
Introduction to Model-Checking

Moritz Müller
Spring/Summer 2021

Finite automata

A nondeterministic finite automaton NFA is a tuple A = (S,Σ, s0,∆, F):

- S is a set of states

- s0 ∈ S is the initial state

- Σ is a finite nonempty set, called alphabet; elements are letters

- ∆ ⊆ S ×Σ× S transition relation

- F ⊆ S set of final states

A deterministic finite automaton DFA is an NFA with ∆ : S ×Σ→ S

Finite automata

A nondeterministic finite automaton NFA is a tuple A = (S,Σ, s0,∆, F):

- S is a set of states

- s0 ∈ S is the initial state

- Σ is a finite nonempty set, called alphabet; elements are letters

- ∆ ⊆ S ×Σ× S transition relation

- F ⊆ S set of final states

A deterministic finite automaton DFA is an NFA with ∆ : S ×Σ→ S

Executions s0 a0 s1 a1 s2 · · · defined as before

A accepts a0 · · · an−1 if there is such an execution with sn ∈ F

L(A) := {w ∈ Σ+ | A accepts w}: sets of this form are regular languages

A and B are equivalent iff L(A) = L(B)

Finite automata

Examples

Determinization

Proposition

Every NFA is equivalent to a DFA.

Proof Given an NFA A = (S,Σ, s0,∆, F). Define A′ = (S′,Σ, s′0,∆
′, F ′) by

- S′ := P (S)

- s′0 := {s0}
- ∆′ := set of (X, a, Y) with X ⊆ S, a ∈ Σ and

Y = {s′ ∈ S | (s, a, s′) ∈∆, s ∈ X}

- F ′ := {X ⊆ S | X ∩ F 6= ∅}

Then A′ is a DFA with L(A) = L(A′). qed

Remark (S′,Σ, s′0,∆
′, S′ \ F ′) accepts Σ+ \ L(A).

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2k states and
L(B) = Σ+ \ L(A)

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2k states and
L(B) = Σ+ \ L(A)

(b) For all NFAs A,A′ with k, k′ states resp., there is an NFA B with k+ k′+ 1
states and L(B) = L(A) ∪ L(A′)

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2k states and
L(B) = Σ+ \ L(A)

(b) For all NFAs A,A′ with k, k′ states resp., there is an NFA B with k+ k′+ 1
states and L(B) = L(A) ∪ L(A′)

(c) For every NFA A over alphabet Σ ×Σ′ with k states, there is an NFA B
with k states and

L(B) =
{
a0 · · · an−1 ∈ Σ | n > 0, ∃b0, . . . bn−1 ∈ Σ′ : (a0, b0) · · · (an−1, bn−1) ∈ L(A)

}

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2k states and
L(B) = Σ+ \ L(A)

(b) For all NFAs A,A′ with k, k′ states resp., there is an NFA B with k+ k′+ 1
states and L(B) = L(A) ∪ L(A′)

(c) For every NFA A over alphabet Σ ×Σ′ with k states, there is an NFA B
with k states and

L(B) =
{
a0 · · · an−1 ∈ Σ | n > 0, ∃b0, . . . bn−1 ∈ Σ′ : (a0, b0) · · · (an−1, bn−1) ∈ L(A)

}
(d) For every alphabet Σ′ and NFA A over alphabet Σ with k states, there is
an NFA B over Σ×Σ′ with k states and

L(B) =
{

(a0, b0) · · · (an−1, bn−1) ∈ (Σ×Σ′)+ | n > 0, a0 · · · an−1 ∈ L(A)
}

Words as structures

View a word w = a0 · · · an−1 ∈ Σ+ as a structure S(w):

- vocabulary: {≤} ∪ {Pa | a ∈ Σ} :

- universe: [n] = {0, . . . , n− 1}

- P S(w)
a := {i ∈ [n] | ai = a}

- ≤S(w) := the natural ≤.

Words as structures

View a word w = a0 · · · an−1 ∈ Σ+ as a structure S(w):

- vocabulary: {≤} ∪ {Pa | a ∈ Σ} :

- universe: [n] = {0, . . . , n− 1}

- P S(w)
a := {i ∈ [n] | ai = a}

- ≤S(w) := the natural ≤.

An MSO-sentence ϕ defines

L(ϕ) = {w ∈ Σ+ | S(w) |= ϕ}

Büchi’s Theorem 1960

Exactly the regular languages are MSO-definable.

Proof of Büchi’s Theorem

Let A be an NFA, say, with S = [k] and s0 = 0.

Want ϕA ∈ MSO such that L(A) = L(ϕA).

Proof of Büchi’s Theorem

Let A be an NFA, say, with S = [k] and s0 = 0.

Want ϕA ∈ MSO such that L(A) = L(ϕA).

ϕA := ∃X0 · · · ∃Xk−1

(
Part ∧ Init ∧Trans ∧Acc

)
Intuition: Xi(x) means “A is in state i when reading the letter in position x”.

Proof of Büchi’s Theorem

Let A be an NFA, say, with S = [k] and s0 = 0.

Want ϕA ∈ MSO such that L(A) = L(ϕA).

ϕA := ∃X0 · · · ∃Xk−1

(
Part ∧ Init ∧Trans ∧Acc

)
Intuition: Xi(x) means “A is in state i when reading the letter in position x”.

• Part expresses that the Xi form a partition:

∀x
(∨
i<k

Xi(x) ∧
∧

i<j<k

(¬Xi(x) ∨ ¬Xj(x))
)
.

• Init expresses that the computation starts in s0:

∀x(∀z x ≤ z → X0(x))

Proof of Büchi’s Theorem

Let A be an NFA, say, with S = [k] and s0 = 0.

Want ϕA ∈ MSO such that L(A) = L(ϕA).

ϕA := ∃X0 · · · ∃Xk−1

(
Part ∧ Init ∧Trans ∧Acc

)
Intuition: Xi(x) means “A is in state i when reading the letter in position x”.

• Trans expresses that successive states accord to ∆:

∀x∀y
(
x ≤ y ∧ ¬x = y ∧ ∀z(z ≤ x ∨ y ≤ z)→

∨
(i,a,j)∈∆

(Xi(x) ∧ Pa(x) ∧Xj(y))
)

• Acc expresses that the computation accepts:

∀x
(
∀z z ≤ x→

∨
(i,a,j)∈∆
j∈F

(Xi(x) ∧ Pa(x))
)

Proof of Büchi’s Theorem

Let ϕ be an MSO-sentence in the vocabulary {≤} ∪ {Pa | a ∈ Σ}.

Want NFA Aϕ over Σ such that L(ϕ) = L(Aϕ).

Proof of Büchi’s Theorem

Let ϕ be an MSO-sentence in the vocabulary {≤} ∪ {Pa | a ∈ Σ}.

Want NFA Aϕ over Σ such that L(ϕ) = L(Aϕ).

First step: massaging ϕ

Sing(X) := ∃x
(
X(x) ∧ ∀y(X(y)→ x = y)

)
Before(X,Y) := ∀x, y

(
X(x) ∧ Y (y)→ x ≤ y)

)
Lettera(X) := ∀x(X(x)→ Pa(x)) for a ∈ Σ.

Proof of Büchi’s Theorem

Let ϕ be an MSO-sentence in the vocabulary {≤} ∪ {Pa | a ∈ Σ}.

Want NFA Aϕ over Σ such that L(ϕ) = L(Aϕ).

First step: massaging ϕ

Sing(X) := ∃x
(
X(x) ∧ ∀y(X(y)→ x = y)

)
Before(X,Y) := ∀x, y

(
X(x) ∧ Y (y)→ x ≤ y)

)
Lettera(X) := ∀x(X(x)→ Pa(x)) for a ∈ Σ.

An MSO-formula is ready for translation if it is obtained from the above
formulas by means of ¬,∨, ∃Z.

Claim: For every MSO-sentence ϕ there is an MSO-sentence ϕ∗ that is ready
for translation and such that

L(ϕ) = L(ϕ∗).

Proof of Büchi’s Theorem

Proof of Claim: for x, y, . . . let X,Y, . . . be new set variables.

