Introduction to Model-Checking

Moritz Muller
Spring/Summer 2021

Finite automata

A nondeterministic finite automaton NFA is a tuple A = (5,3, sg, A, F):

S is a set of states

so € S is the initial state

2> is a finite nonempty set, called alphabet; elements are letters
A C S x> xS transition relation
F C S set of final states

A deterministic finite automaton DFA is an NFA with A : S x> —= S

Finite automata

A nondeterministic finite automaton NFA is a tuple A = (5,3, s0, A, F):

S is a set of states

so € S is the initial state

> is a finite nonempty set, called alphabet; elements are letters
A C S x 3 x S transition relation
F C S set of final states

A deterministic finite automaton DFA is an NFA with A : S x> —= S

Executions sg ag s1 a1 s»--- defined as before
A accepts ag-:-ap—1 if there is such an execution with s, € F
L(A) :={w € =T | A accepts w}: sets of this form are regular languages

A and B are equivalent iff L(A) = L(B)

Finite automata

Examples
a,b T = {a,h)
b L = (a+b)*b
N
O 0O A

DFA

Determinization

Proposition

Every NFA is equivalent to a DFA.

Proof Given an NFA A = (S5,%,s0, A, F). Define A’ = (5,2, sp, A, F') by

- S = P(S)

s ‘= {so}
A’ = set of (X,a,Y) with X C S,a € X and

Y ={s eS| (s,a,8) € A,se X}

F:={XCS|XNF # 0}

Then A’ is a DFA with L(A) = L(A’). qed

Remark (5,5, sy, A/, S\ ') accepts =1 \ L(A).

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.

Regular languages

EXxercise
Regular languages are closed under Boolean operations and projections.
More specifically:

(a) For every NFA A with k states there is a DFA B with 2* states and
L(B) =<1\ L(A)

Regular languages

EXxercise
Regular languages are closed under Boolean operations and projections.
More specifically:

(a) For every NFA A with k states there is a DFA B with 2* states and
L(B) =<1\ L(A)

(b) For all NFAs A, A" with k, k' states resp., there is an NFA B with £+ k' +1
states and L(B) = L(A) U L(A")

Regular languages

EXxercise
Regular languages are closed under Boolean operations and projections.
More specifically:

(a) For every NFA A with k states there is a DFA B with 2* states and
L(B) =<1\ L(A)

(b) For all NFAs A, A" with k, k' states resp., there is an NFA B with £+ k' +1
states and L(B) = L(A) U L(A")

(c) For every NFA A over alphabet X x X/ with k states, there is an NFA B
with k states and

L(B) = {ao a1 €X |n>0,3bo,.. b1 € (a0, b0) - (an_t1,bp_1) € L(A)}

Regular languages

Regular languages are closed under Boolean operations and projections.
More specifically:

(a) For every NFA A with k states there is a DFA B with 2* states and
L(B) =<1\ L(A)

(b) For all NFAs A, A" with k, k' states resp., there is an NFA B with 4+ k' +1
states and L(B) = L(A) U L(A")

(c) For every NFA A over alphabet X x X/ with k states, there is an NFA B
with k£ states and

L(B) = {CLO e Qp—1 € 2 | n > O)EIbO) . . 'bn—l S Z, : (a'07b0) e (a’n—17bn—1) € L(A)}

(d) For every alphabet X’ and NFA A over alphabet X with k states, there is
an NFA B over X x X/ with k£ states and

L(B) = {(ao,bo) o (ant,bao1) € (EXENT | n> 0,00 an_1 € L(A)}

Words as structures

View a word w = ag---an—1 € =1 as a structure S(w):

vocabulary: {<}U{P,|ae X}:
universe: [n] ={0,...,n—1}

- pS) .= {i € [n] | a; = a}

- <S(w) := the natural <.

Words as structures

View a word w = ag---an—1 € =1 as a structure S(w):

vocabulary: {<}U{P,|ae X}:
universe: [n] ={0,...,n—1}

- pS) .= {i € [n] | a; = a}

- <S(w) := the natural <.

An MSO-sentence ¢ defines
L(p) ={w e =7 | S(w) FE ¢}

Buchi’'s Theorem 1960

Exactly the regular languages are MSO-definable.

Proof of Buchi’'s Theorem

Let A be an NFA, say, with S = [k] and so = O.
Want ¢4 € MSO such that L(A) = L(pa).

Proof of Buchi’'s Theorem

Let A be an NFA, say, with S = [k] and so = O.
Want ¢4 € MSO such that L(A) = L(pa).

pp = 3Xo - AXE 1 (Part/\ Init A Trans A\ ACC)

Intuition: X;(x) means “A is in state ¢« when reading the letter in position z".

Proof of Buchi’'s Theorem

Let A be an NFA, say, with S = [k] and so = O.
Want ¢4 € MSO such that L(A) = L(pa).

pp = 3Xo - AXE 1 (Part/\ Init A Trans A\ ACC)

Intuition: X;(x) means “A is in state ¢« when reading the letter in position z".

e Part expresses that the X; form a partition:

‘v’x(\/Xi(:c) S\ (ﬁxi(x)vﬁxj(a;))).

i<k i<j<k

e Init expresses that the computation starts in so:

Ve(Vz 2 < z — Xo(x))

Proof of Buchi’'s Theorem

Let A be an NFA, say, with S = [k] and sg = O.
Want ¢4 € MSO such that L(A) = L(pa).

on = 3X0- X1 (Part/\ Init A Trans A ACC)

Intuition: X;(x) means “A is in state ¢« when reading the letter in position z".

e [rans expresses that successive states accord to A:

Vx‘v’y(x <yAN-xz=yAVzz<zVy<z)— \/ (Xi(x) AN Py(x) A Xj(y)))
(i,a,7)EA

e Acc expresses that the computation accepts:

vV (‘v’z z < x— \/ (Xi(x) A Pa(fﬂ))>

(i,a,7)EA
JEF

Proof of Buchi’'s Theorem

Let ¢ be an MSO-sentence in the vocabulary {<} U{P,|a € X}.

Want NFA A, over X such that L(y) = L(A,).

Proof of Buchi’'s Theorem

Let ¢ be an MSO-sentence in the vocabulary {<} U{P,|a € X}.
Want NFA A, over X such that L(y) = L(A,).
First step: massaging ¢

Sing(X) := EIx(X(a:) ANVYy(X(y) — = = y))

Before(X,Y) := Vax, y(X(:U) ANY (y) - x< y))
Letter,(X) :=Va(X(x) — P,(x)) for a € 3.

Proof of Buchi’'s Theorem

Let ¢ be an MSO-sentence in the vocabulary {<} U{P,|a € X}.
Want NFA A, over X such that L(y) = L(A,).

