})$, which is defined by bounded minimalisation from g and h in the following way

$$
f(\vec{x}):=\mu y \leq g(\vec{x})[h(\vec{x}, y)=0]
$$

is also a primitive recursive function. Here, the $\mu y \leq g(\vec{x})$ should be read as "the minimal y less than or equal to $g(\vec{x})$ such that".
7. (a) Prove that the relation $\operatorname{Pr}(\operatorname{Pr}(x)$ if x is a prime $)$ is primitive recursive.
(b) Prove that the Prime function $n \mapsto p_{n}\left(n\right.$-th prime (e.g. $\left.\left.p_{0}=2\right)\right)$ is primitive recursive. (Hint: Use the fact that there is a prime number between n and $2 n$ for arbitrary $n \geq 1$.)
8. Consider the following pairing function P.

$$
P(x, y)=\frac{1}{2}\left[(x+y)^{2}+3 x+y\right]
$$

(a) Draw in a picture in what order the pairs are enumerated by this function.
(b) Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
(c) Describe your answer from 8a in some free-style algorithmic way. Prove that $P(x, y)$ is the formula that enumerates all pairs according to this algorithm. (You might find Item 8 b useful here.)