Define ϕ(x, y, . . . , Z̄) 7→ ϕ∗(X,Y, . . . , Z̄) such that:

for all words w ∈ Σ+, say of length n, we have

S(w) |= ϕ(i, j, . . . , Ā) ⇐⇒ S(w) |= ϕ∗({i}, {j}, . . . , Ā)

for all i, j, . . . ∈ [n] and all tuples Ā of subsets of [n].

Proof of Büchi’s Theorem

Proof of Claim: for x, y, . . . let X,Y, . . . be new set variables.

Define ϕ(x, y, . . . , Z̄) 7→ ϕ∗(X,Y, . . . , Z̄) such that:

for all words w ∈ Σ+, say of length n, we have

S(w) |= ϕ(i, j, . . . , Ā) ⇐⇒ S(w) |= ϕ∗({i}, {j}, . . . , Ā)

for all i, j, . . . ∈ [n] and all tuples Ā of subsets of [n].

(x ≤ y)∗ := Before(X,Y)

(Pa(x))∗ := Lettera(X)

(ϕ ∨ ψ)∗ := ϕ∗ ∨ ψ∗

(¬ϕ)∗ := ¬ϕ∗

(∃Zϕ)∗ := ∃Zϕ∗

(∃xϕ)∗ := ∃X(Sing(X) ∧ ϕ∗)

The claim is proved.

Proof of Büchi’s Theorem

Let ϕ ∈ MSO. Want NFA Aϕ such that L(ϕ) = L(Aϕ).

Second step: translation

An MSO-formula ϕ(Z0, Z1) defines

L
(
ϕ(Z0, Z1)

)
:=
{
w ∈ (Σ× {0,1} × {0,1})+ | w satisfies ϕ(Z0, Z1)

}

Proof of Büchi’s Theorem

Let ϕ ∈ MSO. Want NFA Aϕ such that L(ϕ) = L(Aϕ).

Second step: translation

An MSO-formula ϕ(Z0, Z1) defines

L
(
ϕ(Z0, Z1)

)
:=
{
w ∈ (Σ× {0,1} × {0,1})+ | w satisfies ϕ(Z0, Z1)

}
Write w ∈ (Σ× {0,1} × {0,1})n as

w = (a0, b
0
0, b

0
1) · · · (an−1, b

n−1
0 , bn−1

1)

w satisfies ϕ(Z0, Z1) if S(a0 · · · an−1) |= ϕ(A0, A1),

where

A0 :=
{
i ∈ [n] | bi0 = 1

}
a0 a1 a2 a3 a4

A1 :=
{
i ∈ [n] | bi1 = 1

}
A0 = {1,3} 0 1 0 1 0
A1 = {0,3} 1 0 0 1 0

Proof of Büchi’s Theorem

Let ϕ be ready for translation. Write

ϕ = ϕ(Z̄)

where Z̄ subsumes all (bound and free) set variables in ϕ.

Define Bϕ(Z̄) such that L(Bϕ(Z̄)) = L(ϕ(Z̄)):

Proof of Büchi’s Theorem

Let ϕ be ready for translation. Write

ϕ = ϕ(Z̄)

where Z̄ subsumes all (bound and free) set variables in ϕ.

Define Bϕ(Z̄) such that L(Bϕ(Z̄)) = L(ϕ(Z̄)):

• ϕ is Sing(Zi),Lettera(Zi),Before(Zi, Zj): Exercise!

• if ϕ is (ψ ∨ χ), use closure under union Ex-(b).

i.e., given Bψ(Z̄),Bχ(Z̄), choose Bϕ(Z̄) such that

L(Bϕ(Z̄)) = L(Bψ(Z̄)) ∪ L(Bχ(Z̄)).

• if ϕ is ¬ψ, use closure under complementation Ex-(a).

• if ϕ is ∃Ziψ, use closure under projection Ex-(c) and padding Ex-(d).

Proof of Büchi’s Theorem

Final move

given a MSO sentence ϕ,

compute ϕ∗ ready for translation as described,

construct Bϕ∗ as described,

define Aϕ over Σ from Bϕ∗ by projection.

Then L(Aϕ) = L(ϕ). �

Proof of Büchi’s Theorem

Final move

given a MSO sentence ϕ,

compute ϕ∗ ready for translation as described,

construct Bϕ∗ as described,

define Aϕ over Σ from Bϕ∗ by projection.

Then L(Aϕ) = L(ϕ). �

Remark There described functions ϕ 7→ Aϕ and A 7→ ϕA are computable.

Corollaries of Büchi’s Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi’s Theorem - effective version

There are computable functions

ϕ 7→ Aϕ and A 7→ ϕA

from MSO[{≤} ∪ {Pa | a ∈ Σ}]-sentences to DFAs over Σ and back such that

L(ϕ) = L(Aϕ) and L(A) = L(ϕA).

Corollaries of Büchi’s Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi’s Theorem - effective version

There are computable functions

ϕ 7→ Aϕ and A 7→ ϕA

from MSO[{≤} ∪ {Pa | a ∈ Σ}]-sentences to DFAs over Σ and back such that

L(ϕ) = L(Aϕ) and L(A) = L(ϕA).

Corollary

There is a computable function that maps a given MSO[{≤} ∪ {Pa | a ∈ Σ}]-
sentence ψ to an MSO[{≤} ∪ {Pa | a ∈ Σ}]-sentence ϕ of the form

∃X̄ ϕ0

where ϕ0 is first-order such that for all w ∈ Σ+:

S(w) |= ψ ⇐⇒ S(w) |= ϕ.

Proof Set ϕ := ϕAψ as in the proof of Büchi’s theorem. �

Corollaries of Büchi’s Theorem: model-checking MSO over words

Corollary The problem

Input: w ∈ Σ+, MSO sentence ϕ.
Problem: S(w) |= ϕ.

is decidable in time O
(
f(|ϕ|) + |w|

)
for some function f : N→ N.

Corollaries of Büchi’s Theorem: model-checking MSO over words

Corollary The problem

Input: w ∈ Σ+, MSO sentence ϕ.
Problem: S(w) |= ϕ.

is decidable in time O
(
f(|ϕ|) + |w|

)
for some function f : N→ N.

Proof Given w,ϕ compute the DFA Aϕ = (S, s0,∆, F).

Check whether Aϕ accepts w = a0 · · · an−1:

s← s0

i← 0

while i < n do:

a← ai

s←∆(s, a)

i← i+ 1

if s ∈ F, accept, else reject.

We assume each line needs constant time. �

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Proof

Let A = (S, s0,∆, F) be an NFA with L(A) = L. Let p := |S|.

Let w = a0 · · · an−1 ∈ L with n ≥ p and let

s0 a0 s1 a1 s2 a2 · · · sn−1 an−1 sn

be an execution with sn ∈ F .

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Proof

Let A = (S, s0,∆, F) be an NFA with L(A) = L. Let p := |S|.

Let w = a0 · · · an−1 ∈ L with n ≥ p and let

s0 a0 s1 a1 s2 a2 · · · sn−1 an−1 sn

be an execution with sn ∈ F . Choose i < j ≤ n with si = sj. Set

x := a0 · · · ai−1

y := ai · · · aj−1

z := aj · · · an−1

Repeating ai si+1 · · · aj−1 sj for n times is again an execution. �

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Example {akbk | k > 0} is not regular, hence not MSO-definable.

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Example {akbk | k > 0} is not regular, hence not MSO-definable.

Example

View a word over Σ = {a, b} as a tachograph recording:
a means “driving”, b means “resting”

Law: “every driving time must be followed by an equally long time of resting.”

Legal tachogaphs recordings:

L := {bmai1bi1 · · · ainbin | n,m ∈ N, i1, . . . , in ∈ N}
Not MSO-definable (Exercise).

Corollaries of Büchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p ∈ N such that every w ∈ L with |w| ≥ p can be written

w = xyz

with |xy| ≤ p and y not empty such that for all n ∈ N: xynz ∈ L.

Example {akbk | k > 0} is not regular.