First step: massaging ¢

Sing(X) := 3z (X (2) AVy(X(y) = = =1y))
Before(X,Y) :=Va,y(X(2) A Y (y) = = < y))
Letter,(X) := V(X (z) — P.(x)) for a € .

An MSO-formula is ready for translation if it is obtained from the above
formulas by means of —,Vv,dZ.

Claim: For every MSO-sentence ¢ there is an MSO-sentence ¢* that is ready
for translation and such that

L(p) = L(¢").

Proof of Buchi’'s Theorem

Proof of Claim: for z,y,... let X,Y,... be new set variables.

Define o(z,y,...,2) — ¢*(X,Y,...,Z) such that:

for all words w € ¥, say of length n, we have

S(w) = @ling,.. ., A) == Sw) =9 (i} {Gh- .., A)
for all 4,5,... € [n] and all tuples A of subsets of [n].

Proof of Buchi’'s Theorem

Proof of Claim: for z,y,... let X,Y,... be new set variables.

Define o(z,y,...,2) — ¢*(X,Y,...,Z) such that:

for all words w € X1, say of length n, we have

S(w) = ¢(i,4,...,A) = Sw) =" ({i}, {5},...,4)
for all 4,4,... € [n] and all tuples A of subsets of [n].

(x < y)* := Before(X,Y)
(Py(x))* := Letter,(X)

(p V)" =" Vp*

(mp)* 1= —p”

(Zp)* ;= FZY*

(Fzp)* ;= IAX(Sing(X) A ¢©*)

The claim is proved.

Proof of Buchi’'s Theorem

Let p € MSO. Want NFA A, such that L(y) = L(A,).
Second step: translation

An MSO-formula o(Zg, Z1) defines

L(¢(Zo, Z1)) = {w € (= x {0,1} x {0,1))F | w satisfies cp(Zo,Zl)}

Proof of Buchi’'s Theorem

Let p € MSO. Want NFA A, such that L(y) = L(A,).
Second step: translation

An MSO-formula o(Zg, Z1) defines

L(¢(Zo, Z1)) = {w € (= x {0,1} x {0,1))F | w satisfies cp(Zo,Zl)}

Write w € (X x {0,1} x {0,1})™ as

w — (CL(), b87 b?) T (a’n—la bg_la b?_l)

w satisfies ©(Zo, Z1) if S(ag---an_1) = ©(Ag, A1),

where
Ag:=4{i€e[n]|by= ap a1 ap a3 as
Ay i=lien] | b, =1 Ao={1,3}|0 1 0 1 O
4=1{0,3}|1 0 0 1 O

Proof of Buchi’'s Theorem

Let o be ready for translation. Write

= p(2)
where Z subsumes all (bound and free) set variables in ¢.

Define Bz such that L(B_ 7)) = L(¢(Z2)):

Proof of Buchi’'s Theorem

Let o be ready for translation. Write

= p(2)
where Z subsumes all (bound and free) set variables in ¢.

Define Bz such that L(B_ 7)) = L(¢(Z2)):
e v is Sing(Z;), Letter,(Z;), Before(Z;, Z;):
o if pis (v V x), use closure under union Ex-(b).

i.e., given Bz, B, (z), choose B,z such that

L(B,(z)) = L(B,(z)) U L(B,(z))-

e if p is —), use closure under complementation Ex-(a).

o if © is IZ;1, use closure under projection Ex-(c) and padding Ex-(d).

Proof of Buchi’'s Theorem

Final move

given a MSO sentence ¢,

compute ¢* ready for translation as described,
construct B, as described,

define A, over > from B, by projection.

Then L(A,) = L(p).

Proof of Buchi’'s Theorem

Final move

given a MSO sentence ¢,

compute ¢* ready for translation as described,
construct B, as described,

define A, over > from B, by projection.

Then L(A,) = L(p).

Remark There described functions ¢ — A, and A — ¢, are computable.

Corollaries of Buchi’s Theorem: collapse of MSO over words
Let > be a finite alphabet.

Buchi's Theorem - effective version

There are computable functions

= Ay, and A — gy
from MSO[{<} U{P, | a € £}]-sentences to DFAs over ¥ and back such that

L(y) = L(A,) and L(A) = L(pa).

Corollaries of Buchi’s Theorem: collapse of MSO over words
Let > be a finite alphabet.

Buchi’'s Theorem - effective version
There are computable functions

= Ay, and A — @y
from MSO[{<} U{P, | a € X}]-sentences to DFAs over X~ and back such that

L(p) = L(A,) and L(A) = L(py).

Corollary

There is a computable function that maps a given MSO[{<}U{P, | a € Z}]-
sentence ¢ to an MSO[{<} U{P, | a € X}]-sentence ¢ of the form

3X o
where g is first-order such that for all w € ~7:
S(w) F¢ = S(w) = e

Proof Set ¢ := PA, as in the proof of Blchi's theorem.]

Corollaries of Buchi’s Theorem: model-checking MSO over words

Corollary The problem

Input: w € =T, MSO sentence o.
Problem: S(w) = ¢.

is decidable in time O(f(|¢|) + |w|) for some function f: N — N.

Corollaries of Buchi’s Theorem: model-checking MSO over words

Corollary The problem

Input: w € T, MSO sentence .
Problem: S(w) = ¢.

is decidable in time O(f(|¢|) 4 |w|) for some function f: N — N.
Proof Given w,¢ compute the DFA A, = (5, s0, A, F).
Check whether A, accepts w =ag---an—1:

S < SO
1<+ 0
while ¢ < n do:
a < a;
s <+ A(s,a)
1+—1+1
if s € F', accept, else reject.

We assume each line needs constant time.

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYZ

with |zy| < p and y not empty such that for all n € N: xy"z € L.

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYZ

with |zy| < p and y not empty such that for all n € N: xy"z € L.
Proof

Let A = (5,50, A, F) be an NFA with L(A) = L. Let p:=|S|.
Let w=ap---an,—1 € L with n > p and let

§0 ap 1 a1 $2 a2 ---Sp—1 Ap-1 Sn

be an execution with s, € F.

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYz

with |zy| < p and y not empty such that for all n € N: xy"z € L.

Proof

Let A = (5,50, A, F) be an NFA with L(A) = L. Let p:=|S|.

Let w=uap---an,—1 € L with n > p and let

S0 ap S1 Al s$2 a2 - ++-Sp—1 Ap—-1 Sn
be an execution with s, € F'. Choose 7 < 7 <n with s; = s;. Set

L .—ap---a;-1
— Qi a5-1
Zi=aj - ap-1

Repeating a; si+1 ---aj—1 s; for n times is again an execution.

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYZ

with |zy| < p and y not empty such that for all n € N: xy"z € L.