Exercise

There is no MSO[{≤}∪{Pa, Pb}]-formula ϕ(x, y, z) such that for all w ∈ {a, b}+

and all i, j, k ∈ [|w|]

i+ j = k ⇐⇒ S(w) |= ϕ(i, j, k).

Lower bounds

NFA A:

0 1 2 3 4

a, b

a a, b a, b a, b

Lower bounds

NFA A:

0 1 2 3 4

a, b

a a, b a, b a, b

L(A) = L4 :=
{
w ∈ {a, b}+ | 4th letter from right in w is a

}

Lower bounds

NFA A:

0 1 2 3 4

a, b

a a, b a, b a, b

L(A) = L4 :=
{
w ∈ {a, b}+ | 4th letter from right in w is a

}
Proposition Let k ∈ N>0. Every DFA A with L(A) = Lk has at least 2k states.

Proof Assume A is a DFA with < 2k states.

There exists distinct x = x0 · · ·xk−1, y = y0 · · · yk−1 ∈ {a, b}k such that A on x, y
reaches the same state.

Say, xi 6= yi. Then A accepts xbk−i iff A accepts ybk−i.

Exactly one is in Lk. Hence L(A) 6= Lk. �

Lower bounds

Corollary

The problem

Input: w ∈ Σ+, MSO sentence ϕ.
Problem: S(w) |= ϕ.

is decidable in time O
(
f(|ϕ|) + |w|

)
for some computable f : N→ N.

Lower bounds

Frick, Grohe 2004

Assume P 6= NP.

The problem

Input: w ∈ Σ+, MSO sentence ϕ.
Problem: S(w) |= ϕ.

is not decidable in time O
(
f(|ϕ|) · |w|c

)
for any c ∈ N and elementary f .

Lower bounds

Frick, Grohe 2004

Assume P 6= NP.

The problem

Input: w ∈ Σ+, MSO sentence ϕ.
Problem: S(w) |= ϕ.

is not decidable in time O
(
f(|ϕ|) · |w|c

)
for any c ∈ N and elementary f .

f : N→ N is elementary if there is h ∈ N such that for all k ∈ N:

f(k) ≤ 22.
. .
2k

(h-fold exponential).

Lower bounds

Frick, Grohe 2004

Assume FPT 6= AW[∗].

The problem

Input: w ∈ Σ+, FO sentence ϕ.
Problem: S(w) |= ϕ.

is not decidable in time O
(
f(|ϕ|) · |w|c

)
for any c ∈ N and elementary f .

f : N→ N is elementary if there is h ∈ N such that for all k ∈ N:

f(k) ≤ 22.
. .
2k

(h-fold exponential).

ω-regular languages

A (non)deterministic Büchi automaton (NBA) DBA is an (NFA) DBA

A = (S, s0,∆, F).

A accepts an infinite word

σ = a0 a1 a2 · · · ∈ Σω

if there exists an execution

s0 a0 s1 a1 s2 a2 s3 · · ·
such that si ∈ F for infinitely many i ∈ N.

An ω-regular language is a subset of Σω of the form

Lω(A) := {σ ∈ Σω | A accepts σ}
for some NBA A.

Examples

A B

a

a

a

a

L(A) = {a}+ L(B) = {a}+

Lω(A) = {aaa · · · } Lω(B) = ∅

Examples

A B

a

a

a

a

L(A) = {a}+ L(B) = {a}+

Lω(A) = {aaa · · · } Lω(B) = ∅

A B

a

a

a

a

L(A) = {a2n+1 | n ∈ N} L(B) = {a2n | n ∈ N>0}
Lω(A) = {aaa · · · } Lω(B) = {aaa · · · }

Determinization fails

Proposition

There is an ω-regular language L such that L 6= Lω(A) for every DBA A.

Proof Let Σ = {a, b} and let L contain the words with finitely many a.

L is ω-regular:
a, b

b

b

Determinization fails

Proposition

There is an ω-regular language L such that L 6= Lω(A) for every DBA A.

Proof Let Σ = {a, b} and let L contain the words with finitely many a.

L is ω-regular: a, b

b

b

Let A be a DBA and assume Lω(A) = L.

Its accepting run on b b b b · · · visits a final state, say after reading bn0.

This run is continued to an accepting run of bn0 a b b b · · · ∈ L.

Choose n1 such that A is in a final state after reading bn0abn1.

Continue. Get accepting run on

bn0 a bn1 a bn2 a · · ·
Outside L, contradiction. �

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B
such that Σω \ Lω(A) = Lω(B).

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combina-
tions and projections.

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B
such that Σω \ Lω(A) = Lω(B).

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combina-
tions and projections.

Intersection

• A generalized NBA A is a tuple (S, s0,∆,F) like an NBA but with F ⊆ 2S.

• A accepts a0 a1 · · · ∈ Σω iff there is an execution s0 a0 s1 a1 · · · such that

for all F ∈ F there are infinitely many i ∈ N with si ∈ F .

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B
such that Σω \ Lω(A) = Lω(B).

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combina-
tions and projections.

Intersection

• A generalized NBA A is a tuple (S, s0,∆,F) like an NBA but with F ⊆ 2S.

• A accepts a0 a1 · · · ∈ Σω iff there is an execution s0 a0 s1 a1 · · · such that

for all F ∈ F there are infinitely many i ∈ N with si ∈ F .

Exercise For every GNBA A there is an NBA B st Lω(A) = Lω(B).

Exercise For all GNBAs A,A′ there is a GNBA B st Lω(A) ∩ Lω(A′) = Lω(B).

Büchi again

Let Σ be a finite alphabet. View σ = a0 a1 · · · ∈ Σω as a structure S(σ):

- vocabulary: {≤} ∪ {Pa | a ∈ Σ} :

- universe: N
- P S(σ)

a := {i ∈ N | ai = a}

- ≤S(σ) := the natural ≤.

An MSO-sentence ϕ defines Lω(ϕ) = {σ ∈ Σω | S(σ) |= ϕ}

Büchi’s theorem - ω-version

There are computable functions

ϕ 7→ Aϕ and A 7→ ϕA

from MSO-sentences to NBAs and back such that

Lω(ϕ) = Lω(Aϕ) and Lω(A) = Lω(ϕA).

Proof As before. Exercise Define A 7→ ϕA. �

Corollaries

Corollary The following problems are decidable.

Input: MSO[{≤} ∪ {Pa | a ∈ Σ}]-sentence ϕ.

Problem: is there a σ ∈ Σω such that S(σ) |= ϕ?

Input: MSO[{≤} ∪ {Pa | a ∈ Σ}]-sentences ϕ,ψ.

Problem: are ϕ and ψ equivalent in all structures S(σ) for σ ∈ Σω?

Proof Second follows from first.

First: compute Aϕ, check whether Lω(Aϕ) = ∅.

Equivalently: check whether there is a final state that is reachable from the
initial state and lies on a cycle. �

Linear time properties

Transition system T consists of:

S set of states

I ⊆ S a set of initial states

Act set of states

→ ⊆ S × Act × S transition relation

AP set of propositional variables

L : S → 2AP labeling

Additional assumption: for all s ∈ S there are α ∈ Act , s′ ∈ S : s
α→ s′

The trace of an execution s0 α0 s1 α1 s2 α2 · · · is

L(s0) L(s1) L(s2) · · · ∈ Σω

where Σ := 2AP .

Linear time property: subset P ⊆ Σω.

T satisfies P if every trace of (an execution of) T is in P .

Linear time properties

• closure cl(P) :=
{
σ ∈ Σω | every finite prefix of σ is a prefix of some τ ∈ P

}
Exercise P ⊆ cl(P), cl(cl(P)) = cl(P), cl(P ∪Q) = cl(P) ∪ cl(Q)

Linear time properties

• closure cl(P) :=
{
σ ∈ Σω | every finite prefix of σ is a prefix of some τ ∈ P

}
Exercise P ⊆ cl(P), cl(cl(P)) = cl(P), cl(P ∪Q) = cl(P) ∪ cl(Q)

• “something bad never happens”: P safety property iff cl(P) = P

iff every σ /∈ P has a P -bad prefix (no element of P has this prefix)

Linear time properties

• closure cl(P) :=
{
σ ∈ Σω | every finite prefix of σ is a prefix of some τ ∈ P

}
Exercise P ⊆ cl(P), cl(cl(P)) = cl(P), cl(P ∪Q) = cl(P) ∪ cl(Q)

• “something bad never happens”: P safety property iff cl(P) = P

iff every σ /∈ P has a P -bad prefix (no element of P has this prefix)

Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

Linear time properties

• closure cl(P) :=
{
σ ∈ Σω | every finite prefix of σ is a prefix of some τ ∈ P

}
Exercise P ⊆ cl(P), cl(cl(P)) = cl(P), cl(P ∪Q) = cl(P) ∪ cl(Q)

• “something bad never happens”: P safety property iff cl(P) = P

iff every σ /∈ P has a P -bad prefix (no element of P has this prefix)

Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

• “something good will happen”: P liveness property iff cl(P) = Σω

iff every w ∈ Σ+ is prefix of some σ ∈ P .

Linear time properties

• closure cl(P) :=
{
σ ∈ Σω | every finite prefix of σ is a prefix of some τ ∈ P

}
Exercise P ⊆ cl(P), cl(cl(P)) = cl(P), cl(P ∪Q) = cl(P) ∪ cl(Q)

• “something bad never happens”: P safety property iff cl(P) = P

iff every σ /∈ P has a P -bad prefix (no element of P has this prefix)

Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

• “something good will happen”: P liveness property iff cl(P) = Σω

iff every w ∈ Σ+ is prefix of some σ ∈ P .

Remark

Every P ⊆ Σω is the intersection of a safety and a liveness property, namely:

P = cl(P) ∩ (P ∪ (Σω \ cl(P)))

Indeed: cl
(
P ∪ (Σω \ cl(P))

)
= cl(P) ∪ cl(Σω \ cl(P)) = Σω

Trace automaton

Proposition The set of traces of a transition system is ω-regular.

Proof Given T = (S, I,Act ,→,AP , L).

Define NBA AT:

states S ∪ {s0} for a new s0 /∈ S
initial state s0

alphabet Σ := 2AP

transition relation contains (s, a, s′) iff

a = L(s) and s
any→ s′ (i.e., s

α→ s′ for some α ∈ Act), or,

s = s0 and s′′
any→ s′ and a = L(s′′) for some s′′ ∈ I.

final states S

Then Lω(AT) = the set of traces of T. �

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system T, MSO sentence ϕ.

Problem: S(σ) |= ϕ for every trace σ of T?

is decidable in time O(f(|ϕ|) · |T|) for some computable f : N→ N.

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system T, MSO sentence ϕ.

Problem: S(σ) |= ϕ for every trace σ of T?

is decidable in time O(f(|ϕ|) · |T|) for some computable f : N→ N.

Proof Compute trace automaton AT of size O(|T|)

Compute NBA A¬ϕ of Büchi’s Theorem

Compute NBA B of size O(|A¬ϕ| · |AT|) (earlier Exercise) with

Lω(B) = Lω(AT) ∩ Lω(A¬ϕ).

Check whether Lω(B) = ∅ (iff Lω(AT) ⊆ Lω(ϕ))

check no cycle contains a reachable final state

standard techniques do this in time O(|B|) �

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

p
p∈AP ϕ

¬ϕ
ϕ ψ

(ϕ ∧ ψ)
ϕ
Xϕ

ϕ ψ
(ϕUψ)

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

p
p∈AP ϕ

¬ϕ
ϕ ψ

(ϕ ∧ ψ)
ϕ
Xϕ

ϕ ψ
(ϕUψ)

LTL semantics over σ = a0 a1 · · · ∈ Σω for Σ := 2AP and i ∈ N :

σ, i |= p ⇐⇒ p ∈ ai
σ, i |= ¬ϕ ⇐⇒ σ, i 6|= ϕ
σ, i |= (ϕ ∧ ψ) ⇐⇒ σ, i |= ϕ and σ, i |= ψ

Next
σ, i |= Xϕ ⇐⇒ σ, i+ 1 |= ϕ

Until
σ, i |= (ϕUψ) ⇐⇒ there is j ≥ i : σ, j |= ψ and σ, k |= ϕ for all i ≤ k < j

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

p
p∈AP ϕ

¬ϕ
ϕ ψ

(ϕ ∧ ψ)
ϕ
Xϕ

ϕ ψ
(ϕUψ)

LTL semantics over σ = a0 a1 · · · ∈ Σω for Σ := 2AP and i ∈ N :

σ, i |= p ⇐⇒ p ∈ ai
σ, i |= ¬ϕ ⇐⇒ σ, i 6|= ϕ
σ, i |= (ϕ ∧ ψ) ⇐⇒ σ, i |= ϕ and σ, i |= ψ

Next
σ, i |= Xϕ ⇐⇒ σ, i+ 1 |= ϕ

Until
σ, i |= (ϕUψ) ⇐⇒ there is j ≥ i : σ, j |= ψ and σ, k |= ϕ for all i ≤ k < j

ϕ defines Lω(ϕ) := {σ ∈ Σω | σ,0 |= ϕ}

Linear temporal logic

• Connectives ∨,→, . . . defined as usual; ⊥ := (p ∧ ¬p); > := ¬⊥.

• Eventually ♦ϕ := >Uϕ

σ, i |= ♦ϕ ⇐⇒ there is j ≥ i : σ, j |= ϕ

• Always �ϕ := ¬♦¬ϕ

σ, i |= �ϕ ⇐⇒ for all j ≥ i : σ, j |= ϕ

Linear temporal logic

• Connectives ∨,→, . . . defined as usual; ⊥ := (p ∧ ¬p); > := ¬⊥.

• Eventually ♦ϕ := >Uϕ

σ, i |= ♦ϕ ⇐⇒ there is j ≥ i : σ, j |= ϕ

• Always �ϕ := ¬♦¬ϕ

σ, i |= �ϕ ⇐⇒ for all j ≥ i : σ, j |= ϕ

Exercise ϕ ≡ ψ means Lω(ϕ) = Lω(ψ).

Dualities: ¬�p ≡ ♦¬p, ¬Xp ≡ X¬p

Idempotencies: ��p ≡ �p, pU(pUq) ≡ pUq, (pUq)Uq ≡ pUq

Absorption laws: ♦�♦p ≡ �♦p, �♦�p ≡ ♦�p

Distributive laws: �(p∧q) ≡ �p∧�q, ♦(p∨q) ≡ ♦p∨♦q, X(pUq) ≡ Xp U Xq

Expansion law: pUq ≡ q ∨ (p ∧X(pUq))

Linear temporal logic

• Connectives ∨,→, . . . defined as usual; ⊥ := (p ∧ ¬p); > := ¬⊥.

• Eventually ♦ϕ := >Uϕ

σ, i |= ♦ϕ ⇐⇒ there is j ≥ i : σ, j |= ϕ

• Always �ϕ := ¬♦¬ϕ

σ, i |= �ϕ ⇐⇒ for all j ≥ i : σ, j |= ϕ

Example imagine a transition system including a traffic light: propositional
variables g, y, r ∈ AP indicating “green”, “yellow”, “red”.

“Once red, the light turns eventually green”

�(r → ♦g)

“Once red, the light turns eventually green after being yellow for some time”

�
(
r → rU

(
y ∧X(yUg)

))

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

ϕ 7→ ϕfo and ψ 7→ ψltl

from LTL-formulas to FO-formulas and back, such that

Lω(ϕ) = Lω(ϕfo) and Lω(ψ) = Lω(ψltl)

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

ϕ 7→ ϕfo and ψ 7→ ψltl

from LTL-formulas to FO-formulas and back, such that

Lω(ϕ) = Lω(ϕfo) and Lω(ψ) = Lω(ψltl)

Proof of the easy part: let AP be the Boolean variables in ϕ and Σ := 2AP .