Example {a*t* | k > 0} is not regular, hence not MSO-definable.

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYZ

with |zy| < p and y not empty such that for all n € N: xy"z € L.

Example {a*t* | k > 0} is not regular, hence not MSO-definable.
Example

View a word over ~ = {a,b} as a tachograph recording:
a means ‘driving”, b means ‘resting”

Law: “every driving time must be followed by an equally long time of resting.”
Legal tachogaphs recordings:

L:={b"a"b" - a™b"
Not MSO-definable ().

n,m € N,i1,...,i, € N}

Corollaries of Buchi’s Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is p € N such that every w € L with |w| > p can be written
w = TYZ

with |zy| < p and y not empty such that for all n € N: xy"z € L.

Example {a*b* | k > 0} is not regular.

There is no MSO[{<}U{P,, B,}]-formula ¢(x,y, z) such that for all w € {a,b}T
and all 4,7,k € [|w]]

it+j=k = S(w)F »@,j,k).

Lower bounds

NFA A:

Lower bounds

NFA A:

L(A) = Ls = {w € {a,b}T | 4th letter from right in w is a}

Lower bounds

NFA A:

L(A) = La := {w € {a,b}T | 4th letter from right in w is a}

Proposition Let k£ € N.g. Every DFA A with L(A) = L, has at least 2* states.
Proof Assume A is a DFA with < 2% states.

There exists distinct x = z9---2x_1,¥y = Yo - yr—1 € {a,b}* such that A on z,y
reaches the same state.

Say, z; = y;. Then A accepts zb*~* iff A accepts yb**.
Exactly one is in L. Hence L(A) # L.]

Lower bounds

Corollary
The problem

Input: w € T, MSO sentence .
Problem: S(w) = ¢.

is decidable in time O(f(|¢]) 4 |w|) for some computable f: N — N.

Lower bounds

Frick, Grohe 2004
Assume P #= NP,
The problem

Input: w € T, MSO sentence .
Problem: S(w) = ¢.

is not decidable in time O(f(|¢]) - |w|¢) for any c € N and elementary f.

Lower bounds

Frick, Grohe 2004
Assume P #= NP,
The problem

Input: w € T, MSO sentence .
Problem: S(w) = ¢.

is not decidable in time O(f(|¢]) - |w|¢) for any c € N and elementary f.

f N — N is elementary if there is h € N such that for all £ € N:
Sk
f(k) < 22 (h-fold exponential).

Lower bounds

Frick, Grohe 2004
Assume FPT #= AW/[x].
The problem

Input: w € X1, FO sentence o.
Problem: S(w) = ¢.

is not decidable in time O(f(|¢]) - |w|¢) for any c € N and elementary f.

f N — N is elementary if there is h € N such that for all £ € N:
Sk
f(k) < 22 (h-fold exponential).

w-regular languages

A (non)deterministic Blichi automaton (NBA) DBA is an (NFA) DBA
A= (85,50, F).

A accepts an infinite word

oc=agay ay--- € 2"
if there exists an execution

Sop ap S1 a1 S2 a2 83+ -
such that s; € F for infinitely many ¢ € N.
An w-regular language is a subset of >% of the form

Ly(A) :={o € X% | A accepts o}

for some NBA A.

Examples

A B

L(A) = {a}t L(B) = {a}*
L,(A) ={aaa---} L,(B) =0

Examples

A

L(A) ={a}™"
L,(A) = {aaa---}

A
a

L(A) = {a®>"*! | n € N}
L,(A) ={aaa---}

B

L(B) = {a}*
L,(B) =10

B

L(B) = {a®" | n € N5o}
L,(B) = {aaa---}

Determinization fails

Proposition
There is an w-regular language L such that L #= L,(A) for every DBA A.

Proof Let > = {a,b} and let L contain the words with finitely many a.

L is w-regular: a.b)

Determinization fails

Proposition

There is an w-regular language L such that L #= L,(A) for every DBA A.
Proof Let > = {a,b} and let L contain the words with finitely many a.
L is w-regular: a,b b

Let A be a DBA and assume L,(A) = L.
Its accepting run on b b b b--- visits a final state, say after reading b™.
This run is continued to an accepting run of b a bb b--- € L.
Choose ni such that A is in a final state after reading b™ab™.
Continue. Get accepting run on

b™ a b™ a b™ a---

Outside L, contradiction.

Complementation

McNaughton 1966

The set of w-regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B
such that X%\ L,(A) = L,(B).

Proof omitted. As before:

Corollary

The set of w-regular languages is effectively closed under Boolean combina-
tions and projections.

Complementation

McNaughton 1966
The set of w-regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B
such that X%\ L,(A) = L,(B).

Proof omitted. As before:
Corollary

The set of w-regular languages is effectively closed under Boolean combina-
tions and projections.

Intersection
e A generalized NBA A is a tuple (S, sg, A, F) like an NBA but with F C 25,

e A accepts ag a1--- € 2% iff there is an execution sg ag s1 a1--- such that
for all ' € F there are infinitely many 2 € N with s; € F'.

Complementation

McNaughton 1966

The set of w-regular languages is effectively closed under complementation:
there is a computable function that maps an NBA A to an NBA B
such that >« \ L,(A) = L,(B).

Proof omitted. As before:

Corollary

The set of w-regular languages is effectively closed under Boolean combina-
tions and projections.

Intersection
e A generalized NBA A is a tuple (S, sg, A, F) like an NBA but with F C 25,

e A accepts ag a1--- € 2% iff there is an execution sg ag s1 a1--- such that
for all F € F there are infinitely many 2 € N with s; € F'.

Exercise For every GNBA A there is an NBA B st L,(A) = L,(B).
For all GNBAs A, A’ there is a GNBA B st L,(A) N Ly,(A") = L,(B).

Buchi again

Let X be a finite alphabet. View 0 = ag a1--- € 3% as a structure S(o):

vocabulary: {<}U{FP,|ae€ X}
universe: N

- pS@) ={ieN|a; =a}

- <S(@) .= the natural <.

An MSO-sentence ¢ defines L,(¢) = {0 € X% | S(o) = ¢}

Buchi’'s theorem - w-version
There are computable functions

= A, and A — gy
from MSO-sentences to NBAs and back such that

Lu(p) = Luw(Ay) and Ly, (A) = Lo (pa)-

Proof As before. Define A — p,.

Corollaries

Corollary The following problems are decidable.

Input: MSO[{<}U{P,|a € X}]-sentence .
Problem: is there a o € X% such that S(o) = 7

Input: MSO[{<}U{PF, | a € X}]-sentences ¢, .
Problem: are ¢ and ¢ equivalent in all structures S(o) for o € X%7

Proof Second follows from first.
First: compute A,, check whether L,(A,) = 0.