Define ϕ 7→ ϕ∗(x) from LTL-to FO-formulas such that for all σ ∈ Σω and i ∈ N
σ, i |=LTL ϕ ⇐⇒ S(σ) |=FO ϕ∗(i).

p∗ :=
∨
p∈a∈Σ Pa(x),

(¬ϕ)∗ := ¬ϕ∗(x),

(ϕ ∧ ψ)∗ := ϕ∗(x) ∧ ψ∗(x)

(Xϕ)∗ := ∃y
(
x ≤ y ∧ ¬x = y ∧ ∀z(z ≤ x ∨ y ≤ z) ∧ ϕ∗(y)

)
,

(ϕUψ)∗ := ∃y
(
x ≤ y ∧ ψ∗(y) ∧ ∀z(x ≤ z ∧ z ≤ y ∧ ¬z = y → ϕ∗(z))

)
. �

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula ϕ to an NBA
Aϕ of size 2O(|ϕ|) such that

Lω(ϕ) = Lω(Aϕ).

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula ϕ to an NBA
Aϕ of size 2O(|ϕ|) such that

Lω(ϕ) = Lω(Aϕ).

Proof

Γ := set of subformulas of ϕ,
AP := set of Boolean variables in ϕ,
Σ := 2AP .

Γσ
i := {ψ ∈ Γ | σ, i |= ψ} where σ ∈ Σω and i ∈ N

This is a type: a set s ⊆ Γ such that for formulas in Γ

ψ0 ∧ ψ1 ∈ s⇐⇒ ψ0 ∈ s and ψ1 ∈ s,
¬ψ ∈ s⇐⇒ ψ /∈ s,
ψ1 ∈ s =⇒ ψ0Uψ1 ∈ s =⇒ ψ0 ∈ s or ψ1 ∈ s.

Let S denote the set of types.

LTL Model-Checking

Claim Types can be computed by an automaton: there are ∆ ⊆ S ×Σ × S,
F ⊆ 2S of size |ϕ| such that for all s0 ∈ S, σ = a0a1 · · ·Σω tfae:

(a) s0 a0 s1 a1 · · · is an accepting run of the GNBA (S, s0,Σ,∆,F)

(b) Γσ
i = si for all i ∈ N.

LTL Model-Checking

Claim Types can be computed by an automaton: there are ∆ ⊆ S ×Σ × S,
F ⊆ 2S of size |ϕ| such that for all s0 ∈ S, σ = a0a1 · · ·Σω tfae:

(a) s0 a0 s1 a1 · · · is an accepting run of the GNBA (S, s0,Σ,∆,F)

(b) Γσ
i = si for all i ∈ N.

Suffices!

Consider GNBA A := (S ∪ {s∗0},Σ, s∗0,∆∗,F) with new s∗0 and

∆∗ := ∆ ∪
{

(s∗0, a, s) | exists s0 ∈ S : ϕ ∈ s0 and (s0, a, s) ∈∆
}

satisfies Lω(A) = Lω(ϕ).

Exercise gives equivalent NBA Aϕ with |F| · |S ∪ {s∗0}| ≤ 22|ϕ| many states.

LTL Model-Checking

Claim Types can be computed by an automaton: there are ∆ ⊆ S ×Σ × S,
F ⊆ 2S of size |ϕ| such that for all s0 ∈ S, σ = a0a1 · · ·Σω tfae:

(a) s0 a0 s1 a1 · · · is an accepting run of the GNBA (S, s0,Σ,∆,F)

(b) Γσ
i = si for all i ∈ N.

∆ contains (s, a, s′) iff a = s ∩ AP and for formulas in Γ

Xψ ∈ s⇐⇒ ψ ∈ s′

ψ0Uψ1 ∈ s⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and ψ0Uψ1 ∈ s′

F contains for every ψ0Uψ1 ∈ Γ the set {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}

LTL Model-Checking

Claim Types can be computed by an automaton: there are ∆ ⊆ S ×Σ × S,
F ⊆ 2S of size |ϕ| such that for all s0 ∈ S, σ = a0a1 · · ·Σω tfae:

(a) s0 a0 s1 a1 · · · is an accepting run of the GNBA (S, s0,Σ,∆,F)

(b) Γσ
i = si for all i ∈ N.

∆ contains (s, a, s′) iff a = s ∩ AP and for formulas in Γ

Xψ ∈ s⇐⇒ ψ ∈ s′

ψ0Uψ1 ∈ s⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and ψ0Uψ1 ∈ s′

F contains for every ψ0Uψ1 ∈ Γ the set {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}

Fix s0 ∈ S. (b) ⇒ (a) easy. For (a) ⇒ (b) show

σ, i |= ψ ⇐⇒ ψ ∈ si
for all ψ ∈ Γ by induction on ψ. Case ψ = ψ0Uψ1. For simplicity i = 0. Show:

σ,0 |= ψ0Uψ1 ⇐⇒ ψ0Uψ1 ∈ s0.

LTL Model-Checking

∆ ψ0Uψ1 ∈ s⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and ψ0Uψ1 ∈ s′

F 3 {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}

Want σ,0 |= ψ0Uψ1 ⇐⇒ ψ0Uψ1 ∈ s0.

LTL Model-Checking

∆ ψ0Uψ1 ∈ s⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and ψ0Uψ1 ∈ s′

F 3 {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}

Want σ,0 |= ψ0Uψ1 ⇐⇒ ψ0Uψ1 ∈ s0.

⇒ choose i such that: σ, i |= ψ1 and σ, j |= ψ0 for all j < i

by induction: ψ1 ∈ si and ψ0 ∈ sj for all j < i

by type-definition: ψ0Uψ1 ∈ si

as ψ0 ∈ si−1, by ∆-definition: ψ0Uψ1 ∈ si−1

continue. . .ψ0Uψ1 ∈ s0.

LTL Model-Checking

∆ ψ0Uψ1 ∈ s⇐⇒ ψ1 ∈ s or, both ψ0 ∈ s and ψ0Uψ1 ∈ s′

F 3 {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}

Want σ,0 |= ψ0Uψ1 ⇐⇒ ψ0Uψ1 ∈ s0.

⇐ by type-definition: ψ0 ∈ s0 or ψ1 ∈ s0

if ψ1 ∈ s0: by induction σ,0 |= ψ1, so σ,0 |= ψ0Uψ1 done!

else ψ0 ∈ s0 63 ψ1: by ∆-definition ψ0Uψ1 ∈ s1

by type-definition: ψ0 ∈ s1 or ψ1 ∈ s1

if ψ1 ∈ s1: by induction σ,1 |= ψ1 and σ,0 |= ψ0, so σ,0 |= ψ0Uψ1 done!

else ψ0 ∈ s1 63 ψ1: by ∆-definition ψ0Uψ1 ∈ s2

. . . continue until ψ0Uψ1 ∈ sj ∈ {s | ψ0Uψ1 /∈ s} ∪ {s | ψ1 ∈ s}.

Then ψ1 ∈ sj: done! �

LTL Model-Checking

As before:

Corollary The problem

Input: a transition system T, an LTL-formula ϕ.

Problem: σ,0 |= ϕ for every trace σ of T?

is decidable in time 2O(|ϕ|) · |T|.

LTL Model-Checking

Proposition

LTL-formulas ϕ do not have equivalent NBAs with 2o(
√
|ϕ|) states.

Proof Let AP = {p}. For n ∈ N let Ln contain the words

a0 a1 · · · an−1 a0 a1 · · · an−1 ∅ ∅ · · ·
Defined by the size O(n2) formula∧

i<n

(Xip↔ Xn+ip).

Let A be an NBA with Lω(A) = Ln. For each a0 · · · an−1 ∈ 2AP there is a state
q(a0 · · · an−1) such that A with this starting state accepts

a0 a1 · · · an−1 ∅ ∅ · · · .

This is not true for q(a′0 · · · a′n−1) for every a′0 · · · a′n−1 6= a0 · · · an−1.

Hence the states q(a0 · · · an−1) are pairwise distinct.

Hence A has at least 2n many states. �

Timed automata

Timed automata

Timed automata

Timed automaton A consists of:

Loc finite set of locations

Loc0 ⊆ Loc initial locations

Act finite set of actions

AP finite set of propositional variables

L : Loc → 2AP a labeling

Timed automata

Timed automaton A consists of:

Loc finite set of locations

Loc0 ⊆ Loc initial locations

Act finite set of actions

AP finite set of propositional variables

L : Loc → 2AP a labeling

C finite set of clocks

Inv : Loc → CC := finite sets of clock constraints

x∼k where
x ∈ C
k ∈ N
∼ ∈ {<,≤,=, >,≥}

↪→ ⊆ Loc × CC × Act × 2C × Loc

View (`, g, α,X, `′) ∈ ↪→ as an arrow from ` to `′ labeled by a guard g ∈ CC ,
an action α ∈ Act and a set of clocks X ⊆ C that are reset.

Timed automata: example

Loc = AP = {up, down, goingup, comingdown}, Loc0 = {up}, L(`) = {`}

C = {x}

Act = {raise, lower , τ}

Timed automata: example

Loc = AP = {up, down, goingup, comingdown}, Loc0 = {up}, L(`) = {`}

C = {x}

Act = {raise, lower , τ}

Inv(up) = ∅

Inv(comingdown) = {x ≤ 1}

(up, ∅, lower , {x}, comingdown) ∈ ↪→

(goingup, {x ≥ 1}, τ, ∅, up) ∈ ↪→

Transition system TS(A) of A:

states: 〈`, η〉 with ` ∈ Loc and η : C → R≥0 a clock valuation

initial states: 〈`, η〉 with ` ∈ Loc0 and η is constantly 0.

propositional variables: AP ∪̇ clock constraints

labeling of 〈`, η〉 is L(`) ∪
{
x∼k | η(x) ∼ k, x ∈ C

}
actions: Act ∪̇ R≥0

Transition system TS(A) of A:

states: 〈`, η〉 with ` ∈ Loc and η : C → R≥0 a clock valuation

initial states: 〈`, η〉 with ` ∈ Loc0 and η is constantly 0.

propositional variables: AP ∪̇ clock constraints

labeling of 〈`, η〉 is L(`) ∪
{
x∼k | η(x) ∼ k, x ∈ C

}
actions: Act ∪̇ R≥0

discrete transitions 〈`, η〉 α→ 〈`′, η′〉 where α ∈ Act and

- (`, g, α,X, `′) ∈ ↪→
- η satisfies g (ie. η(x) ∼ k for all x∼k ∈ g)

- η′(x) =

{
η(x) x 6∈ X
0 x ∈ X

- η′ satisfies Inv(`)

delay transitions 〈`, η〉 d→ 〈`, η + d〉 where d ∈ R≥0 and

- (η + d)(x) = η(x) + d for all x ∈ C
- η + d′ satisfies Inv(`) for all d′ ∈ [0, d].

Executing timed automata

• Relevant paths starting at 〈`0, η0〉 have the form

〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

where αi ∈ Act , di ∈ R≥0 and
∑

i di =∞, or:

〈`0, η0〉
d0→ · · · αk−1→ 〈`k, ηk〉

dk→ 〈`k, ηk + 1〉 dk+1→ 〈`k, ηk + 2〉 dk+2→ · · ·

where 1 = dk = dk+1 = . . .

Executing timed automata

• Relevant paths starting at 〈`0, η0〉 have the form

〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

where αi ∈ Act , di ∈ R≥0 and
∑

i di =∞, or:

〈`0, η0〉
d0→ · · · αk−1→ 〈`k, ηk〉

dk→ 〈`k, ηk + 1〉 dk+1→ 〈`k, ηk + 2〉 dk+2→ · · ·

where 1 = dk = dk+1 = . . .

• 〈`, η〉 is at time t ∈ R≥0 in a relevant path π iff

there are i ∈ N, d ∈ [0, di] such that ` = `i and η = ηi+d and t =
∑

j≤i dj+d.

Executing timed automata

• Relevant paths starting at 〈`0, η0〉 have the form

〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

where αi ∈ Act , di ∈ R≥0 and
∑

i di =∞, or:

〈`0, η0〉
d0→ · · · αk−1→ 〈`k, ηk〉

dk→ 〈`k, ηk + 1〉 dk+1→ 〈`k, ηk + 2〉 dk+2→ · · ·
where 1 = dk = dk+1 = . . .

• 〈`, η〉 is at time t ∈ R≥0 in a relevant path π iff

there are i ∈ N, d ∈ [0, di] such that ` = `i and η = ηi+d and t =
∑

j≤i dj+d.

• Then 〈`′, η′〉 before 〈`, η〉 iff 〈`, η〉 after 〈`′, η′〉 iff

〈`′, η′〉 is at some time t′ < t in π, or,
〈`′, η′〉 is at time t in π and `′ = `j for some j < i.

E.g. above: 〈`1, η1〉 is at time d0, and 〈`0, η0 + d0〉 too and before 〈`1, η1〉.

Executing timed automata: example

write η(x) ∈ R≥0 instead η : {x} → R≥0:

〈up,1.318〉 at time 1.318

before 〈comingdown,0〉 at time 1.318

before 〈comingdown,0.002〉 at time 1.32

before 〈goingup,0.5〉 is at time 4.2

Executing timed automata: example

〈up,0〉 1.318→ 〈up,1.318〉 lower→ 〈comingdown,0〉 0.854→ 〈comingdown,0.854〉

τ→ 〈down,0.854〉 1.528→ 〈down,2.382〉 raise→ 〈goingup,0〉 1.3971→ 〈goingup,1.3971〉

· · ·

Timed computation tree logic

TCTL-formulas over AP ∪ CC generated by

p
ϕ
¬ϕ

ϕ ψ
(ϕ ∧ ψ)

ϕ ψ
∀(ϕ UI ψ)

ϕ ψ
∃(ϕ UI ψ)

where p ∈ AP ∪ CC , I an interval [a, b), (a, b], (a, b), [a, b] for a ≤ b in N ∪ {∞}.

Timed computation tree logic

TCTL-formulas over AP ∪ CC generated by

p
ϕ
¬ϕ

ϕ ψ
(ϕ ∧ ψ)

ϕ ψ
∀(ϕ UI ψ)

ϕ ψ
∃(ϕ UI ψ)

where p ∈ AP ∪ CC , I an interval [a, b), (a, b], (a, b), [a, b] for a ≤ b in N ∪ {∞}.

TCTL semantics over TS(A):

〈`, η〉 |= p ⇐⇒ p ∈ L(`) for p ∈ AP
〈`, η〉 |= x∼k ⇐⇒ η(x) ∼ k for x∼k ∈ CC
〈`, η〉 |= ¬ϕ ⇐⇒ 〈`, η〉 6|= ϕ
〈`, η〉 |= ϕ ∧ ψ ⇐⇒ 〈`, η〉 |= ϕ and 〈`, η〉 |= ψ

Timed computation tree logic

TCTL-formulas over AP ∪ CC generated by

p
ϕ
¬ϕ

ϕ ψ
(ϕ ∧ ψ)

ϕ ψ
∀(ϕ UI ψ)

ϕ ψ
∃(ϕ UI ψ)

where p ∈ AP ∪ CC , I an interval [a, b), (a, b], (a, b), [a, b] for a ≤ b in N ∪ {∞}.

TCTL semantics over TS(A):

〈`, η〉 |= p ⇐⇒ p ∈ L(`) for p ∈ AP
〈`, η〉 |= x∼k ⇐⇒ η(x) ∼ k for x∼k ∈ CC
〈`, η〉 |= ¬ϕ ⇐⇒ 〈`, η〉 6|= ϕ
〈`, η〉 |= ϕ ∧ ψ ⇐⇒ 〈`, η〉 |= ϕ and 〈`, η〉 |= ψ

〈`, η〉 |= ∀(ϕ UI ψ) ⇐⇒

for every relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that

〈`′, η′〉 |= ψ and
〈`′′, η′′〉 |= ϕ ∨ ψ for all states 〈`′′, η′′〉 before 〈`′, η′〉.