Equivalently: check whether there is a final state that is reachable from the
initial state and lies on a cycle. L]

Linear time properties

Transition system T consists of:

S set of states

I C S a set of initial states

Act set of states

— C S x Act x S transition relation
AP set of propositional variables
L: S — 247 |abeling

Additional assumption: for all s € S there are o € Act, s’ € S :s5s > ¢

The trace of an execution sg ap s1 a1 S2 ap--- IS
L(so) L(s1) L(s2)---€ X"
where ¥ := 247,
Linear time property: subset P C >“,
T satisfies P if every trace of (an execution of) T is in P.

Linear time properties

e Closure cl(P) = {a € X“ | every finite prefix of o is a prefix of some 7 € P}

Exercise P Ccl(P), cl(cl(P))=cl(P), cl(PuUuQ)=cl(P)ucl(Q)

Linear time properties

e Closure cl(P) = {a € X“ | every finite prefix of o is a prefix of some 7 € P}

Exercise P Ccl(P), cl(cl(P))=cl(P), cl(PuUuQ)=cl(P)ucl(Q)

e “something bad never happens”: P safety property iff cl(P) = P

iff every o € P has a P-bad prefix (no element of P has this prefix)

Linear time properties

e Closure cl(P) = {a € X“ | every finite prefix of o is a prefix of some 7 € P}

Exercise P Ccl(P), cl(cl(P))=cl(P), cl(PuUuQ)=cl(P)ucl(Q)

e “something bad never happens”: P safety property iff cl(P) = P
iff every o € P has a P-bad prefix (no element of P has this prefix)

Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

Linear time properties

e Closure cl(P) = {a € X“ | every finite prefix of o is a prefix of some 7 € P}

Exercise P Ccl(P), cl(cl(P))=cl(P), cl(PuUuQ)=cl(P)ucl(Q)

e “something bad never happens”: P safety property iff cl(P) = P
iff every o € P has a P-bad prefix (no element of P has this prefix)

EXxercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

e “something good will happen”: P liveness property iff cl(P) = X%

iff every w € 7T is prefix of some o € P.

Linear time properties

e Closure cl(P) = {o € X“ | every finite prefix of o is a prefix of some 7 € P}
Exercise P Ccl(P), cl(cl(P))=cl(P), cl(PUQ)=cl(P)ucl(Q)

e ‘something bad never happens’: P safety property iff cI(P) = P
iff every o € P has a P-bad prefix (no element of P has this prefix)

EXxercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

e ‘‘something good will happen”: P liveness property iff cl(P) = >¥
iff every w € 7T is prefix of some o € P.
Remark

Every P C 3% is the intersection of a safety and a liveness property, namely:
P=cl(P) n (PU(XZ¥\cl(P)))

Indeed: cl(PU (X% \cl(P))) =cl(P)ucl(Z¥\cl(P)) = =¥

Trace automaton

Proposition The set of traces of a transition system is w-regular.
Proof Given T = (S,1, Act,—, AP, L).
Define NBA Ar:

states SU {so} for a new sg ¢ S
initial state sg
alphabet X ;= 24F
transition relation contains (s, a,s’) iff
a= L(s) and s WY o (i.e., s > & for some « € Act), or,
any

s =sg and s’ — s and a = L(s") for some s’ € I.

final states S

Then L,(Ar) = the set of traces of T.

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system T, MSO sentence .
Problem: S(o) = ¢ for every trace o of T7?

is decidable in time O(f(]¢|) - |T|) for some computable f : N — N.

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system T, MSO sentence .
Problem: S(o) = ¢ for every trace o of T7?

is decidable in time O(f(|¢|) - |T|) for some computable f : N — N.

Proof Compute trace automaton Ar of size O(|T|)

Compute NBA A-, of Buchi's Theorem

Compute NBA B of size O(|A-,| - |Ar|) (earlier Exercise) with
L,(B) = Ly,(Ar) N Ly, (A-y).

Check whether L,(B) = 0 (iff L,(Ar) C Lu())

check no cycle contains a reachable final state
standard techniques do this in time O(|B|)

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

- © e Y ® o P
PEAP —57 ToAd) Xg (9U)

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

® e Y ® w P
—pcAP
p? o (pAY) Xe (eU¥)
LTL semantics over o = ag a1 --- € X% for ¥ := 24" agnd i e N :
0,1 = p <~ DpEca;
0,1 = T = o,iFEp
o, i = (pANY) <= oiFEpandoiE=Y
Next
o,1 = X — oi+1lFEyp
Until

o,i = (pUy) <= thereisj>i:o,j=v and o,k=¢p foralli<k<j

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

® e Y ® w P
—pcAP
p? o (pAY) Xe (eU¥)
LTL semantics over o = ag a1 --- € X% for ¥ := 24" agnd i e N :
0,1 = p <~ DpEca;
0,1 = T = o,iFEp
o, i = (pANY) <= oiFEpandoiE=Y
Next
o,1 = X — oi+1lFEyp
Until

o,i = (pUy) <= thereisj>i:o,j=v and o,k=¢p foralli<k<j

@ defines Ly(p) :={0c € X¥| 0,0 = ¢}

Linear temporal logic

e Connectives Vv, —,... defined as usual; L :=(pA-p); T = 1.
e Eventually Op:=TUp

o,i=0p < thereisj>i:ojEp
e Always [y = =0

o,i=Op < forall j>i:o0,jFE

Linear temporal logic

e Connectives V,—,... defined as usual; L :=(pA-p); T := L.
e Eventually Op:= TUp

o,i=0p < thereisj>i:ojE
e Always [y = -0

o,if=0p <= forall j>i:ojE=e

Exercise ¢ = 1y means L,(p) = L,(1).

Dualities: -[p = 0—-p, —Xp=X-p

Idempotencies: OOp = Op, pU(pUq) = pUgq, (pUq)Uq = pUq

Absorption laws: OUOp = 00p, UOOULp = OUp

Distributive laws: O(pAqg) = OpAQg, O(pVvg) =0pVvOq, X(pUq)=XpU Xgq

Expansion law: pUq=qV (p A X(pUq))

Linear temporal logic

e Connectives Vv, —, ... defined as usual; L :=(pA-p); T = 1.
e Eventually Op:= TUp
0,1 =Qp <= thereisj>i:ojE¢
e Always [y = —=0—p
o,il=0p < forall j>i:ojE=e
Example imagine a transition system including a traffic light: propositional
variables ¢g,y,r € AP indicating “green’, “yellow”, ‘“red”.
“Once red, the light turns eventually green”

O(r — Og)

“Once red, the light turns eventually green after being yellow for some time”

D(r — rU(y/\X(yUg)))

LTL versus FO

Theorem (Kamp 1968)
There are computable functions
o o and ¢
from LTL-formulas to FO-formulas and back, such that

Lu(p) = Lu,(¢™) and Lu(¢) = L,(»™)

LTL versus FO

Theorem (Kamp 1968)
There are computable functions
o gOfo and ¢ ¢It|
from LTL-formulas to FO-formulas and back, such that

Lo(p) = Lu,(¥°) and L,(¥) = L,(%'")

Proof of the easy part: let AP be the Boolean variables in ¢ and X = AP
Define ¢ — p*(x) from LTL-to FO-formulas such that forallc € X¥ and i € N

o,iE=ELTLY = S(0) Fro ¢ (4).

pt = \/pGaEZ Pu(x),

(=)™ 1= —p* (),

(e AP)* = p*(x) AY*(x)

(X)) =Fy(z<yA-z=yAVz(z<azVy<z)Ap*(y)),

(pUp)* = Fy(z <y AP () AVe(z <2 A2 <yA-z=y— ¢*(2))). O

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula ¢ to an NBA
A, of size 290¢D) such that

Lu(p) = Lw(Aso)-

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula ¢ to an NBA
A, of size 200¢D) such that

Lu(p) = Lu(Ay).
Proof

[:= set of subformulas of ¢,
AP := set of Boolean variables in ¢,
> = 247,

7 :={¢Yerlr|oiE=v} wherece>®andieN
This is a type: a set s C I such that for formulas in I

Yo ANY1 € s < Yo € s and Y1 € s,
—p) € s <= Y & s,
Y1 € s = YUYy € s == Yo € s Or Y71 € s.

Let S denote the set of types.

LTL Model-Checking

Claim Types can be computed by an automaton: there are A C § x > X S,
F C 29 of size |¢| such that for all sp € S, 0 = agay --- =% tfae:

(a) sg ap s1 a1--- is an accepting run of the GNBA (S, s0,2, A, F)
(b) F'? =s; for all i € N.

LTL Model-Checking

Claim Types can be computed by an automaton: there are A C § x > X S,
F C 29 of size |¢| such that for all sp € S, 0 = agay --- =% tfae:

(a) sg ap s1 a1--- is an accepting run of the GNBA (S, s0,2, A, F)
(b) F'? =s; for all i € N.

Suffices!

Consider GNBA A := (S U {s{}, =, s§, A*, F) with new s§ and

A* = AU {(s’a,a,s) | exists sp € S: ¢ € sp and (so,a,s) € A}

satisfies L,(A) = L,(p).

Exercise gives equivalent NBA A, with |F|-|SU {sj}| < 22I¥l many states.

LTL Model-Checking
Claim Types can be computed by an automaton: there are A C § x > X S,
F C 29 of size |¢| such that for all sp € S, 0 = agay --- =% tfae:
(a) sg ap s1 a1--- is an accepting run of the GNBA (S, s0,2, A, F)
(b) F'? =s; for all i € N.
A contains (s,a,s’) iff a=sN AP and for formulas in
XpEs<pes

YoUyY1 € s <= 1 € s or, both g € s and YUy € &

F contains for every yoU1 € ' the set {s | YoUy1 & s} U{s |1 € s}

LTL Model-Checking

Claim Types can be computed by an automaton: there are A C § x > X S,
F C 2% of size |p| such that for all so € S, 0 = apay --- =¥ tfae:

(a) sg ag s1 a1--- is an accepting run of the GNBA (S, s0,X, A, F)
(b) F'? =s; for all i € N.

A contains (s,a,s’) iff a=sN AP and for formulas in I
XYpEs<—pes
YoUY, € s <= 11 € s or, both g € s and YUy € §

F contains for every oU1 € I the set {s | YoU¥¢1 & s} U{s | Y1 € s}

Fix sp e S. (b) = (a) easy. For (a) = (b) show
0,1 = <1 € s;
for all b € ' by induction on . Case ¢ = ¢oU1. For simplicity : = 0. Show:
0,0 = YoUy1 <= oUt1 € so.

LTL Model-Checking

A YUy € s <= 11 € s or, both g € s and YUy € &
F o {s|poUth1 € s} U{s |1 € s}
Want 0,0 = ¢oUv%1 <= YoU1 € so.

LTL Model-Checking

A YUy € s <= 11 € s or, both g € s and YUy € &

F o {s|voUtr ¢ sfU{s |91 € s}
Want 0,0 = ¢oUv%1 <= YoU1 € so.

= choose i such that: o,i =1 and o,j = 1o for all j <1
by induction: 1 € s; and g € s; for all 7 <4

by type-definition: YUy € s;

as Yo € s;—1, by A-definition: yYoUy1 € s;—1

continue. . . YUy € s0.

LTL Model-Checking

A YPpoUr1 € s <= 11 € s or, both g € s and YUy € &

Fo{s| U1 & stU{s|y1 € s}
Want 0,0 = ¢oUvy%1 <= YoUy1 € so.

< by type-definition: g € sg Or 1 € sg
it 11 € sp: by induction 0,0 = 91, SO 0,0 = YUy donel
else g € sg 2 Y1: by A-definition YUy € s1
by type-definition: g € s1 Or Y1 € s1
if 11 € s1: by induction o,1 |= 1 and 0,0 = v, SO 0,0 = YUy done!
else g € s1 F Y1:. by A-definition yoUvy1 € so
...continue until YoU¥1 € s; € {s | YoUrp1 & s} U{s | Y1 € s}.

Then 1 € s;: done!

LTL Model-Checking

As before:

Corollary The problem

Input: a transition system T, an LTL-formula ¢.
Problem: o,0 = ¢ for every trace o of T7?

is decidable in time 2°90U#D . |T|.

LTL Model-Checking

Proposition

LTL-formulas ¢ do not have equivalent NBAs with 20(V/[#]) states.