Timed computation tree logic

TCTL-formulas over AP ∪ CC generated by

p
ϕ
¬ϕ

ϕ ψ
(ϕ ∧ ψ)

ϕ ψ
∀(ϕ UI ψ)

ϕ ψ
∃(ϕ UI ψ)

where p ∈ AP ∪ CC , I an interval [a, b), (a, b], (a, b), [a, b] for a ≤ b in N ∪ {∞}.

TCTL semantics over TS(A):

〈`, η〉 |= p ⇐⇒ p ∈ L(`) for p ∈ AP
〈`, η〉 |= x∼k ⇐⇒ η(x) ∼ k for x∼k ∈ CC
〈`, η〉 |= ¬ϕ ⇐⇒ 〈`, η〉 6|= ϕ
〈`, η〉 |= ϕ ∧ ψ ⇐⇒ 〈`, η〉 |= ϕ and 〈`, η〉 |= ψ

〈`, η〉 |= ∃(ϕ UI ψ) ⇐⇒

for some relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that

〈`′, η′〉 |= ψ and
〈`′′, η′′〉 |= ϕ ∨ ψ for all states 〈`′′, η′′〉 before 〈`′, η′〉.

Timed computation tree logic

∀♦Iϕ := ∀(> UI ϕ)

〈`, η〉 |= ∀♦Iϕ iff for every relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that 〈`′, η′〉 |= ϕ

∃♦Iϕ := ∃(> UI ϕ)

〈`, η〉 |= ∀♦Iϕ iff for some relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that 〈`′, η′〉 |= ϕ

Timed computation tree logic

∀♦Iϕ := ∀(> UI ϕ)

〈`, η〉 |= ∀♦Iϕ iff for every relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that 〈`′, η′〉 |= ϕ

∃♦Iϕ := ∃(> UI ϕ)

〈`, η〉 |= ∀♦Iϕ iff for some relevant path π starting at 〈`, η〉
there is a state 〈`′, η′〉 at some time t ∈ I in π such that 〈`′, η′〉 |= ϕ

∀�Iϕ := ¬∃♦I¬ϕ
〈`, η〉 |= ∀�Iϕ iff for every relevant path π starting at 〈`, η〉
for all states 〈`′, η′〉 at some time t ∈ I in π: 〈`′, η′〉 |= ϕ

∃�Iϕ := ¬∀♦I¬ϕ
〈`, η〉 |= ∃�Iϕ iff for some relevant path π starting at 〈`, η〉
for all states 〈`′, η′〉 at some time t ∈ I in π: 〈`′, η′〉 |= ϕ

Omit subscript I = [0,∞).

Timed computation tree logic

Leads-to operator

ϕ ψ := ∀�(ϕ→ ∀♦ψ)

〈`, η〉 |= ϕ ψ

iff

for every relevant path π starting at 〈`, η〉
for every state 〈`′, η′〉 |= ϕ at some time t ∈ [0,∞) in π:

for all relevant paths π′ starting at 〈`′, η′〉
there are a state 〈`′′, η′′〉 at some time t′ ∈ [0,∞) in π′ st 〈`′′, η′′〉 |= ψ

iff

for every relevant path π starting at 〈`, η〉 and every t ∈ [0,∞):

for every state 〈`′, η′〉 |= ϕ at time t in π

there is a state 〈`′′, η′′〉 |= ψ after 〈`′, η′〉.

Timed computation tree logic

Elimination of time constraints

Assume there is a clock z ∈ C that is never reset and assume η(z) = 0.

〈`, η〉 |= ∀(p U[a,b) q) ⇐⇒ 〈`, η〉 |= ∀
(
(p ∨ q) U (z≥ a ∧ z<b ∧ q)

)
〈`, η〉 |= ∀♦[a,b)q ⇐⇒ 〈`, η〉 |= ∀♦(z≥ a ∧ z<b ∧ q)

〈`, η〉 |= ∀�[a,b)q ⇐⇒ 〈`, η〉 |= ∀�(z≥ a ∧ z<b→ q)

Caution

trick useless for iterated modalities

UPPAAL

supports

∀�ϕ, ∀♦ϕ, ∃�ϕ, ∀♦ϕ, ϕ ψ

for ϕ,ψ in propositional logic.

Timed computation tree logic: examples

The initial state 〈up,0〉 of the associated transition system satisfies:

∀�(comingdown → x≤1)

comingdown (down ∧ x≤1)

goingup (1≤x ∧ x≤2 ∧ up)

Timed computation tree logic: examples

The initial state 〈up,0〉 of the associated transition system satisfies:

∀�(comingdown → x≤1)

comingdown (down ∧ x≤1)

goingup (1≤x ∧ x≤2 ∧ up)

∀�(goingup ∧ x=0→ ∀♦[1,2]up)

∀�(goingup ∧ x>1→ ∀♦[0,1)up)

Model-checking TCTL: theorem

A is timelock free iff at reachable states of TS(A) start relevant paths.

Model-checking TCTL: theorem

A is timelock free iff at reachable states of TS(A) start relevant paths.

Theorem (Alur, Courcoubetis, Dill 1990)

The promise problem

Input: a timelock-free timed automaton A, a TCTL-formula ϕ

Problem: does every initial state of TS(A) satisfy ϕ?

is decidable in time

kO(c) · |ϕ| · |A|
where c is the number of clocks in A and k ≥ c upper bounds the natural
numbers appearing in ϕ and A.

Model-checking TCTL: proof

Assume A has a clock xreal ∈ C not mentioned in guards, invariants or ϕ.

For r ∈ R≥0 write 〈r〉 := r − brc. E.g., 〈1.23〉 = 0.23.

η ≈ η′ iff

- for all x ∈ C: bη(x)c and bη′(x)c are equal or both ≥ k.

- for all x, y ∈ C with η(x) < k, η(y) < k:
〈η(x)〉 ≤ 〈η(y)〉 iff 〈η′(x)〉 ≤ 〈η′(y)〉
〈η(x)〉 = 0 iff 〈η′(x)〉 = 0

Claim: if η ≈ η′ and d ∈ R≥0, then η + d ≈ η′ + d′ for some d′ ∈ R≥0

Model-checking TCTL: proof

Assume A has a clock xreal ∈ C not mentioned in guards, invariants or ϕ.

For r ∈ R≥0 write 〈r〉 := r − brc. E.g., 〈1.23〉 = 0.23.

η ≈ η′ iff

- for all x ∈ C: bη(x)c and bη′(x)c are equal or both ≥ k.

- for all x, y ∈ C with η(x) < k, η(y) < k:
〈η(x)〉 ≤ 〈η(y)〉 iff 〈η′(x)〉 ≤ 〈η′(y)〉
〈η(x)〉 = 0 iff 〈η′(x)〉 = 0

Claim: if η ≈ η′ and d ∈ R≥0, then η + d ≈ η′ + d′ for some d′ ∈ R≥0

Suffices for d < 1 (then choose d′′ for 〈d〉 and set d′ := bdc+ d′′)

If there is x ∈ C such that d = 1− 〈η(x)〉, set d′ := 1− 〈η′(x)〉
Otw order clocks x1 ≤ · · · ≤ xc according 〈η(x)〉 (equivalently 〈η′(x)〉)
choose i ≤ c+1 such that +d moves η(xi), . . . , η(xc) but not η(x1), . . . , η(xi−1)
from below to above some integer

choose d′ that does the same for η′

Model-checking TCTL: proof

Assume A has a clock xreal ∈ C not mentioned in guards, invariants or ϕ.

For r ∈ R≥0 write 〈r〉 := r − brc. E.g., 〈1.23〉 = 0.23.

η ≈ η′ iff

- for all x ∈ C: bη(x)c and bη′(x)c are equal or both ≥ k.