Proof Let AP = {p}. For n € N let L, contain the words

ag @1+ Gp-1 ao a1---ap-1 0 0---
Defined by the size O(n?) formula

/\(Xip VRN X”‘Hp).
<n
Let A be an NBA with L,(A) = L,,. For each ag---an—1 € 247 there is a state
g(ao---an_1) such that A with this starting state accepts
This is not true for q(ag---al, ;) for every ag---al, ; #Zao---an—1.
Hence the states q(ag---an_1) are pairwise distinct.
Hence A has at least 2" many states. []

Timed automata

[up 1 lower [(coming dawn]
true) peget(z) | TS 1

Timed automata
N
[up | lower [(coming dawn]
true | reset(z) | TS1

rz=21

[gm‘ng up |, raise [du:um
<2) reset(z) | true

time inst. time inst.
going up 3.7 S 5.0971

time inst. imfge i
down 2.172\“‘:—' !
time inst. | |

coming down 1.318~—— | —

lower : lower

up _ '

Timed automata

Timed automaton A consists of:

Loc finite set of locations

Loco C Loc initial locations

Act finite set of actions

AP finite set of propositional variables
L : Loc — 247 3 labeling

Timed automata

Timed automaton A consists of:

Loc finite set of locations

Locog C Loc initial locations

Act finite set of actions

AP finite set of propositional variables
L : Loc — 247 3 labeling

C finite set of clocks

Inv : Loc - CC := finite sets of clock constraints

x e’
xz~k where ke N
~ e, <, =,>,>}

s C Loc x CC x Act x 2¢ x Loc

View (4,g,a,X,¢) € — as an arrow from £ to ¢ labeled by a guard g € CC,
an action a € Act and a set of clocks X C C that are reset.

Timed automata: example

R
[up | lower (coming dc}wnl
t"’"i"'e) reset(z) | TSI
r =1
i |
|, going up | raise [down)

T2) peset(z) _ true

Loc = AP = {up, down, goingup, comingdown’}, Locy = {up}, L(£) = {¢}
C ={z}

Act = {raise, lower, T}

Timed automata: example

R
[up 1 lower (coming dﬂwnl
L “’"i"*e J reset(z) | TS
r =1 ‘
i |
|” going up | raise [down)

TS2) reset(z) _ true)

Loc = AP = {up, down, goingup, comingdown}, Locy = {up}, L£) = {/¢}
C = {z}

Act = {raise, lower, T}

Inv(up) = 0

Inv(comingdown) = {x < 1}

(up, 0, lower,{x}, comingdown) € <

(goingup,{x > 1},7,0,up) € —

Transition system TS(A) of A:

states: (¢,n) with £ € Loc and n: C — R>¢ a clock valuation
initial states: (¢,n) with ¢ € Loco and n is constantly O.
propositional variables: AP U clock constraints

labeling of (¢,n) is L(£) U {z~k | n(z) ~ k,z € C}
actions: Act U R>o

Transition system TS(A) of A:

states: (¢,n) with £ € Loc and n: C — R>¢ a clock valuation
initial states: (¢,n) with ¢ € Loco and n is constantly O.
propositional variables: AP U clock constraints

labeling of (¢,n) is L(£) U {z~k | n(z) ~ k,z € C}

actions: Act U R>o

discrete transitions (¢,n) = (¢',n') where a € Act and

- (E,Q,O{,X,K/) c —
- n satisfies ¢ (ie. n(x) ~ k for all z~k € g)

@0 ={§7 &3

- n' satisfies Inv(¥)
delay transitions (¢, n) 4 (¢,m+ d) where d € R>o and

-(n+d)(x) =n(z)+d forall xeC
- n 4+ d’ satisfies Inv(¢) for all d' € [0,d].

Executing timed automata

e Relevant paths starting at (¢o,n0) have the form

<£O?TIO> g <607770 + d0> O& <£1,771> CA <£1,7’]1 —|— d1> 04 <€2,772> g ce

where «; € Act,d; € R>o and) . d; = oo, oOr:

Olg—1 dk+1 dk+2
(o, 10) B - 5 (e me) B (e + 1) 8 (G, +2) %5

where 1:dk:dk+1:...

Executing timed automata

e Relevant paths starting at (¢o,n0) have the form

<£O?TIO> g <607770 + d0> O& <£1,771> CA <£1,7’]1 —|— d1> 04 <€2,772> g ce

where «; € Act,d; € R>o and) . d; = oo, oOr:

Olg—1 dk+1 dk+2
(o, 10) B - 5 (e me) B (e + 1) 8 (G, +2) %5

where 1:dk:dk+1:...

e (¢,n) is at time t € R>p in a relevant path = iff

there arei € N,d € [0,d;] such that{ = ¢;andn =ni+dand t = 3., d;+d.

Executing timed automata

e Relevant paths starting at (¢o,n0) have the form

(0, m0) % (Lo, Mo + do) 23 (1, m) B (L1, m +d1) 23 (ba,m2) S -
where «; € Act,d; € R>p and) . d; = oo, or:

(£o,mMo0) By — (Lr, k) Ly Ly, M + 1) S Uy +2) d‘“ 2.

where 1 = d;, = dk;_|_1 =

e (¢,n) is at time t € R>g in a relevant path = iff

there arei € N,d € [0,d;] such that{ = ¢;andn =ni+dand t = 3., d;+d.
e Then (¢, n') before (¢,n) iff (¢,n) after (¢, n') iff

(¢',n'y is at some time ¢/ <t in «, or,

(¢',n') is at time ¢ in # and ¢ = ¢; for some j < i.

E.g. above: (¢1,7n1) is at time do, and ({p,no + do) too and before (¢1,m1).

Executing timed automata: example

time inst. time inst.
going up 3.7 ——— 5.0971
time inst. ‘Taise |
down 2172 ——— |
time inst. | |
coming down 1.318 —— i L
| lower : lower
up — I
R
o 1 2 3 4 5 6 T

write n(x) € R>p instead n : {z} — Rx>o:

(up,1.318) at time 1.318

before (comingdown,0) at time 1.318
before (comingdown,0.002) at time 1.32
before (goingup,0.5) is at time 4.2

Executing timed automata: example

time inst. time inst.
going up 3.7 ——— 5.0971
time tnst. \raise |
down 21728 ——— i
time inst. | |
coming down 1.318 —— i L
lower i \lower

up —_— R

(up, 0) 1338 (up,1.318) ot (comingdown, O) 054 (comingdown, 0.854)

5 (down, 0.854) 1¢8 (down,2.382) e {goingup, O) L3371 (goingup, 1.3971)

Timed computation tree logic

TCTL-formulas over AP U CC generated by

® e P e Y e P
p —p (o NY) V(e Ur) (e Ur)

where p € AP U CC, I an interval [a,b), (a,b], (a,b),[a,b] for a < b in NU {oco}.

Timed computation tree logic

TCTL-formulas over AP U CC generated by

® e P e Y e P
p —p (o NY) V(e Ur) (e Ur)

where p € AP U CC, I an interval [a,b), (a,b], (a,b),[a,b] for a < b in NU {oco}.

TCTL semantics over TS(A):

U,my =p <— pe L) forpe AP
,n) =xz~k <= nz)~k for x~k € CC
(,m) = —p = (L) FEe

) Eeny = {n) FEeand {n) =Y

Timed computation tree logic

TCTL-formulas over AP U CC generated by

® © VP © P © VP
p —p (o NY) V(e Ur) (e Ur)

where p € AP U CC, I an interval [a,b), (a,b], (a,b),[a,b] for a < b in NU {oco}.
TCTL semantics over TS(A):

(&;m) = p <= pec L) for p € AP
U,n) =ax~k <= nlx)~k for x~k € CC
(€;n) =~ — L) FEe
m Eeny = ({n)FEpand {¢n) =

() EV(e Ur) =

for every relevant path = starting at (¢,n)
there is a state (¢,n’) at some time ¢t € I in « such that

{(¢',n') =+ and
' n"y = p Vv for all states (¢, n") before (¢, 7).

Timed computation tree logic

TCTL-formulas over AP U CC generated by

® © VP © P © VP
p —p (o NY) V(e Ur) (e Ur)

where p € AP U CC, I an interval [a,b), (a,b], (a,b),[a,b] for a < b in NU {oco}.
TCTL semantics over TS(A):

(&;m) = p <= pec L) for p € AP
U,n) =ax~k <= nlx)~k for x~k € CC
(€;n) =~ — L) FEe
m Eeny = ({n)FEpand {¢n) =

n) FE e Urv) =

for some relevant path = starting at (¢,n)
there is a state (¢,n’) at some time ¢t € I in « such that

{(¢',n') =+ and
' n"y = p Vv for all states (¢, n") before (¢, 7).

Timed computation tree logic

VOre :=V(T Ur ¢)

(,m) = VOrp iff for every relevant path = starting at (¢,n)
there is a state (¢, n') at some time ¢t € I in «w such that (¢, n') = ¢

3010 :=3(T Us »)
(,m) = VOrp iff for some relevant path = starting at (¢,n)
there is a state (¢, n') at some time ¢t € I in @ such that (¢, n') = ¢

Timed computation tree logic

VOre :=V(T Ur ¢)
(l,m) = VO iff for every relevant path = starting at (¢, n)
there is a state (¢,n') at some time ¢t € [in w such that (¢,7n) = ¢

FOrp 1= 3(T Ur ¢)
(€,m) = VOrp iff for some relevant path = starting at (¢,n)
there is a state (¢,n') at some time ¢t € I in w such that (¢,7) = ¢

Vi = =30
(¢,m) = Ve iff for every relevant path = starting at (¢,n)
for all states (¢,n') at some time te I in w: ({,n) = ¢
J0rp := V0
(¢,m) = 0 iff for some relevant path = starting at (¢,n)
for all states (¢,n) at some timetec I inx: (¢,n) =¢

Omit subscript I = [0, c0).

Timed computation tree logic

lLeads-to operator

Q) = VD(QO — VO@D)

(&,n) =@~
iff
for every relevant path = starting at (¢,n)
for every state (¢,7n) = ¢ at some time t € [0,0) in 7:
for all relevant paths =’ starting at (¢,7n’)
there are a state (¢//,n"”) at some time ¢’ € [0,00) in «' st (&' n") = o
iff
for every relevant path = starting at (¢,n) and every t € [0, 00):
for every state (¢,n'y = at time tin «
there is a state (¢",n") = after (¢, 7).

Timed computation tree logic

Elimination of time constraints

Assume there is a clock z € C that is never reset and assume n(z) = 0.

) EVP Uy 0) <= &) =EY((pVe U (22 anz<bAg))

€, n) = VOruna = ({l,n) EVO(z>aNz<bAq)
(€,m) = VUap)q <~ ({,n) =VO(E>aAz<b—q)
Caution

trick useless for iterated modalities

UPPAAL

supports
Ve, VOp, dlp, VOp, v~

for ¢, in propositional logic.

Timed computation tree logic: examples

R
4 up | lower (coming down)
L true) reset(z) | s 1
r =1 ‘
|
" going up raise (down)

\|___-,
T2) peset(z) _ true

The initial state (up,0) of the associated transition system satisfies:
vO(comingdown — x<1)
comingdown ~ (down N x<1)

goingup ~ (1<xz A <2 A up)

Timed computation tree logic: examples

R
4 up \ lower (coming down
L lrue] J

v J reset(z) x‘Tl

r =1

Y

I ¢ ™

going up L raise [down
T2) peset(z) _ true

The initial state (up,0) of the associated transition system satisfies:
vO(comingdown — ©<1)

comingdown ~ (down N x<1)

goingup ~ (1<xz A <2 A up)

VO(goingup A x=0 — YOy oyup)

VO(goingup A x>1 — VO 1yup)

Model-checking TCTL: theorem

A is timelock free iff at reachable states of TS(A) start relevant paths.

Model-checking TCTL: theorem
A is timelock free iff at reachable states of TS(A) start relevant paths.

Theorem (Alur, Courcoubetis, Dill 1990)

The promise problem

Input: a timelock-free timed automaton A, a TCTL-formula ¢
Problem: does every initial state of TS(A) satisfy ¢?

is decidable in time
KO -l - A

where c is the number of clocks in A and k£ > ¢ upper bounds the natural
numbers appearing in ¢ and A.

Model-checking TCTL: proof

Assume A has a clock zeq € C' not mentioned in guards, invariants or .
For r € R>o write (r) ;=7 — [r]. E.g., (1.23) = 0.23.
n~n' iff

- forall z € C: |[n(x)] and |[n'(x)] are equal or both > k.

. . (z)) < (n(y)) Iff (n'(2)) < (n'(y)
- forall z,y € C with n(z) < k,n(y) < k: gZ(x)i — <(?)7 hgf ><77I’(96<)7; - (>) ' (y))

Claim: if n=n' and d € R>o, then n+d~n'+ d for some d' € R>g

Model-checking TCTL: proof

Assume A has a clock zeq € C' not mentioned in guards, invariants or .
For r € R>g write (r) :=r — [r]. E.g., (1.23) = 0.23.
n~n iff

- forall z € C: |[n(x)] and |[n'(x)] are equal or both > k.

. . (z)) < (n(y)) IfF (n'(2)) < (n'(y)
- forall xz,y € C with n(x) < k,n(y) < k: 22(513); — 87 h'yr ><77I'(£C<)7§ = g ' ()

Claim: if n=n' and d € R>o, then n+d~n'+ d for some d' € R>g

Suffices for d < 1 (then choose d” for (d) and set d' := |d| + d")
If there is x € C such that d =1 — (n(x)), set d :=1 — (n'(x))
Otw order clocks z1 < --- < x. according (n(x)) (equivalently (n'(x)))

choose i < ¢+1 such that +d moves n(x;),...,n(x.) but not n(z1),...,n(x;—1)
from below to above some integer

choose d' that does the same for 7/

Model-checking TCTL: proof

Assume A has a clock zeq € C' not mentioned in guards, invariants or .
For r € R>o write (r) :=r — [r]. E.g., (1.23) = 0.23.
n~mn iff

- forall z € C: |[n(x)] and |[n'(x)] are equal or both > k.

. . (z)) < (n(y)) iff (n'(x)) < (7' (y)
- forall x,y € C with n(x) < k,n(y) < k: EZ(J?); — <67 h:gf ><77I'(£U<)7§ = g ' ()

Claim: if n=n' and d € R>o, then n+d~n' 4+ d for some d’' € R>g

Get: for ng ~ n; and a relevant path

d o d

<£O?TIO> g <607770 + d0> g <£1,771> — <£1,7’]1 + d1> = <€2,772> B G

there are d; € R>o and n! =~ n; such that

d/

d; o 7\ 9 / AN /
(€o,mp) — (Lo, Mo + dp) = (€1, my) — (€1,my + dy) — (€2,m5) = -+

is a relevant path (by the proof of the claim).

Model-checking TCTL: proof

Assume A has a clock zey € C' not mentioned in guards, invariants or .

For r € R>o write (r) ;=7 — [r]. E.g., (1.23) = 0.23.
n~mn iff
- forall x € C: |n(x)]| and |n'(z)| are equal or both > k.

. . (z) (y)) iff (n'(z)
- for all z,y € C with n(z) < k,n(y) < k: gZ(w)i — <C;7 n?gf >(77I (x<)7§ = (%

Claim: if n=n' and d € R>q, then n+d~n'+ d for some d' € R>g
Get: for ng =~ nj and a relevant path

d o d o d
(Lo, m0) — (Lo, mo + do) =5 (1,m1) = (1,m +d1) = (b2, m2) = - -~
choose dg € R>g accordingly so that

d o d! o d!
is a relevant path (by the proof of the claim).
Then: ({mEe = L1)FEe

(n'(y))

Model-checking TCTL: proof

Region transition system R(A, k)

states: (¢, [n]) for a location ¢ and region [n] :={n" |n~n'}

initial states: (4o, [no]) for a initial location ¢ and np constantly O
propositional variables: APuU CC

label of (¢, [n]) is the label of (¢,n) in TS(A)
actions: Act U {7}
transitions:
&,) = @, 7)) if (,n) = (¢, n") in TS(A) and o € Act
&, [n]) = (£, [n]) if 0’ is the successor of
both ~ n. := constantly k, or, n % n' =~ n+ d for some
d € R>g such that for all d < d: n+d € [n]U[7].

Size kO,

Model-checking TCTL: proof

Idea for each subformula ¥ of ¢ compute

Ext(y) := {{¢, [n]) | (¢,m) = and is reachable}
Case ¢ = (o Upap) ¥1)-
Assume we already computed FEzt(vyo) and Ext(1).

Problem How to decide (¢,n) = ¥? WIog n(xrea) = 0.

Model-checking TCTL: proof

Idea for each subformula ¢ of ¢ compute
Ext(y) := {{, [n]) | (¢,m) = and is reachable}
Case ¢ = 3(Yo Ulap) ¥1)-
Assume we already computed Ext(1o) and Ext(11).
Problem How to decide (¢,n) = ¥? WIog n(xrea) = 0.

Claim (£,n) reachable with n(xrea) = 0. Then (¢,n) = ¢ iff there is a path
(¢, [n]) = (Lo, [nol) (€x,[m]) - (€n, [1n])
for some n € N such that
(i, [n:]) € Ext(xpo) U Ext(e)1) for all i <n

(€n, [nn]) € Ext(3p1)
a < Np(Trear) < b

Then standard reachability algorithmics imply the theorem.

Model-checking TCTL: proof

= Assume ({,n) =1, i.e., there is a relevant path = in TS(A)

(,m) = (Lo, m0) B (Lo, m0 4 do) %5 (€1, m) B (b1, m + d1) S (o, m2) B -
such that - (¢!, n!) at some time n'(zrea1) =t € [a,b) in 7w satisfies

- all (¢, n') before (¢, n') satisfy 1o V 1.

Model-checking TCTL: proof

= Assume ({,n) =1, i.e., there is a relevant path = in TS(A)

(€,m) = (€o,m0) % (lo,mo + do) % (€1, m1) B (L1, m + d1) = (ba,m) B -
such that - (¢!, n!) at some time n'(zrea1) =t € [a,b) in 7w satisfies
- all (¢, n') before (¢, n') satisfy 1o V 1.
Choose i € N and d € [0, d;] such that
(Co,m0) =% -+ % (L, i) <> (€, 77")
This gives a finite path in R(A,k):

* *

(Lo, [nol) = -+ = (&, [m]) = (€4, [n'])

where 5~ abbreviates finitely many 5.

Model-checking TCTL: proof

= Assume (¢,n) =1, i.e., there is a relevant path = in TS(A)

(€,m) = (Co,n0) % (Lo, m0 + do) %% (€1, m) 5 (€1,m + d1) 3 (€2, m2) B -+
such that - (¢!, n') at some time n'(xreal) =t € [a,b) in 7 satisfies 1
- all (¢, n') before (£, n') satisfy 1o V 1.
Choose 7 € N and d € [0, d;] such that

d o d
<£0)TIO> 4 v = <€’L7nl> — <€t>77t>
This gives a finite path in R(A,k):

T

(o, Inol) = -+ % (6, Ina]) 5 (et ()

where 5~ abbreviates finitely many 5. Then

- (', [n']) € Ext(¢1)

- for every other appearing (¢, [n]) there is n' &~ n such that {£,7') is
before (¢, n') in «

hence (¢, [n]) € Ext(yo) U Ext(1)

Model-checking TCTL: proof

< Given an as-described path in R(A, k)
(€o, [nol) (€1, [ml) -~ {bn; [mn])
Replace — by suitable % and get for suitable n. ~ n; a path in T'S(A)

(€o,mo) (€1,m1) - (Ln, M)

Make i / eV alternating by contracting consecutive i> and adding £> between
consecutive . Continue to a relevant path = (timelock-free).

Model-checking TCTL: proof

< @Given an as-described path in R(A, k)
(€o, [no]) (€1, [m1]) -~ {fn, [nn])
Replace - by suitable % and get for suitable n. ~ n; a path in TS(A)

<£07 770> <£17 77/1> T <£n, 77;1>

Make i / eV alternating by contracting consecutive i and adding E> between
consecutive =. Continue to a relevant path = (timelock-free).

Then

- (ln,ml) is at time n/ (zrea) € [a,b) in 7w and satisfies ;.
- for every (¢/,n) before (¢,,n,) thereis i <n st ¢ =4, and n' = n;,
hence (¢/,n') = o V 1.

Thus (¢,n) = 3(vo Upp) ¥1). O