- for all x, y ∈ C with η(x) < k, η(y) < k:
〈η(x)〉 ≤ 〈η(y)〉 iff 〈η′(x)〉 ≤ 〈η′(y)〉
〈η(x)〉 = 0 iff 〈η′(x)〉 = 0

Claim: if η ≈ η′ and d ∈ R≥0, then η + d ≈ η′ + d′ for some d′ ∈ R≥0

Get: for η0 ≈ η′0 and a relevant path

〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

there are d′i ∈ R≥0 and η′i ≈ ηi such that

〈`0, η′0〉
d′0→ 〈`0, η′0 + d′0〉

α0→ 〈`1, η′1〉
d′1→ 〈`1, η′1 + d′1〉

α1→ 〈`2, η′2〉
d′2→ · · ·

is a relevant path (by the proof of the claim).

Model-checking TCTL: proof

Assume A has a clock xreal ∈ C not mentioned in guards, invariants or ϕ.

For r ∈ R≥0 write 〈r〉 := r − brc. E.g., 〈1.23〉 = 0.23.

η ≈ η′ iff

- for all x ∈ C: bη(x)c and bη′(x)c are equal or both ≥ k.

- for all x, y ∈ C with η(x) < k, η(y) < k:
〈η(x)〉 ≤ 〈η(y)〉 iff 〈η′(x)〉 ≤ 〈η′(y)〉
〈η(x)〉 = 0 iff 〈η′(x)〉 = 0

Claim: if η ≈ η′ and d ∈ R≥0, then η + d ≈ η′ + d′ for some d′ ∈ R≥0

Get: for η0 ≈ η′0 and a relevant path

〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

choose d′i ∈ R≥0 accordingly so that

〈`0, η′0〉
d′0→ 〈`0, η′0 + d′0〉

α0→ 〈`1, η′1〉
d′1→ 〈`1, η′1 + d′1〉

α1→ 〈`2, η′2〉
d′2→ · · ·

is a relevant path (by the proof of the claim).

Then: 〈`, η〉 |= ϕ ⇐⇒ 〈`, η′〉 |= ϕ

Model-checking TCTL: proof

Region transition system R(A, k)

states: 〈`, [η]〉 for a location ` and region [η] := {η′ | η ≈ η′}
initial states: 〈`0, [η0]〉 for a initial location ` and η0 constantly 0

propositional variables: AP ∪ CC

label of 〈`, [η]〉 is the label of 〈`, η〉 in TS(A)

actions: Act ∪̇ {τ}
transitions:

〈`, [η]〉 α→ 〈`′, [η′]〉 if 〈`, η〉 α→ 〈`′, η′〉 in TS(A) and α ∈ Act

〈`, [η]〉 τ→ 〈`, [η′]〉 if η′ is the successor of η

both ≈ η∞ := constantly k, or, η 6≈ η′ ≈ η + d for some
d ∈ R≥0 such that for all d′ < d: η + d′ ∈ [η] ∪ [η′].

Size kO(c).

Model-checking TCTL: proof

Idea for each subformula ψ of ϕ compute

Ext(ψ) := {〈`, [η]〉 | 〈`, η〉 |= ψ and is reachable}
Case ψ = ∃(ψ0 U[a,b) ψ1).

Assume we already computed Ext(ψ0) and Ext(ψ1).

Problem How to decide 〈`, η〉 |= ψ? Wlog η(xreal) = 0.

Model-checking TCTL: proof

Idea for each subformula ψ of ϕ compute

Ext(ψ) := {〈`, [η]〉 | 〈`, η〉 |= ψ and is reachable}
Case ψ = ∃(ψ0 U[a,b) ψ1).

Assume we already computed Ext(ψ0) and Ext(ψ1).

Problem How to decide 〈`, η〉 |= ψ? Wlog η(xreal) = 0.

Claim 〈`, η〉 reachable with η(xreal) = 0. Then 〈`, η〉 |= ψ iff there is a path

〈`, [η]〉 = 〈`0, [η0]〉 〈`1, [η1]〉 · · · 〈`n, [ηn]〉
for some n ∈ N such that

〈`i, [ηi]〉 ∈ Ext(ψ0) ∪ Ext(ψ1) for all i < n

〈`n, [ηn]〉 ∈ Ext(ψ1)

a ≤ ηn(xreal) < b

Then standard reachability algorithmics imply the theorem.

Model-checking TCTL: proof

⇒ Assume 〈`, η〉 |= ψ, i.e., there is a relevant path π in TS(A)

〈`, η〉 = 〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

such that - 〈`t, ηt〉 at some time ηt(xreal) = t ∈ [a, b) in π satisfies ψ1

- all 〈`′, η′〉 before 〈`t, ηt〉 satisfy ψ0 ∨ ψ1.

Model-checking TCTL: proof

⇒ Assume 〈`, η〉 |= ψ, i.e., there is a relevant path π in TS(A)

〈`, η〉 = 〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

such that - 〈`t, ηt〉 at some time ηt(xreal) = t ∈ [a, b) in π satisfies ψ1

- all 〈`′, η′〉 before 〈`t, ηt〉 satisfy ψ0 ∨ ψ1.

Choose i ∈ N and d ∈ [0, di] such that

〈`0, η0〉
d0→ · · · αi→ 〈`i, ηi〉

d→ 〈`t, ηt〉

This gives a finite path in R(A, k):

〈`0, [η0]〉 τ→
∗
· · · αi→ 〈`i, [ηi]〉

τ→
∗
〈`t, [ηt]〉

where
τ→
∗

abbreviates finitely many
τ→.

Model-checking TCTL: proof

⇒ Assume 〈`, η〉 |= ψ, i.e., there is a relevant path π in TS(A)

〈`, η〉 = 〈`0, η0〉
d0→ 〈`0, η0 + d0〉

α0→ 〈`1, η1〉
d1→ 〈`1, η1 + d1〉

α1→ 〈`2, η2〉
d2→ · · ·

such that - 〈`t, ηt〉 at some time ηt(xreal) = t ∈ [a, b) in π satisfies ψ1

- all 〈`′, η′〉 before 〈`t, ηt〉 satisfy ψ0 ∨ ψ1.

Choose i ∈ N and d ∈ [0, di] such that

〈`0, η0〉
d0→ · · · αi→ 〈`i, ηi〉

d→ 〈`t, ηt〉
This gives a finite path in R(A, k):

〈`0, [η0]〉 τ→
∗
· · · αi→ 〈`i, [ηi]〉

τ→
∗
〈`t, [ηt]〉

where
τ→
∗

abbreviates finitely many
τ→. Then

- 〈`t, [ηt]〉 ∈ Ext(ψ1)

- for every other appearing 〈`, [η]〉 there is η′ ≈ η such that 〈`, η′〉 is
before 〈`t, ηt〉 in π

hence 〈`, [η]〉 ∈ Ext(ψ0) ∪ Ext(ψ1)

Model-checking TCTL: proof

⇐ Given an as-described path in R(A, k)

〈`0, [η0]〉 〈`1, [η1]〉 · · · 〈`n, [ηn]〉

Replace
τ→ by suitable

d→ and get for suitable η′i ≈ ηi a path in TS(A)

〈`0, η0〉 〈`1, η′1〉 · · · 〈`n, η′n〉

Make
d→ /

α→ alternating by contracting consecutive
d→ and adding

0→ between

consecutive
α→. Continue to a relevant path π (timelock-free).

Model-checking TCTL: proof

⇐ Given an as-described path in R(A, k)

〈`0, [η0]〉 〈`1, [η1]〉 · · · 〈`n, [ηn]〉

Replace
τ→ by suitable

d→ and get for suitable η′i ≈ ηi a path in TS(A)

〈`0, η0〉 〈`1, η′1〉 · · · 〈`n, η′n〉

Make
d→ /

α→ alternating by contracting consecutive
d→ and adding

0→ between

consecutive
α→. Continue to a relevant path π (timelock-free).

Then

- 〈`n, η′n〉 is at time η′n(xreal) ∈ [a, b) in π and satisfies ψ1.

- for every 〈`′, η′〉 before 〈`n, η′n〉 there is i ≤ n st `′ = `i and η′ ≈ ηi,
hence 〈`′, η′〉 |= ψ0 ∨ ψ1.

Thus 〈`, η〉 |= ∃
(
ψ0 U[a,b) ψ1

)
. �

