Introduction to Model-Checking

Moritz Müller Spring/Summer 2021

Finite automata

A nondeterministic finite automaton NFA is a tuple $\mathbb{A} = (S, \Sigma, s_0, \Delta, F)$:

- \boldsymbol{S} is a set of states
- $s_0 \in S$ is the initial state
- Σ is a finite nonempty set, called alphabet; elements are letters
- $\Delta \subseteq S \times \Sigma \times S$ transition relation
- $F \subseteq S$ set of final states

A deterministic finite automaton DFA is an NFA with $\Delta : S \times \Sigma \rightarrow S$

Finite automata

A nondeterministic finite automaton NFA is a tuple $\mathbb{A} = (S, \Sigma, s_0, \Delta, F)$:

- S is a set of states
- $s_0 \in S$ is the initial state
- Σ is a finite nonempty set, called alphabet; elements are letters
- $\Delta \subseteq S \times \Sigma \times S$ transition relation
- $F \subseteq S$ set of final states

A deterministic finite automaton DFA is an NFA with $\Delta: S \times \Sigma \rightarrow S$

Executions $s_0 a_0 s_1 a_1 s_2 \cdots$ defined as before

A accepts $a_0 \cdots a_{n-1}$ if there is such an execution with $s_n \in F$

 $L(\mathbb{A}) := \{ w \in \Sigma^+ \mid \mathbb{A} \text{ accepts } w \}$: sets of this form are regular languages

A and B are equivalent iff $L(\mathbb{A}) = L(\mathbb{B})$

Finite automata

Examples

 $\Sigma = \{a,b\}$ L = (a+b)*bNFA

Determinization

Proposition

Every NFA is equivalent to a DFA.

Proof Given an NFA $\mathbb{A} = (S, \Sigma, s_0, \Delta, F)$. Define $\mathbb{A}' = (S', \Sigma, s'_0, \Delta', F')$ by

$$-S' := P(S)$$

$$-s'_0 := \{s_0\}$$

$$-\Delta' := \text{set of } (X, a, Y) \text{ with } X \subseteq S, a \in \Sigma \text{ and}$$

$$Y = \{s' \in S \mid (s, a, s') \in \Delta, s \in X\}$$

$$-F' := \{X \subseteq S \mid X \cap F \neq \emptyset\}$$

Then \mathbb{A}' is a DFA with $L(\mathbb{A}) = L(\mathbb{A}')$. **qed**

Remark $(S', \Sigma, s'_0, \Delta', S' \setminus F')$ accepts $\Sigma^+ \setminus L(\mathbb{A})$.

Exercise

Regular languages are closed under Boolean operations and projections.

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2^k states and $L(\mathbb{B}) = \Sigma^+ \setminus L(\mathbb{A})$

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2^k states and $L(\mathbb{B}) = \Sigma^+ \setminus L(\mathbb{A})$

(b) For all NFAs \mathbb{A}, \mathbb{A}' with k, k' states resp., there is an NFA \mathbb{B} with k + k' + 1 states and $L(\mathbb{B}) = L(\mathbb{A}) \cup L(\mathbb{A}')$

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2^k states and $L(\mathbb{B}) = \Sigma^+ \setminus L(\mathbb{A})$

(b) For all NFAs \mathbb{A}, \mathbb{A}' with k, k' states resp., there is an NFA \mathbb{B} with k + k' + 1 states and $L(\mathbb{B}) = L(\mathbb{A}) \cup L(\mathbb{A}')$

(c) For every NFA $\mathbb A$ over alphabet $\Sigma \times \Sigma'$ with k states, there is an NFA $\mathbb B$ with k states and

$$L(\mathbb{B}) = \left\{a_0 \cdots a_{n-1} \in \Sigma \mid n > 0, \exists b_0, \ldots b_{n-1} \in \Sigma' : (a_0, b_0) \cdots (a_{n-1}, b_{n-1}) \in L(\mathbb{A})\right\}$$

Exercise

Regular languages are closed under Boolean operations and projections.

More specifically:

(a) For every NFA A with k states there is a DFA B with 2^k states and $L(\mathbb{B}) = \Sigma^+ \setminus L(\mathbb{A})$

(b) For all NFAs \mathbb{A}, \mathbb{A}' with k, k' states resp., there is an NFA \mathbb{B} with k + k' + 1 states and $L(\mathbb{B}) = L(\mathbb{A}) \cup L(\mathbb{A}')$

(c) For every NFA $\mathbb A$ over alphabet $\Sigma \times \Sigma'$ with k states, there is an NFA $\mathbb B$ with k states and

$$L(\mathbb{B}) = \left\{a_0 \cdots a_{n-1} \in \Sigma \mid n > 0, \exists b_0, \ldots b_{n-1} \in \Sigma' : (a_0, b_0) \cdots (a_{n-1}, b_{n-1}) \in L(\mathbb{A})\right\}$$

(d) For every alphabet Σ' and NFA \mathbb{A} over alphabet Σ with k states, there is an NFA \mathbb{B} over $\Sigma \times \Sigma'$ with k states and

$$L(\mathbb{B}) = \left\{ (a_0, b_0) \cdots (a_{n-1}, b_{n-1}) \in (\Sigma \times \Sigma')^+ \mid n > 0, a_0 \cdots a_{n-1} \in L(\mathbb{A}) \right\}$$

Words as structures

View a word $w = a_0 \cdots a_{n-1} \in \Sigma^+$ as a structure $\mathcal{S}(w)$:

- vocabulary:
$$\{\leq\} \cup \{P_a \mid a \in \Sigma\}$$
:
- universe: $[n] = \{0, \dots, n-1\}$
- $P_a^{\mathcal{S}(w)} := \{i \in [n] \mid a_i = a\}$
- $\leq^{\mathcal{S}(w)} :=$ the natural \leq .

Words as structures

View a word $w = a_0 \cdots a_{n-1} \in \Sigma^+$ as a structure $\mathcal{S}(w)$:

- vocabulary: $\{\leq\} \cup \{P_a \mid a \in \Sigma\}$: - universe: $[n] = \{0, ..., n - 1\}$

-
$$P_a^{\mathcal{S}(w)} := \{i \in [n] \mid a_i = a\}$$

 $-\leq^{\mathcal{S}(w)}$:= the natural \leq .

An MSO-sentence φ defines

$$L(\varphi) = \{ w \in \Sigma^+ \mid \mathcal{S}(w) \models \varphi \}$$

Büchi's Theorem 1960

Exactly the regular languages are MSO-definable.

Let \mathbb{A} be an NFA, say, with S = [k] and $s_0 = 0$. Want $\varphi_{\mathbb{A}} \in MSO$ such that $L(\mathbb{A}) = L(\varphi_{\mathbb{A}})$.

Let \mathbb{A} be an NFA, say, with S = [k] and $s_0 = 0$. Want $\varphi_{\mathbb{A}} \in \mathsf{MSO}$ such that $L(\mathbb{A}) = L(\varphi_{\mathbb{A}})$. $\varphi_{\mathbb{A}} := \exists X_0 \cdots \exists X_{k-1} \Big(\mathsf{Part} \wedge \mathsf{Init} \wedge \mathsf{Trans} \wedge \mathsf{Acc} \Big)$

Intuition: $X_i(x)$ means "A is in state *i* when reading the letter in position *x*".

Let \mathbb{A} be an NFA, say, with S = [k] and $s_0 = 0$. Want $\varphi_{\mathbb{A}} \in \mathsf{MSO}$ such that $L(\mathbb{A}) = L(\varphi_{\mathbb{A}})$. $\varphi_{\mathbb{A}} := \exists X_0 \cdots \exists X_{k-1} \Big(\mathsf{Part} \wedge \mathsf{Init} \wedge \mathsf{Trans} \wedge \mathsf{Acc} \Big)$

Intuition: $X_i(x)$ means "A is in state *i* when reading the letter in position x".

• *Part* expresses that the X_i form a partition:

$$\forall x \Big(\bigvee_{i < k} X_i(x) \land \bigwedge_{i < j < k} (\neg X_i(x) \lor \neg X_j(x)) \Big).$$

• Init expresses that the computation starts in s_0 :

$$\forall x (\forall z \ x \leq z \to X_0(x))$$

Let \mathbb{A} be an NFA, say, with S = [k] and $s_0 = 0$. Want $\varphi_{\mathbb{A}} \in \mathsf{MSO}$ such that $L(\mathbb{A}) = L(\varphi_{\mathbb{A}})$. $\varphi_{\mathbb{A}} := \exists X_0 \cdots \exists X_{k-1} \Big(\mathsf{Part} \land \mathsf{Init} \land \mathsf{Trans} \land \mathsf{Acc} \Big)$

Intuition: $X_i(x)$ means "A is in state i when reading the letter in position x".

• Trans expresses that successive states accord to Δ :

$$\forall x \forall y \Big(x \leq y \land \neg x = y \land \forall z (z \leq x \lor y \leq z) \to \bigvee_{(i,a,j) \in \Delta} (X_i(x) \land P_a(x) \land X_j(y)) \Big)$$

• Acc expresses that the computation accepts:

$$orall x \Big(orall z \, z \leq x
ightarrow igvee_{\substack{(i,a,j) \in \Delta \ j \in F}} (X_i(x) \wedge P_a(x)) \Big)$$

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup \{P_a \mid a \in \Sigma\}$.

Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi) = L(\mathbb{A}_{\varphi})$.

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup \{P_a \mid a \in \Sigma\}$.

Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi) = L(\mathbb{A}_{\varphi})$.

First step: massaging φ

$$Sing(X) := \exists x (X(x) \land \forall y (X(y) \to x = y))$$

Before(X,Y) := $\forall x, y (X(x) \land Y(y) \to x \leq y))$
Letter_a(X) := $\forall x (X(x) \to P_a(x))$ for $a \in \Sigma$.

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup \{P_a \mid a \in \Sigma\}$.

Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi) = L(\mathbb{A}_{\varphi})$.

First step: massaging φ

$$Sing(X) := \exists x (X(x) \land \forall y (X(y) \to x = y))$$

Before(X,Y) := $\forall x, y (X(x) \land Y(y) \to x \leq y))$
Letter_a(X) := $\forall x (X(x) \to P_a(x))$ for $a \in \Sigma$.

An MSO-formula is ready for translation if it is obtained from the above formulas by means of $\neg, \lor, \exists Z$.

Claim: For every MSO-sentence φ there is an MSO-sentence φ^* that is ready for translation and such that

$$L(\varphi) = L(\varphi^*).$$

Proof of Claim: for x, y, ... let X, Y, ... be new set variables. Define $\varphi(x, y, ..., \overline{Z}) \mapsto \varphi^*(X, Y, ..., \overline{Z})$ such that:

for all words $w \in \Sigma^+$, say of length n, we have $\mathcal{S}(w) \models \varphi(i, j, \dots, \overline{A}) \iff \mathcal{S}(w) \models \varphi^*(\{i\}, \{j\}, \dots, \overline{A})$ for all $i, j, \dots \in [n]$ and all tuples \overline{A} of subsets of [n].

Proof of Claim: for x, y, ... let X, Y, ... be new set variables. Define $\varphi(x, y, ..., \overline{Z}) \mapsto \varphi^*(X, Y, ..., \overline{Z})$ such that:

for all words $w \in \Sigma^+$, say of length n, we have

 $\mathcal{S}(w) \models \varphi(i, j, \dots, \bar{A}) \iff \mathcal{S}(w) \models \varphi^*(\{i\}, \{j\}, \dots, \bar{A})$ for all $i, j, \dots \in [n]$ and all tuples \bar{A} of subsets of [n].

$$(x \leq y)^* := Before(X, Y)$$
$$(P_a(x))^* := Letter_a(X)$$
$$(\varphi \lor \psi)^* := \varphi^* \lor \psi^*$$
$$(\neg \varphi)^* := \neg \varphi^*$$
$$(\exists Z\varphi)^* := \exists Z\varphi^*$$
$$(\exists x\varphi)^* := \exists X(Sing(X) \land \varphi^*)$$

The claim is proved.

Let $\varphi \in MSO$. Want NFA \mathbb{A}_{φ} such that $L(\varphi) = L(\mathbb{A}_{\varphi})$.

Second step: translation

An MSO-formula $\varphi(Z_0, Z_1)$ defines

$$L(\varphi(Z_0, Z_1)) := \left\{ w \in (\Sigma \times \{0, 1\} \times \{0, 1\})^+ \mid w \text{ satisfies } \varphi(Z_0, Z_1) \right\}$$

Let $\varphi \in MSO$. Want NFA \mathbb{A}_{φ} such that $L(\varphi) = L(\mathbb{A}_{\varphi})$.

Second step: translation

An MSO-formula $\varphi(Z_0, Z_1)$ defines

$$L(\varphi(Z_0, Z_1)) := \left\{ w \in (\Sigma \times \{0, 1\} \times \{0, 1\})^+ \mid w \text{ satisfies } \varphi(Z_0, Z_1) \right\}$$

Write $w \in (\Sigma \times \{0,1\} \times \{0,1\})^n$ as

$$w = (a_0, b_0^0, b_1^0) \cdots (a_{n-1}, b_0^{n-1}, b_1^{n-1})$$

w satisfies $\varphi(Z_0, Z_1)$ if $\mathcal{S}(a_0 \cdots a_{n-1}) \models \varphi(A_0, A_1)$,

where

$$A_{0} := \left\{ i \in [n] \mid b_{0}^{i} = 1 \right\}$$

$$A_{1} := \left\{ i \in [n] \mid b_{1}^{i} = 1 \right\}$$

$$A_{0} = \{1,3\} \mid a_{1} = a_{2} = a_{3} = a_{4}$$

$$A_{0} = \{1,3\} \mid a_{1} = 0 = 1 = 0$$

$$A_{1} = \{0,3\} \mid a_{1} = 0 = 1 = 0$$

Let φ be ready for translation. Write

$$\varphi = \varphi(\bar{Z})$$

where \bar{Z} subsumes all (bound and free) set variables in $\varphi.$

Define $\mathbb{B}_{\varphi(\bar{Z})}$ such that $L(\mathbb{B}_{\varphi(\bar{Z})}) = L(\varphi(\bar{Z}))$:

Let φ be ready for translation. Write

 $\varphi = \varphi(\bar{Z})$

where \overline{Z} subsumes all (bound and free) set variables in φ .

Define $\mathbb{B}_{\varphi(\bar{Z})}$ such that $L(\mathbb{B}_{\varphi(\bar{Z})}) = L(\varphi(\bar{Z}))$:

- φ is $Sing(Z_i)$, $Letter_a(Z_i)$, $Before(Z_i, Z_j)$: Exercise!
- if φ is $(\psi \lor \chi)$, use closure under union Ex-(b).

i.e., given $\mathbb{B}_{\psi(\bar{Z})}, \mathbb{B}_{\chi(\bar{Z})}$, choose $\mathbb{B}_{\varphi(\bar{Z})}$ such that $L(\mathbb{B}_{\varphi(\bar{Z})}) = L(\mathbb{B}_{\psi(\bar{Z})}) \cup L(\mathbb{B}_{\chi(\bar{Z})}).$

- if φ is $\neg \psi$, use closure under complementation Ex-(a).
- if φ is $\exists Z_i \psi$, use closure under projection Ex-(c) and padding Ex-(d).

Final move

given a MSO sentence φ ,

compute φ^* ready for translation as described,

construct \mathbb{B}_{φ^*} as described,

define \mathbb{A}_{φ} over Σ from \mathbb{B}_{φ^*} by projection.

Then $L(\mathbb{A}_{\varphi}) = L(\varphi)$.

Final move

given a MSO sentence φ ,

compute φ^* ready for translation as described,

construct \mathbb{B}_{φ^*} as described,

define \mathbb{A}_{φ} over Σ from \mathbb{B}_{φ^*} by projection.

Then $L(\mathbb{A}_{\varphi}) = L(\varphi)$.

Remark There described functions $\varphi \mapsto \mathbb{A}_{\varphi}$ and $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$ are computable.

Corollaries of Büchi's Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi's Theorem - effective version

There are computable functions

 $\varphi \mapsto \mathbb{A}_{\varphi}$ and $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$

from MSO[$\{\leq\} \cup \{P_a \mid a \in \Sigma\}$]-sentences to DFAs over Σ and back such that

 $L(\varphi) = L(\mathbb{A}_{\varphi}) \text{ and } L(\mathbb{A}) = L(\varphi_{\mathbb{A}}).$

Corollaries of Büchi's Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi's Theorem - effective version

There are computable functions

 $\varphi \mapsto \mathbb{A}_{\varphi}$ and $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$

from MSO[$\{\leq\} \cup \{P_a \mid a \in \Sigma\}$]-sentences to DFAs over Σ and back such that

$$L(\varphi) = L(\mathbb{A}_{\varphi})$$
 and $L(\mathbb{A}) = L(\varphi_{\mathbb{A}}).$

Corollary

There is a computable function that maps a given $MSO[\{\leq\} \cup \{P_a \mid a \in \Sigma\}]$ -sentence ψ to an $MSO[\{\leq\} \cup \{P_a \mid a \in \Sigma\}]$ -sentence φ of the form

$\exists \bar{X} \varphi_0$

where φ_0 is first-order such that for all $w \in \Sigma^+$:

$$\mathcal{S}(w) \models \psi \iff \mathcal{S}(w) \models \varphi.$$

 \square

Proof Set $\varphi := \varphi_{\mathbb{A}_{\psi}}$ as in the proof of Büchi's theorem.

Corollaries of Büchi's Theorem: model-checking MSO over words

Corollary The problem

Input: $w \in \Sigma^+$, MSO sentence φ . Problem: $S(w) \models \varphi$.

is decidable in time $O(f(|\varphi|) + |w|)$ for some function $f : \mathbb{N} \to \mathbb{N}$.

Corollaries of Büchi's Theorem: model-checking MSO over words

 \square

Corollary The problem

Input: $w \in \Sigma^+$, MSO sentence φ . Problem: $S(w) \models \varphi$.

is decidable in time $O(f(|\varphi|) + |w|)$ for some function $f : \mathbb{N} \to \mathbb{N}$.

Proof Given w, φ compute the DFA $\mathbb{A}_{\varphi} = (S, s_0, \Delta, F)$.

Check whether \mathbb{A}_{φ} accepts $w = a_0 \cdots a_{n-1}$:

```
s \leftarrow s_0

i \leftarrow 0

while i < n do:

a \leftarrow a_i

s \leftarrow \Delta(s, a)

i \leftarrow i + 1

if s \in F, accept, else reject.
```

We assume each line needs constant time.

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$.

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$.

Proof

Let $\mathbb{A} = (S, s_0, \Delta, F)$ be an NFA with $L(\mathbb{A}) = L$. Let p := |S|.

Let $w = a_0 \cdots a_{n-1} \in L$ with $n \ge p$ and let

 $s_0 a_0 s_1 a_1 s_2 a_2 \cdots s_{n-1} a_{n-1} s_n$

be an execution with $s_n \in F$.

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$. **Proof**

Let $\mathbb{A} = (S, s_0, \Delta, F)$ be an NFA with $L(\mathbb{A}) = L$. Let p := |S|. Let $w = a_0 \cdots a_{n-1} \in L$ with $n \ge p$ and let

 $s_0 a_0 s_1 a_1 s_2 a_2 \cdots s_{n-1} a_{n-1} s_n$

 \square

be an execution with $s_n \in F$. Choose $i < j \le n$ with $s_i = s_j$. Set

 $x := a_0 \cdots a_{i-1}$ $y := a_i \cdots a_{j-1}$ $z := a_j \cdots a_{n-1}$

Repeating $a_i \ s_{i+1} \ \cdots \ a_{j-1} \ s_j$ for n times is again an execution.

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$.

Example $\{a^k b^k \mid k > 0\}$ is not regular, hence not MSO-definable.

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$.

Example $\{a^k b^k \mid k > 0\}$ is not regular, hence not MSO-definable.

Example

View a word over $\Sigma = \{a, b\}$ as a tachograph recording: *a* means "driving", *b* means "resting"

Law: "every driving time must be followed by an equally long time of resting."

Legal tachogaphs recordings:

$$L := \{b^m a^{i_1} b^{i_1} \cdots a^{i_n} b^{i_n} \mid n, m \in \mathbb{N}, i_1, \dots, i_n \in \mathbb{N}\}$$

Not MSO-definable (Exercise).
Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.

There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \ge p$ can be written

w = xyz

with $|xy| \leq p$ and y not empty such that for all $n \in \mathbb{N}$: $xy^n z \in L$.

Example $\{a^k b^k \mid k > 0\}$ is not regular.

Exercise

There is no MSO[$\{\leq\} \cup \{P_a, P_b\}$]-formula $\varphi(x, y, z)$ such that for all $w \in \{a, b\}^+$ and all $i, j, k \in [|w|]$

$$i+j=k \iff \mathcal{S}(w)\models \varphi(i,j,k).$$

NFA \mathbb{A} :

NFA \mathbb{A} :

 $L(\mathbb{A}) = L_4 := \left\{ w \in \{a, b\}^+ \mid \text{4th letter from right in } w \text{ is } a \right\}$

NFA A:

 $L(\mathbb{A}) = \underline{L}_4 := \left\{ w \in \{a, b\}^+ \mid \text{4th letter from right in } w \text{ is } a \right\}$

Proposition Let $k \in \mathbb{N}_{>0}$. Every DFA \mathbb{A} with $L(\mathbb{A}) = L_k$ has at least 2^k states. **Proof** Assume \mathbb{A} is a DFA with $< 2^k$ states.

There exists distinct $x = x_0 \cdots x_{k-1}, y = y_0 \cdots y_{k-1} \in \{a, b\}^k$ such that A on x, y reaches the same state.

Say, $x_i \neq y_i$. Then A accepts xb^{k-i} iff A accepts yb^{k-i} . Exactly one is in L_k . Hence $L(\mathbb{A}) \neq L_k$.

 \square

Corollary

The problem

Input: $w \in \Sigma^+$, MSO sentence φ . Problem: $S(w) \models \varphi$.

is decidable in time $O(f(|\varphi|) + |w|)$ for some computable $f : \mathbb{N} \to \mathbb{N}$.

Frick, Grohe 2004

Assume $P \neq NP$.

The problem

Input: $w \in \Sigma^+$, MSO sentence φ . Problem: $S(w) \models \varphi$.

is not decidable in time $O(f(|\varphi|) \cdot |w|^c)$ for any $c \in \mathbb{N}$ and elementary f.

Frick, Grohe 2004

Assume $P \neq NP$.

The problem

Input: $w \in \Sigma^+$, MSO sentence φ . Problem: $S(w) \models \varphi$.

is not decidable in time $O(f(|\varphi|) \cdot |w|^c)$ for any $c \in \mathbb{N}$ and elementary f.

 $f : \mathbb{N} \to \mathbb{N}$ is elementary if there is $h \in \mathbb{N}$ such that for all $k \in \mathbb{N}$:

$$f(k) \le 2^{2^{k}}$$
 (*h*-fold exponential).

Frick, Grohe 2004

Assume $FPT \neq AW[*]$.

The problem

Input: $w \in \Sigma^+$, FO sentence φ . Problem: $S(w) \models \varphi$.

is not decidable in time $O(f(|\varphi|) \cdot |w|^c)$ for any $c \in \mathbb{N}$ and elementary f.

 $f : \mathbb{N} \to \mathbb{N}$ is elementary if there is $h \in \mathbb{N}$ such that for all $k \in \mathbb{N}$:

$$f(k) \le 2^{2^{k}}$$
 (*h*-fold exponential).

ω -regular languages

A (non)deterministic Büchi automaton (NBA) DBA is an (NFA) DBA

$$\mathbb{A} = (S, s_0, \Delta, F).$$

 \mathbb{A} accepts an infinite word

$$\sigma = a_0 \ a_1 \ a_2 \cdots \in \Sigma^{\omega}$$

if there exists an execution

 $s_0 a_0 s_1 a_1 s_2 a_2 s_3 \cdots$

such that $s_i \in F$ for infinitely many $i \in \mathbb{N}$.

An ω -regular language is a subset of Σ^{ω} of the form

 $L_{\omega}(\mathbb{A}) := \{ \sigma \in \Sigma^{\omega} \mid \mathbb{A} \text{ accepts } \sigma \}$

for some NBA \mathbb{A} .

Examples

$$L(\mathbb{A}) = \{a\}^+$$

$$L_{\omega}(\mathbb{A}) = \{aaa \cdots \}$$

$$L(\mathbb{B}) = \{a\}^+$$
$$L_{\omega}(\mathbb{B}) = \emptyset$$

Examples

$$L(\mathbb{A}) = \{a\}^+$$

$$L_{\omega}(\mathbb{A}) = \{aaa \cdots\}$$

 \mathbb{A}

 $L(\mathbb{A}) = \{a^{2n+1} \mid n \in \mathbb{N}\} \qquad L(\mathbb{B}) = \{a^{2n} \mid n \in \mathbb{N}_{>0}\}$ $L_{\omega}(\mathbb{A}) = \{aaa \cdots \}$

 $\mathbb B$

 $L_{\omega}(\mathbb{B}) = \{aaa \cdots \}$

Determinization fails

Proposition

There is an ω -regular language L such that $L \neq L_{\omega}(\mathbb{A})$ for every DBA \mathbb{A} .

Proof Let $\Sigma = \{a, b\}$ and let L contain the words with finitely many a.

L is ω -regular:

Determinization fails

Proposition

There is an ω -regular language L such that $L \neq L_{\omega}(\mathbb{A})$ for every DBA \mathbb{A} . **Proof** Let $\Sigma = \{a, b\}$ and let L contain the words with finitely many a.

Let \mathbb{A} be a DBA and assume $L_{\omega}(\mathbb{A}) = L$.

Its accepting run on $b \ b \ b \cdots$ visits a final state, say after reading b^{n_0} .

This run is continued to an accepting run of $b^{n_0} a b b \cdots \in L$.

Choose n_1 such that \mathbb{A} is in a final state after reading $b^{n_0}ab^{n_1}$.

Continue. Get accepting run on

$$b^{n_0} a b^{n_1} a b^{n_2} a \cdots$$

 \square

Outside L, contradiction.

Complementation

McNaughton 1966

The set of ω -regular languages is effectively closed under complementation:

there is a computable function that maps an NBA A to an NBA B such that $\Sigma^{\omega} \setminus L_{\omega}(\mathbb{A}) = L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω -regular languages is effectively closed under Boolean combinations and projections.

Complementation

McNaughton 1966

The set of ω -regular languages is effectively closed under complementation:

there is a computable function that maps an NBA \mathbb{A} to an NBA \mathbb{B} such that $\Sigma^{\omega} \setminus L_{\omega}(\mathbb{A}) = L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω -regular languages is effectively closed under Boolean combinations and projections.

Intersection

- A generalized NBA A is a tuple $(S, s_0, \Delta, \mathcal{F})$ like an NBA but with $\mathcal{F} \subseteq 2^S$.
- A accepts $a_0 \ a_1 \cdots \in \Sigma^{\omega}$ iff there is an execution $s_0 \ a_0 \ s_1 \ a_1 \cdots$ such that for all $F \in \mathcal{F}$ there are infinitely many $i \in \mathbb{N}$ with $s_i \in F$.

Complementation

McNaughton 1966

The set of ω -regular languages is effectively closed under complementation:

there is a computable function that maps an NBA \mathbb{A} to an NBA \mathbb{B} such that $\Sigma^{\omega} \setminus L_{\omega}(\mathbb{A}) = L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω -regular languages is effectively closed under Boolean combinations and projections.

Intersection

- A generalized NBA A is a tuple $(S, s_0, \Delta, \mathcal{F})$ like an NBA but with $\mathcal{F} \subseteq 2^S$.
- A accepts $a_0 \ a_1 \cdots \in \Sigma^{\omega}$ iff there is an execution $s_0 \ a_0 \ s_1 \ a_1 \cdots$ such that for all $F \in \mathcal{F}$ there are infinitely many $i \in \mathbb{N}$ with $s_i \in F$.

Exercise For every GNBA \mathbb{A} there is an NBA \mathbb{B} st $L_{\omega}(\mathbb{A}) = L_{\omega}(\mathbb{B})$. Exercise For all GNBAs \mathbb{A}, \mathbb{A}' there is a GNBA \mathbb{B} st $L_{\omega}(\mathbb{A}) \cap L_{\omega}(\mathbb{A}') = L_{\omega}(\mathbb{B})$.

Büchi again

Let Σ be a finite alphabet. View $\sigma = a_0 \ a_1 \cdots \in \Sigma^{\omega}$ as a structure $\mathcal{S}(\sigma)$:

- vocabulary: $\{\leq\} \cup \{P_a \mid a \in \Sigma\}$:
- universe: $\ensuremath{\mathbb{N}}$

$$- P_a^{\mathcal{S}(\sigma)} := \{i \in \mathbb{N} \mid a_i = a\}$$

 $-\leq^{\mathcal{S}(\sigma)}$:= the natural \leq .

An MSO-sentence φ defines $L_{\omega}(\varphi) = \{ \sigma \in \Sigma^{\omega} \mid S(\sigma) \models \varphi \}$

Büchi's theorem - ω -version

There are computable functions

 $\varphi \mapsto \mathbb{A}_{\varphi}$ and $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$

from MSO-sentences to NBAs and back such that

$$L_{\omega}(\varphi) = L_{\omega}(\mathbb{A}_{\varphi}) \text{ and } L_{\omega}(\mathbb{A}) = L_{\omega}(\varphi_{\mathbb{A}}).$$

 \square

Proof As before. Exercise Define $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$.

Corollaries

Corollary The following problems are decidable.

Input: MSO[$\{\leq\} \cup \{P_a \mid a \in \Sigma\}$]-sentence φ . Problem: is there a $\sigma \in \Sigma^{\omega}$ such that $S(\sigma) \models \varphi$?

Input: MSO[$\{\leq\} \cup \{P_a \mid a \in \Sigma\}$]-sentences φ, ψ . Problem: are φ and ψ equivalent in all structures $S(\sigma)$ for $\sigma \in \Sigma^{\omega}$?

Proof Second follows from first.

First: compute \mathbb{A}_{φ} , check whether $L_{\omega}(\mathbb{A}_{\varphi}) = \emptyset$.

Equivalently: check whether there is a final state that is reachable from the initial state and lies on a cycle. $\hfill \Box$

Transition system \mathbb{T} consists of:

S set of states $I \subseteq S$ a set of initial states Act set of states $\rightarrow \subseteq S \times Act \times S$ transition relation AP set of propositional variables $L: S \rightarrow 2^{AP}$ labeling

Additional assumption: for all $s \in S$ there are $\alpha \in Act, s' \in S : s \xrightarrow{\alpha} s'$

The trace of an execution $s_0 \alpha_0 s_1 \alpha_1 s_2 \alpha_2 \cdots$ is

$$L(s_0) \ L(s_1) \ L(s_2) \cdots \in \Sigma^{\omega}$$

where $\Sigma := 2^{AP}$.

Linear time property: subset $P \subseteq \Sigma^{\omega}$.

 \mathbb{T} satisfies *P* if every trace of (an execution of) \mathbb{T} is in *P*.

• closure $cl(P) := \{ \sigma \in \Sigma^{\omega} \mid \text{ every finite prefix of } \sigma \text{ is a prefix of some } \tau \in P \}$ **Exercise** $P \subseteq cl(P), \quad cl(cl(P)) = cl(P), \quad cl(P \cup Q) = cl(P) \cup cl(Q)$

- closure $cl(P) := \{ \sigma \in \Sigma^{\omega} \mid \text{ every finite prefix of } \sigma \text{ is a prefix of some } \tau \in P \}$ **Exercise** $P \subseteq cl(P), \quad cl(cl(P)) = cl(P), \quad cl(P \cup Q) = cl(P) \cup cl(Q)$
- "something bad never happens": P safety property iff cl(P) = P

iff every $\sigma \notin P$ has a *P*-bad prefix (no element of *P* has this prefix)

- closure $cl(P) := \{ \sigma \in \Sigma^{\omega} \mid \text{ every finite prefix of } \sigma \text{ is a prefix of some } \tau \in P \}$ **Exercise** $P \subseteq cl(P), \quad cl(cl(P)) = cl(P), \quad cl(P \cup Q) = cl(P) \cup cl(Q)$
- "something bad never happens": P safety property iff cl(P) = P

iff every $\sigma \notin P$ has a *P*-bad prefix (no element of *P* has this prefix)

Exercise Two TSs have the same finite prefixes of traces iff satisfy the same safety properties (for finite TSs) iff trace-equivalent (have the same traces).

- closure $cl(P) := \{ \sigma \in \Sigma^{\omega} \mid \text{ every finite prefix of } \sigma \text{ is a prefix of some } \tau \in P \}$ **Exercise** $P \subseteq cl(P), \quad cl(cl(P)) = cl(P), \quad cl(P \cup Q) = cl(P) \cup cl(Q)$
- "something bad never happens": P safety property iff cl(P) = P

iff every $\sigma \notin P$ has a *P*-bad prefix (no element of *P* has this prefix)

Exercise Two TSs have the same finite prefixes of traces iff satisfy the same safety properties (for finite TSs) iff trace-equivalent (have the same traces).

• "something good will happen": P liveness property iff $cl(P) = \Sigma^{\omega}$

iff every $w \in \Sigma^+$ is prefix of some $\sigma \in P$.

- closure $cl(P) := \{ \sigma \in \Sigma^{\omega} \mid \text{ every finite prefix of } \sigma \text{ is a prefix of some } \tau \in P \}$ **Exercise** $P \subseteq cl(P), \quad cl(cl(P)) = cl(P), \quad cl(P \cup Q) = cl(P) \cup cl(Q)$
- "something bad never happens": P safety property iff cl(P) = P

iff every $\sigma \notin P$ has a *P*-bad prefix (no element of *P* has this prefix)

Exercise Two TSs have the same finite prefixes of traces iff satisfy the same safety properties (for finite TSs) iff trace-equivalent (have the same traces).

• "something good will happen": P liveness property iff $cl(P) = \Sigma^{\omega}$

iff every $w \in \Sigma^+$ is prefix of some $\sigma \in P$.

Remark

Every $P \subseteq \Sigma^{\omega}$ is the intersection of a safety and a liveness property, namely:

$$P = \mathsf{cl}(P) \cap (P \cup (\Sigma^{\omega} \setminus \mathsf{cl}(P)))$$

Indeed: $\operatorname{cl}(P \cup (\Sigma^{\omega} \setminus \operatorname{cl}(P))) = \operatorname{cl}(P) \cup \operatorname{cl}(\Sigma^{\omega} \setminus \operatorname{cl}(P)) = \Sigma^{\omega}$

Trace automaton

Proposition The set of traces of a transition system is ω -regular.

```
Proof Given \mathbb{T} = (S, I, Act, \rightarrow, AP, L).
```

Define NBA $A_{\mathbb{T}}$:

states $S \cup \{s_0\}$ for a new $s_0 \notin S$ initial state s_0 alphabet $\Sigma := 2^{AP}$ transition relation contains (s, a, s') iff a = L(s) and $s \xrightarrow{any} s'$ (i.e., $s \xrightarrow{\alpha} s'$ for some $\alpha \in Act$), or, $s = s_0$ and $s'' \xrightarrow{any} s'$ and a = L(s'') for some $s'' \in I$. final states S

Then $L_{\omega}(\mathbb{A}_{\mathbb{T}})$ = the set of traces of \mathbb{T} .

 \square

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system \mathbb{T} , MSO sentence φ . Problem: $S(\sigma) \models \varphi$ for every trace σ of \mathbb{T} ?

is decidable in time $O(f(|\varphi|) \cdot |\mathbb{T}|)$ for some computable $f : \mathbb{N} \to \mathbb{N}$.

Model-checking MSO-definable linear time properties

Main Theorem The problem

Input: transition system \mathbb{T} , MSO sentence φ . Problem: $S(\sigma) \models \varphi$ for every trace σ of \mathbb{T} ?

is decidable in time $O(f(|\varphi|) \cdot |\mathbb{T}|)$ for some computable $f : \mathbb{N} \to \mathbb{N}$.

Proof Compute trace automaton $\mathbb{A}_{\mathbb{T}}$ of size $O(|\mathbb{T}|)$

Compute NBA $\mathbb{A}_{\neg \varphi}$ of Büchi's Theorem

Compute NBA \mathbb{B} of size $O(|\mathbb{A}_{\neg \varphi}| \cdot |\mathbb{A}_{\mathbb{T}}|)$ (earlier Exercise) with

 $L_{\omega}(\mathbb{B}) = L_{\omega}(\mathbb{A}_{\mathbb{T}}) \cap L_{\omega}(\mathbb{A}_{\neg \varphi}).$

Check whether $L_{\omega}(\mathbb{B}) = \emptyset$ (iff $L_{\omega}(\mathbb{A}_{\mathbb{T}}) \subseteq L_{\omega}(\varphi)$)

check no cycle contains a reachable final state standard techniques do this in time $O(|\mathbb{B}|)$

 \square

LTL-formulas over a set of propositional variables AP generated by

$$-\underline{p} \stackrel{\varphi}{-} p \in AP \quad -\underline{\varphi} \quad -\underline{\psi} \quad -\underline{\varphi} \quad -\underline{\psi} \quad -\underline{\varphi} \quad -\underline{\psi} \quad -\underline{\psi}$$

LTL-formulas over a set of propositional variables AP generated by

$$-\underline{p} \in AP \quad -\underline{\varphi} \quad$$

LTL semantics over $\sigma = a_0 \ a_1 \ \cdots \in \Sigma^{\omega}$ for $\Sigma := 2^{AP}$ and $i \in \mathbb{N}$:

Next

 $\sigma,i\models X\varphi \qquad \iff \sigma,i+1\models \varphi$

Until

 $\sigma, i \models (\varphi U \psi) \quad \Longleftrightarrow \quad \text{there is } j \ge i : \sigma, j \models \psi \text{ and } \sigma, k \models \varphi \text{ for all } i \le k < j$

LTL-formulas over a set of propositional variables AP generated by

$$-\underline{p} \in AP \quad -\underline{\varphi} \quad$$

LTL semantics over $\sigma = a_0 \ a_1 \ \cdots \in \Sigma^{\omega}$ for $\Sigma := 2^{AP}$ and $i \in \mathbb{N}$:

Next

 $\sigma,i\models X\varphi \qquad \iff \sigma,i+1\models \varphi$

Until

 $\sigma, i \models (\varphi U \psi) \quad \Longleftrightarrow \quad \text{there is } j \ge i : \sigma, j \models \psi \text{ and } \sigma, k \models \varphi \text{ for all } i \le k < j$

 φ defines $L_{\omega}(\varphi) := \{ \sigma \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi \}$

- Connectives $\lor, \rightarrow, \ldots$ defined as usual; $\bot := (p \land \neg p); \top := \neg \bot$.
- Eventually $\Diamond \varphi := \top U \varphi$

$$\sigma, i \models \Diamond \varphi \iff$$
 there is $j \ge i : \sigma, j \models \varphi$

• Always $\Box \varphi := \neg \Diamond \neg \varphi$

 $\sigma, i \models \Box \varphi \iff$ for all $j \ge i : \sigma, j \models \varphi$

- Connectives $\lor, \rightarrow, \ldots$ defined as usual; $\bot := (p \land \neg p); \top := \neg \bot$.
- Eventually $\Diamond \varphi := \top U \varphi$

$$\sigma, i \models \Diamond \varphi \iff$$
 there is $j \ge i : \sigma, j \models \varphi$

• Always $\Box \varphi := \neg \Diamond \neg \varphi$

$$\sigma, i \models \Box \varphi \iff$$
 for all $j \ge i : \sigma, j \models \varphi$

Exercise $\varphi \equiv \psi$ means $L_{\omega}(\varphi) = L_{\omega}(\psi)$. Dualities: $\neg \Box p \equiv \Diamond \neg p$, $\neg Xp \equiv X \neg p$ Idempotencies: $\Box \Box p \equiv \Box p$, $pU(pUq) \equiv pUq$, $(pUq)Uq \equiv pUq$ Absorption laws: $\Diamond \Box \Diamond p \equiv \Box \Diamond p$, $\Box \Diamond \Box p \equiv \Diamond \Box p$ Distributive laws: $\Box(p \land q) \equiv \Box p \land \Box q$, $\Diamond (p \lor q) \equiv \Diamond p \lor \Diamond q$, $X(pUq) \equiv Xp \ U \ Xq$ Expansion law: $pUq \equiv q \lor (p \land X(pUq))$

- Connectives $\lor, \rightarrow, \ldots$ defined as usual; $\bot := (p \land \neg p); \top := \neg \bot$.
- Eventually $\Diamond \varphi := \top U \varphi$

$$\sigma, i \models \Diamond \varphi \iff$$
 there is $j \ge i : \sigma, j \models \varphi$

• Always $\Box \varphi := \neg \Diamond \neg \varphi$

$$\sigma, i \models \Box \varphi \iff$$
 for all $j \ge i : \sigma, j \models \varphi$

Example imagine a transition system including a traffic light: propositional variables $g, y, r \in AP$ indicating "green", "yellow", "red".

"Once red, the light turns eventually green"

 $\Box(r \rightarrow \Diamond g)$

"Once red, the light turns eventually green after being yellow for some time"

$$\Box \Big(r \to r U \big(y \land X(y U g) \big) \Big)$$

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

$$\varphi \mapsto \varphi^{\mathsf{fo}} \quad \mathsf{and} \quad \psi \mapsto \psi^{\mathsf{ItI}}$$

from LTL-formulas to FO-formulas and back, such that

$$L_{\omega}(\varphi) = L_{\omega}(\varphi^{\text{fo}}) \text{ and } L_{\omega}(\psi) = L_{\omega}(\psi^{\text{ltl}})$$

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

$$\varphi \mapsto \varphi^{\mathsf{fo}} \quad \mathsf{and} \quad \psi \mapsto \psi^{\mathsf{ItI}}$$

from LTL-formulas to FO-formulas and back, such that

$$L_{\omega}(\varphi) = L_{\omega}(\varphi^{\mathsf{fo}})$$
 and $L_{\omega}(\psi) = L_{\omega}(\psi^{\mathsf{ltl}})$

Proof of the easy part: let AP be the Boolean variables in φ and $\Sigma := 2^{AP}$. Define $\varphi \mapsto \varphi^*(x)$ from LTL-to FO-formulas such that for all $\sigma \in \Sigma^{\omega}$ and $i \in \mathbb{N}$

$$\sigma, i \models_{\mathsf{LTL}} \varphi \quad \Longleftrightarrow \quad \mathcal{S}(\sigma) \models_{\mathsf{FO}} \varphi^*(i).$$

$$p^* := \bigvee_{p \in a \in \Sigma} P_a(x),$$

$$(\neg \varphi)^* := \neg \varphi^*(x),$$

$$(\varphi \land \psi)^* := \varphi^*(x) \land \psi^*(x),$$

$$(X\varphi)^* := \exists y (x \le y \land \neg x = y \land \forall z (z \le x \lor y \le z) \land \varphi^*(y)),$$

$$(\varphi U \psi)^* := \exists y (x \le y \land \psi^*(y) \land \forall z (x \le z \land z \le y \land \neg z = y \to \varphi^*(z))). \square$$

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula φ to an NBA \mathbb{A}_{φ} of size $2^{O(|\varphi|)}$ such that

 $L_{\omega}(\varphi) = L_{\omega}(\mathbb{A}_{\varphi}).$
Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula φ to an NBA \mathbb{A}_{φ} of size $2^{O(|\varphi|)}$ such that

$$L_{\omega}(\varphi) = L_{\omega}(\mathbb{A}_{\varphi}).$$

Proof

$$\begin{array}{l} \Gamma := \text{ set of subformulas of } \varphi, \\ AP := \text{ set of Boolean variables in } \varphi, \\ \Sigma := 2^{AP}. \\ \Gamma_i^{\sigma} := \{\psi \in \Gamma \mid \sigma, i \models \psi\} \quad \text{where } \sigma \in \Sigma^{\omega} \text{ and } i \in \mathbb{N} \\ \text{This is a type: a set } s \subseteq \Gamma \text{ such that for formulas in } \Gamma \\ \psi_0 \wedge \psi_1 \in s \Longleftrightarrow \psi_0 \in s \text{ and } \psi_1 \in s, \\ \neg \psi \in s \Longleftrightarrow \psi \notin s, \\ \psi_1 \in s \Longrightarrow \psi_0 U \psi_1 \in s \Longrightarrow \psi_0 \in s \text{ or } \psi_1 \in s. \end{array}$$

Let S denote the set of types.

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^S$ of size $|\varphi|$ such that for all $s_0 \in S$, $\sigma = a_0 a_1 \cdots \Sigma^{\omega}$ that

(a) $s_0 a_0 s_1 a_1 \cdots$ is an accepting run of the GNBA $(S, s_0, \Sigma, \Delta, \mathcal{F})$

(b) $\Gamma_i^{\sigma} = s_i$ for all $i \in \mathbb{N}$.

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^S$ of size $|\varphi|$ such that for all $s_0 \in S$, $\sigma = a_0 a_1 \cdots \Sigma^{\omega}$ tfae:

(a) $s_0 a_0 s_1 a_1 \cdots$ is an accepting run of the GNBA $(S, s_0, \Sigma, \Delta, \mathcal{F})$ (b) $\Gamma_i^{\sigma} = s_i$ for all $i \in \mathbb{N}$.

Suffices!

Consider GNBA $\mathbb{A} := (S \cup \{s_0^*\}, \Sigma, s_0^*, \Delta^*, \mathcal{F})$ with new s_0^* and $\Delta^* := \Delta \cup \{(s_0^*, a, s) \mid \text{exists } s_0 \in S : \varphi \in s_0 \text{ and } (s_0, a, s) \in \Delta \}$ satisfies $L_{\omega}(\mathbb{A}) = L_{\omega}(\varphi)$.

Exercise gives equivalent NBA \mathbb{A}_{φ} with $|\mathcal{F}| \cdot |S \cup \{s_0^*\}| \leq 2^{2|\varphi|}$ many states.

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^S$ of size $|\varphi|$ such that for all $s_0 \in S$, $\sigma = a_0 a_1 \cdots \Sigma^{\omega}$ tfae:

(a) $s_0 a_0 s_1 a_1 \cdots$ is an accepting run of the GNBA $(S, s_0, \Sigma, \Delta, \mathcal{F})$ (b) $\Gamma_i^{\sigma} = s_i$ for all $i \in \mathbb{N}$.

 Δ contains (s, a, s') iff $a = s \cap AP$ and for formulas in Γ

 $X\psi\in s\Longleftrightarrow\psi\in s'$

 $\psi_0 U \psi_1 \in s \iff \psi_1 \in s \text{ or, both } \psi_0 \in s \text{ and } \psi_0 U \psi_1 \in s'$

 \mathcal{F} contains for every $\psi_0 U \psi_1 \in \Gamma$ the set $\{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\}$

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^S$ of size $|\varphi|$ such that for all $s_0 \in S$, $\sigma = a_0 a_1 \cdots \Sigma^{\omega}$ that

(a) $s_0 a_0 s_1 a_1 \cdots$ is an accepting run of the GNBA $(S, s_0, \Sigma, \Delta, \mathcal{F})$ (b) $\Gamma_i^{\sigma} = s_i$ for all $i \in \mathbb{N}$.

 Δ contains (s, a, s') iff $a = s \cap AP$ and for formulas in Γ

 $X\psi \in s \Longleftrightarrow \psi \in s'$

 $\psi_0 U \psi_1 \in s \iff \psi_1 \in s \text{ or, both } \psi_0 \in s \text{ and } \psi_0 U \psi_1 \in s'$

 \mathcal{F} contains for every $\psi_0 U \psi_1 \in \Gamma$ the set $\{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\}$

Fix $s_0 \in S$. (b) \Rightarrow (a) easy. For (a) \Rightarrow (b) show

 $\sigma, i \models \psi \Longleftrightarrow \psi \in s_i$

for all $\psi \in \Gamma$ by induction on ψ . Case $\psi = \psi_0 U \psi_1$. For simplicity i = 0. Show:

$$\sigma, 0 \models \psi_0 U \psi_1 \iff \psi_0 U \psi_1 \in s_0.$$

- $\Delta \quad \psi_0 U \psi_1 \in s \iff \psi_1 \in s \text{ or, both } \psi_0 \in s \text{ and } \psi_0 U \psi_1 \in s'$
- $\mathcal{F} \ni \{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\}$
- Want $\sigma, 0 \models \psi_0 U \psi_1 \iff \psi_0 U \psi_1 \in s_0.$

 $\begin{array}{ll} \Delta & \psi_0 U \psi_1 \in s \Longleftrightarrow \psi_1 \in s \text{ or, both } \psi_0 \in s \text{ and } \psi_0 U \psi_1 \in s' \\ \mathcal{F} \ni \{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\} \\ \\ \text{Want} & \sigma, 0 \models \psi_0 U \psi_1 \iff \psi_0 U \psi_1 \in s_0. \end{array}$

$$\Rightarrow$$
 choose *i* such that: $\sigma, i \models \psi_1$ and $\sigma, j \models \psi_0$ for all $j < i$

```
by induction: \psi_1 \in s_i and \psi_0 \in s_j for all j < i
```

```
by type-definition: \psi_0 U \psi_1 \in s_i
```

```
as \psi_0 \in s_{i-1}, by \Delta-definition: \psi_0 U \psi_1 \in s_{i-1}
```

```
continue. . . \psi_0 U \psi_1 \in s_0.
```

 $\begin{array}{ll} \Delta & \psi_0 U \psi_1 \in s \Longleftrightarrow \psi_1 \in s \text{ or, both } \psi_0 \in s \text{ and } \psi_0 U \psi_1 \in s' \\ \mathcal{F} \ni \{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\} \\ \\ \text{Want} & \sigma, 0 \models \psi_0 U \psi_1 \iff \psi_0 U \psi_1 \in s_0. \end{array}$

 \square

... continue until $\psi_0 U \psi_1 \in s_j \in \{s \mid \psi_0 U \psi_1 \notin s\} \cup \{s \mid \psi_1 \in s\}.$

Then $\psi_1 \in s_j$: done!

As before:

Corollary The problem

Input: a transition system \mathbb{T} , an LTL-formula φ . Problem: $\sigma, 0 \models \varphi$ for every trace σ of \mathbb{T} ?

is decidable in time $2^{O(|\varphi|)} \cdot |\mathbb{T}|$.

Proposition

LTL-formulas φ do not have equivalent NBAs with $2^{o(\sqrt{|\varphi|})}$ states.

Proof Let $AP = \{p\}$. For $n \in \mathbb{N}$ let L_n contain the words

$$a_0 a_1 \cdots a_{n-1} a_0 a_1 \cdots a_{n-1} \emptyset \emptyset \cdots$$

Defined by the size $O(n^2)$ formula

$$\bigwedge_{i < n} (X^i p \leftrightarrow X^{n+i} p).$$

Let \mathbb{A} be an NBA with $L_{\omega}(\mathbb{A}) = L_n$. For each $a_0 \cdots a_{n-1} \in 2^{AP}$ there is a state $q(a_0 \cdots a_{n-1})$ such that \mathbb{A} with this starting state accepts

$$a_0 a_1 \cdots a_{n-1} \emptyset \emptyset \cdots$$

 \square

This is not true for $q(a'_0 \cdots a'_{n-1})$ for every $a'_0 \cdots a'_{n-1} \neq a_0 \cdots a_{n-1}$. Hence the states $q(a_0 \cdots a_{n-1})$ are pairwise distinct. Hence A has at least 2^n many states.

Timed automata

Timed automaton \mathbb{A} consists of:

Loc finite set of locations $Loc_0 \subseteq Loc$ initial locations Act finite set of actions AP finite set of propositional variables $L: Loc \rightarrow 2^{AP}$ a labeling

Timed automata

Timed automaton \mathbb{A} consists of:

Loc finite set of locations $Loc_0 \subseteq Loc$ initial locations Act finite set of actions AP finite set of propositional variables $L : Loc \rightarrow 2^{AP}$ a labeling C finite set of clocks

 $Inv: Loc \rightarrow CC :=$ finite sets of clock constraints

$$x \in C$$

 $x \sim k$ where $k \in \mathbb{N}$
 $\sim \in \{<, \leq, =, >, \geq\}$

 $\hookrightarrow \subseteq Loc \times CC \times Act \times 2^C \times Loc$

View $(\ell, g, \alpha, X, \ell') \in \hookrightarrow$ as an arrow from ℓ to ℓ' labeled by a guard $g \in CC$, an action $\alpha \in Act$ and a set of clocks $X \subseteq C$ that are reset.

Timed automata: example

 $Loc = AP = \{up, down, goingup, comingdown\}, \quad Loc_0 = \{up\}, \quad L(\ell) = \{\ell\}$ $C = \{x\}$

 $Act = \{raise, lower, \tau\}$

Timed automata: example

 $Loc = AP = \{up, down, goingup, comingdown\}, \quad Loc_0 = \{up\}, \quad L(\ell) = \{\ell\}$ $C = \{x\}$ $Act = \{raise, lower, \tau\}$ $Inv(up) = \emptyset$ $Inv(comingdown) = \{x \le 1\}$ $(up, \emptyset, lower, \{x\}, comingdown) \in \hookrightarrow$ $(goingup, \{x \ge 1\}, \tau, \emptyset, up) \in \hookrightarrow$

Transition system $TS(\mathbb{A})$ of \mathbb{A} :

states: $\langle \ell, \eta \rangle$ with $\ell \in Loc$ and $\eta : C \to \mathbb{R}_{\geq 0}$ a clock valuation initial states: $\langle \ell, \eta \rangle$ with $\ell \in Loc_0$ and η is constantly 0. propositional variables: $AP \stackrel{.}{\cup}$ clock constraints labeling of $\langle \ell, \eta \rangle$ is $L(\ell) \cup \{x \sim k \mid \eta(x) \sim k, x \in C\}$ actions: $Act \stackrel{.}{\cup} \mathbb{R}_{\geq 0}$

Transition system $TS(\mathbb{A})$ of \mathbb{A} :

states: $\langle \ell, \eta \rangle$ with $\ell \in Loc$ and $\eta : C \to \mathbb{R}_{\geq 0}$ a clock valuation initial states: $\langle \ell, \eta \rangle$ with $\ell \in Loc_0$ and η is constantly 0. propositional variables: $AP \cup$ clock constraints labeling of $\langle \ell, \eta \rangle$ is $L(\ell) \cup \{x \sim k \mid \eta(x) \sim k, x \in C\}$ actions: $Act \cup \mathbb{R}_{\geq 0}$

discrete transitions $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \eta' \rangle$ where $\alpha \in Act$ and

-
$$(\ell, g, \alpha, X, \ell') \in \hookrightarrow$$

- η satisfies g (ie. $\eta(x) \sim k$ for all $x \sim k \in g$)
- $\eta'(x) = \begin{cases} \eta(x) & x \notin X \\ 0 & x \in X \end{cases}$
- η' satisfies $Inv(\ell)$

delay transitions $\langle \ell, \eta \rangle \xrightarrow{d} \langle \ell, \eta + d \rangle$ where $d \in \mathbb{R}_{\geq 0}$ and

$$-(\eta + d)(x) = \eta(x) + d \text{ for all } x \in C$$

- $\eta + d'$ satisfies $Inv(\ell)$ for all $d' \in [0, d]$.

Executing timed automata

• Relevant paths starting at $\langle \ell_0, \eta_0 \rangle$ have the form

 $\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$

where $\alpha_i \in Act, d_i \in \mathbb{R}_{\geq 0}$ and $\sum_i d_i = \infty$, or:

$$\langle \ell_0, \eta_0 \rangle \stackrel{d_0}{\to} \cdots \stackrel{\alpha_{k-1}}{\to} \langle \ell_k, \eta_k \rangle \stackrel{d_k}{\to} \langle \ell_k, \eta_k + 1 \rangle \stackrel{d_{k+1}}{\to} \langle \ell_k, \eta_k + 2 \rangle \stackrel{d_{k+2}}{\to} \cdots$$

where $1 = d_k = d_{k+1} = \dots$

Executing timed automata

• Relevant paths starting at $\langle \ell_0, \eta_0 \rangle$ have the form

 $\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$

where $\alpha_i \in Act, d_i \in \mathbb{R}_{\geq 0}$ and $\sum_i d_i = \infty$, or:

$$\langle \ell_0, \eta_0 \rangle \stackrel{d_0}{\to} \cdots \stackrel{\alpha_{k-1}}{\to} \langle \ell_k, \eta_k \rangle \stackrel{d_k}{\to} \langle \ell_k, \eta_k + 1 \rangle \stackrel{d_{k+1}}{\to} \langle \ell_k, \eta_k + 2 \rangle \stackrel{d_{k+2}}{\to} \cdots$$

where $1 = d_k = d_{k+1} = \dots$

• $\langle \ell,\eta\rangle$ is at time $t\in\mathbb{R}_{\geq0}$ in a relevant path π iff

there are $i \in \mathbb{N}, d \in [0, d_i]$ such that $\ell = \ell_i$ and $\eta = \eta_i + d$ and $t = \sum_{j \leq i} d_j + d$.

Executing timed automata

• Relevant paths starting at $\langle \ell_0, \eta_0 \rangle$ have the form

 $\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$ where $\alpha_i \in Act, d_i \in \mathbb{R}_{\geq 0}$ and $\sum_i d_i = \infty$, or:

$$\langle \ell_0, \eta_0 \rangle \stackrel{d_0}{\to} \cdots \stackrel{\alpha_{k-1}}{\to} \langle \ell_k, \eta_k \rangle \stackrel{d_k}{\to} \langle \ell_k, \eta_k + 1 \rangle \stackrel{d_{k+1}}{\to} \langle \ell_k, \eta_k + 2 \rangle \stackrel{d_{k+2}}{\to} \cdots$$

where $1 = d_k = d_{k+1} = \dots$

- $\langle \ell, \eta \rangle$ is at time $t \in \mathbb{R}_{\geq 0}$ in a relevant path π iff there are $i \in \mathbb{N}, d \in [0, d_i]$ such that $\ell = \ell_i$ and $\eta = \eta_i + d$ and $t = \sum_{j \leq i} d_j + d$.
- Then $\langle \ell', \eta' \rangle$ before $\langle \ell, \eta \rangle$ iff $\langle \ell, \eta \rangle$ after $\langle \ell', \eta' \rangle$ iff $\langle \ell', \eta' \rangle$ is at some time t' < t in π , or, $\langle \ell', \eta' \rangle$ is at time t in π and $\ell' = \ell_j$ for some j < i.

E.g. above: $\langle \ell_1, \eta_1 \rangle$ is at time d_0 , and $\langle \ell_0, \eta_0 + d_0 \rangle$ too and before $\langle \ell_1, \eta_1 \rangle$.

Executing timed automata: example

write $\eta(x) \in \mathbb{R}_{\geq 0}$ instead $\eta : \{x\} \to \mathbb{R}_{\geq 0}$:

 $\langle up, 1.318 \rangle$ at time 1.318

before $\langle comingdown, 0 \rangle$ at time 1.318

before $\langle comingdown, 0.002 \rangle$ at time 1.32

before $\langle goingup, 0.5 \rangle$ is at time 4.2

Executing timed automata: example

$$\langle up, 0 \rangle \xrightarrow{1.318} \langle up, 1.318 \rangle \xrightarrow{lower} \langle comingdown, 0 \rangle \xrightarrow{0.854} \langle comingdown, 0.854 \rangle$$

 $\xrightarrow{\tau} \langle down, 0.854 \rangle \xrightarrow{1.528} \langle down, 2.382 \rangle \xrightarrow{raise} \langle goingup, 0 \rangle \xrightarrow{1.3971} \langle goingup, 1.3971 \rangle$
...

TCTL-formulas over $AP \cup CC$ generated by

$$\frac{\varphi}{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \land \psi)} \quad \frac{\varphi \psi}{\forall (\varphi U_I \psi)} \quad \frac{\varphi \psi}{\exists (\varphi U_I \psi)}$$

where $p \in AP \cup CC$, I an interval [a, b), (a, b], (a, b), [a, b] for $a \leq b$ in $\mathbb{N} \cup \{\infty\}$.

TCTL-formulas over $AP \cup CC$ generated by

$$\frac{\varphi}{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \land \psi)} \quad \frac{\varphi \psi}{\forall (\varphi U_I \psi)} \quad \frac{\varphi \psi}{\exists (\varphi U_I \psi)}$$

where $p \in AP \cup CC$, I an interval [a, b), (a, b], (a, b), [a, b] for $a \leq b$ in $\mathbb{N} \cup \{\infty\}$.

TCTL semantics over $TS(\mathbb{A})$:

$$\begin{array}{lll} \langle \ell, \eta \rangle \models p & \iff p \in L(\ell) & \text{for } p \in AP \\ \langle \ell, \eta \rangle \models x \sim k & \iff \eta(x) \sim k & \text{for } x \sim k \in CC \\ \langle \ell, \eta \rangle \models \neg \varphi & \iff \langle \ell, \eta \rangle \not\models \varphi \\ \langle \ell, \eta \rangle \models \varphi \wedge \psi & \iff \langle \ell, \eta \rangle \models \varphi \text{ and } \langle \ell, \eta \rangle \models \psi \end{array}$$

TCTL-formulas over $AP \cup CC$ generated by

$$\frac{\varphi}{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \ \psi}{(\varphi \land \psi)} \quad \frac{\varphi \ \psi}{\forall (\varphi \ U_I \ \psi)} \quad \frac{\varphi \ \psi}{\exists (\varphi \ U_I \ \psi)}$$

where $p \in AP \cup CC$, I an interval [a, b), (a, b], (a, b), [a, b] for $a \leq b$ in $\mathbb{N} \cup \{\infty\}$. TCTL semantics over $TS(\mathbb{A})$:

$$\begin{array}{ll} \langle \ell, \eta \rangle \models p & \iff p \in L(\ell) & \text{for } p \in AP \\ \langle \ell, \eta \rangle \models x \sim k & \iff \eta(x) \sim k & \text{for } x \sim k \in CC \\ \langle \ell, \eta \rangle \models \neg \varphi & \iff \langle \ell, \eta \rangle \not\models \varphi \\ \langle \ell, \eta \rangle \models \varphi \wedge \psi & \iff \langle \ell, \eta \rangle \models \varphi \text{ and } \langle \ell, \eta \rangle \models \psi \end{array}$$

for every relevant path π starting at $\langle \ell, \eta \rangle$ there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that

 $\langle \ell', \eta' \rangle \models \psi$ and $\langle \ell'', \eta'' \rangle \models \varphi \lor \psi$ for all states $\langle \ell'', \eta'' \rangle$ before $\langle \ell', \eta' \rangle$.

TCTL-formulas over $AP \cup CC$ generated by

$$\frac{\varphi}{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \ \psi}{(\varphi \land \psi)} \quad \frac{\varphi \ \psi}{\forall (\varphi \ U_I \ \psi)} \quad \frac{\varphi \ \psi}{\exists (\varphi \ U_I \ \psi)}$$

where $p \in AP \cup CC$, I an interval [a, b), (a, b], (a, b), [a, b] for $a \leq b$ in $\mathbb{N} \cup \{\infty\}$. TCTL semantics over $TS(\mathbb{A})$:

$$\begin{array}{ll} \langle \ell, \eta \rangle \models p & \iff p \in L(\ell) & \text{for } p \in AP \\ \langle \ell, \eta \rangle \models x \sim k & \iff \eta(x) \sim k & \text{for } x \sim k \in CC \\ \langle \ell, \eta \rangle \models \neg \varphi & \iff \langle \ell, \eta \rangle \not\models \varphi \\ \langle \ell, \eta \rangle \models \varphi \wedge \psi & \iff \langle \ell, \eta \rangle \models \varphi \text{ and } \langle \ell, \eta \rangle \models \psi \end{array}$$

for some relevant path π starting at $\langle \ell, \eta \rangle$ there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that

 $\begin{array}{l} \langle \ell',\eta'\rangle \models \psi \text{ and} \\ \langle \ell'',\eta''\rangle \models \varphi \lor \psi \text{ for all states } \langle \ell'',\eta''\rangle \text{ before } \langle \ell',\eta'\rangle. \end{array}$

 $\forall \Diamond_I \varphi := \forall (\top U_I \varphi)$

 $\langle \ell, \eta \rangle \models \forall \Diamond_I \varphi$ iff for every relevant path π starting at $\langle \ell, \eta \rangle$ there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that $\langle \ell', \eta' \rangle \models \varphi$

 $\exists \Diamond_I \varphi := \exists (\top U_I \varphi)$

 $\langle \ell, \eta \rangle \models \forall \Diamond_I \varphi$ iff for some relevant path π starting at $\langle \ell, \eta \rangle$ there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that $\langle \ell', \eta' \rangle \models \varphi$

 $\forall \Diamond_I \varphi := \forall (\top U_I \varphi)$

 $\langle \ell, \eta \rangle \models \forall \Diamond_I \varphi$ iff for every relevant path π starting at $\langle \ell, \eta \rangle$

there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that $\langle \ell', \eta' \rangle \models \varphi$

 $\exists \Diamond_I \varphi := \exists (\top U_I \varphi)$

 $\langle \ell, \eta \rangle \models \forall \Diamond_I \varphi$ iff for some relevant path π starting at $\langle \ell, \eta \rangle$ there is a state $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π such that $\langle \ell', \eta' \rangle \models \varphi$

 $\forall \Box_I \varphi := \neg \exists \Diamond_I \neg \varphi$

 $\langle \ell, \eta \rangle \models \forall \Box_I \varphi$ iff for every relevant path π starting at $\langle \ell, \eta \rangle$ for all states $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π : $\langle \ell', \eta' \rangle \models \varphi$

 $\exists \Box_I \varphi := \neg \forall \Diamond_I \neg \varphi$

 $\langle \ell, \eta \rangle \models \exists \Box_I \varphi$ iff for some relevant path π starting at $\langle \ell, \eta \rangle$ for all states $\langle \ell', \eta' \rangle$ at some time $t \in I$ in π : $\langle \ell', \eta' \rangle \models \varphi$

Omit subscript $I = [0, \infty)$.

Leads-to operator

$$\begin{split} \varphi \rightsquigarrow \psi &:= \forall \Box(\varphi \rightarrow \forall \Diamond \psi) \\ & \langle \ell, \eta \rangle \models \varphi \rightsquigarrow \psi \\ & \text{iff} \\ & \text{for every relevant path } \pi \text{ starting at } \langle \ell, \eta \rangle \\ & \text{for every state } \langle \ell', \eta' \rangle \models \varphi \text{ at some time } t \in [0, \infty) \text{ in } \pi: \\ & \text{ for all relevant paths } \pi' \text{ starting at } \langle \ell', \eta' \rangle \\ & \text{ there are a state } \langle \ell'', \eta'' \rangle \text{ at some time } t' \in [0, \infty) \text{ in } \pi' \text{ st} \langle \ell'', \eta'' \rangle \models \psi \\ & \text{iff} \\ & \text{for every relevant path } \pi \text{ starting at } \langle \ell, \eta \rangle \text{ and every } t \in [0, \infty): \end{split}$$

for every state $\langle \ell', \eta' \rangle \models \varphi$ at time t in π there is a state $\langle \ell'', \eta'' \rangle \models \psi$ after $\langle \ell', \eta' \rangle$.

Elimination of time constraints

Assume there is a clock $z \in C$ that is never reset and assume $\eta(z) = 0$.

$$\begin{split} \langle \ell, \eta \rangle &\models \forall (p \ U_{[a,b)} \ q) &\iff \langle \ell, \eta \rangle \models \forall ((p \lor q) \ U \ (z \ge a \land z < b \land q)) \\ \langle \ell, \eta \rangle &\models \forall \Diamond_{[a,b)} q &\iff \langle \ell, \eta \rangle \models \forall \Diamond (z \ge a \land z < b \land q) \\ \langle \ell, \eta \rangle &\models \forall \Box_{[a,b)} q &\iff \langle \ell, \eta \rangle \models \forall \Box (z \ge a \land z < b \rightarrow q) \end{split}$$

Caution

trick useless for iterated modalities

UPPAAL

supports

 $\forall \Box \varphi, \quad \forall \Diamond \varphi, \quad \exists \Box \varphi, \quad \forall \Diamond \varphi, \quad \varphi \rightsquigarrow \psi$

for φ, ψ in propositional logic.

Timed computation tree logic: examples

The initial state $\langle up, 0 \rangle$ of the associated transition system satisfies:

$$\forall \Box (comingdown \rightarrow x \leq 1)$$

 $comingdown \rightsquigarrow (down \land x \leq 1)$
 $goingup \rightsquigarrow (1 \leq x \land x \leq 2 \land up)$

Timed computation tree logic: examples

The initial state $\langle up, 0 \rangle$ of the associated transition system satisfies: $\forall \Box (comingdown \rightarrow x \leq 1)$ $comingdown \rightsquigarrow (down \land x \leq 1)$ $goingup \rightsquigarrow (1 \leq x \land x \leq 2 \land up)$ $\forall \Box (goingup \land x = 0 \rightarrow \forall \Diamond_{[1,2]} up)$ $\forall \Box (goingup \land x > 1 \rightarrow \forall \Diamond_{[0,1)} up)$

Model-checking TCTL: theorem

A is timelock free iff at reachable states of $TS(\mathbb{A})$ start relevant paths.

Model-checking TCTL: theorem

A is timelock free iff at reachable states of $TS(\mathbb{A})$ start relevant paths.

Theorem (Alur, Courcoubetis, Dill 1990)

The promise problem

Input: a timelock-free timed automaton A, a TCTL-formula φ Problem: does every initial state of $TS(\mathbb{A})$ satisfy φ ?

is decidable in time

 $k^{O(c)} \cdot |arphi| \cdot |\mathbb{A}|$

where c is the number of clocks in \mathbb{A} and $k \geq c$ upper bounds the natural numbers appearing in φ and \mathbb{A} .

Model-checking TCTL: proof

Assume A has a clock $x_{real} \in C$ not mentioned in guards, invariants or φ . For $r \in \mathbb{R}_{\geq 0}$ write $\langle r \rangle := r - \lfloor r \rfloor$. E.g., $\langle 1.23 \rangle = 0.23$. $\eta \approx \eta'$ iff

- for all $x \in C$: $\lfloor \eta(x) \rfloor$ and $\lfloor \eta'(x) \rfloor$ are equal or both $\geq k$.

- for all $x, y \in C$ with $\eta(x) < k, \eta(y) < k$: $\begin{cases} \langle \eta(x) \rangle \leq \langle \eta(y) \rangle & \text{iff } \langle \eta'(x) \rangle \leq \langle \eta'(y) \rangle \\ \langle \eta(x) \rangle = 0 & \text{iff } \langle \eta'(x) \rangle = 0 \end{cases}$

Claim: if $\eta \approx \eta'$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta + d \approx \eta' + d'$ for some $d' \in \mathbb{R}_{\geq 0}$
Assume A has a clock $x_{real} \in C$ not mentioned in guards, invariants or φ . For $r \in \mathbb{R}_{\geq 0}$ write $\langle r \rangle := r - \lfloor r \rfloor$. E.g., $\langle 1.23 \rangle = 0.23$. $\eta \approx \eta'$ iff

- for all $x \in C$: $\lfloor \eta(x) \rfloor$ and $\lfloor \eta'(x) \rfloor$ are equal or both $\geq k$.

- for all $x, y \in C$ with $\eta(x) < k, \eta(y) < k$: $\begin{cases} \langle \eta(x) \rangle \le \langle \eta(y) \rangle & \text{iff } \langle \eta'(x) \rangle \le \langle \eta'(y) \rangle \\ \langle \eta(x) \rangle = 0 & \text{iff } \langle \eta'(x) \rangle = 0 \end{cases}$

Claim: if $\eta \approx \eta'$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta + d \approx \eta' + d'$ for some $d' \in \mathbb{R}_{\geq 0}$

Suffices for d < 1 (then choose d'' for $\langle d \rangle$ and set $d' := \lfloor d \rfloor + d''$) If there is $x \in C$ such that $d = 1 - \langle \eta(x) \rangle$, set $d' := 1 - \langle \eta'(x) \rangle$ Otw order clocks $x_1 \leq \cdots \leq x_c$ according $\langle \eta(x) \rangle$ (equivalently $\langle \eta'(x) \rangle$) choose $i \leq c+1$ such that +d moves $\eta(x_i), \ldots, \eta(x_c)$ but not $\eta(x_1), \ldots, \eta(x_{i-1})$ from below to above some integer choose d' that does the same for η'

Assume A has a clock $x_{real} \in C$ not mentioned in guards, invariants or φ . For $r \in \mathbb{R}_{\geq 0}$ write $\langle r \rangle := r - \lfloor r \rfloor$. E.g., $\langle 1.23 \rangle = 0.23$. $\eta \approx \eta'$ iff

- for all $x \in C$: $\lfloor \eta(x) \rfloor$ and $\lfloor \eta'(x) \rfloor$ are equal or both $\geq k$.

- for all $x, y \in C$ with $\eta(x) < k, \eta(y) < k$: $\begin{cases} \langle \eta(x) \rangle \le \langle \eta(y) \rangle & \text{iff } \langle \eta'(x) \rangle \le \langle \eta'(y) \rangle \\ \langle \eta(x) \rangle = 0 & \text{iff } \langle \eta'(x) \rangle = 0 \end{cases}$

Claim: if $\eta \approx \eta'$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta + d \approx \eta' + d'$ for some $d' \in \mathbb{R}_{\geq 0}$ Get: for $\eta_0 \approx \eta'_0$ and a relevant path

$$\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$$

there are $d'_i \in \mathbb{R}_{\geq 0}$ and $\eta'_i \approx \eta_i$ such that

$$\langle \ell_0, \eta'_0 \rangle \xrightarrow{d'_0} \langle \ell_0, \eta'_0 + d'_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta'_1 \rangle \xrightarrow{d'_1} \langle \ell_1, \eta'_1 + d'_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta'_2 \rangle \xrightarrow{d'_2} \cdots$$

is a relevant path (by the proof of the claim).

Assume A has a clock $x_{real} \in C$ not mentioned in guards, invariants or φ . For $r \in \mathbb{R}_{\geq 0}$ write $\langle r \rangle := r - \lfloor r \rfloor$. E.g., $\langle 1.23 \rangle = 0.23$. $\eta \approx \eta'$ iff

- for all $x \in C$: $\lfloor \eta(x) \rfloor$ and $\lfloor \eta'(x) \rfloor$ are equal or both $\geq k$.

- for all $x, y \in C$ with $\eta(x) < k, \eta(y) < k$: $\begin{cases} \eta(x) \\ \langle \eta(x) \rangle \\ \langle \eta(x) \rangle \\ = 0 \end{cases}$ iff $\langle \eta'(x) \rangle \leq \langle \eta'(y) \rangle$ $\langle \eta(x) \rangle = 0$

Claim: if $\eta \approx \eta'$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta + d \approx \eta' + d'$ for some $d' \in \mathbb{R}_{\geq 0}$ Get: for $\eta_0 \approx \eta'_0$ and a relevant path

 $\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$

choose $d_i' \in \mathbb{R}_{\geq 0}$ accordingly so that

$$\langle \ell_0, \eta'_0 \rangle \xrightarrow{d'_0} \langle \ell_0, \eta'_0 + d'_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta'_1 \rangle \xrightarrow{d'_1} \langle \ell_1, \eta'_1 + d'_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta'_2 \rangle \xrightarrow{d'_2} \cdots$$

is a relevant path (by the proof of the claim).

Then: $\langle \ell, \eta \rangle \models \varphi \iff \langle \ell, \eta' \rangle \models \varphi$

```
Region transition system \mathbb{R}(\mathbb{A}, k)
```

```
states: \langle \ell, [\eta] \rangle for a location \ell and region [\eta] := \{\eta' \mid \eta \approx \eta'\}
initial states: \langle \ell_0, [\eta_0] \rangle for a initial location \ell and \eta_0 constantly 0
propositional variables: AP \cup CC
label of \langle \ell, [\eta] \rangle is the label of \langle \ell, \eta \rangle in TS(\mathbb{A})
actions: Act \ \cup \ \{\tau\}
transitions:
```

```
\langle \ell, [\eta] \rangle \xrightarrow{\alpha} \langle \ell', [\eta'] \rangle if \langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \eta' \rangle in TS(\mathbb{A}) and \alpha \in Act
\langle \ell, [\eta] \rangle \xrightarrow{\tau} \langle \ell, [\eta'] \rangle if \eta' is the successor of \eta
both \approx \eta_{\infty} := constantly k, or, \eta \not\approx \eta' \approx \eta + d for some d \in \mathbb{R}_{\geq 0} such that for all d' < d: \eta + d' \in [\eta] \cup [\eta'].
```

Size $k^{O(c)}$.

Idea for each subformula ψ of φ compute

 $Ext(\psi) := \{ \langle \ell, [\eta] \rangle \mid \langle \ell, \eta \rangle \models \psi \text{ and is reachable} \}$ Case $\psi = \exists (\psi_0 \ U_{[a,b)} \ \psi_1).$

Assume we already computed $Ext(\psi_0)$ and $Ext(\psi_1)$.

Problem How to decide $\langle \ell, \eta \rangle \models \psi$? Wlog $\eta(x_{\text{real}}) = 0$.

Idea for each subformula ψ of φ compute

 $Ext(\psi) := \{ \langle \ell, [\eta] \rangle \mid \langle \ell, \eta \rangle \models \psi \text{ and is reachable} \}$ Case $\psi = \exists (\psi_0 \ U_{[a,b)} \ \psi_1).$ Assume we already computed $Ext(\psi_0)$ and $Ext(\psi_1).$ Problem How to decide $\langle \ell, \eta \rangle \models \psi$? Wlog $\eta(x_{\text{real}}) = 0.$

Claim $\langle \ell, \eta \rangle$ reachable with $\eta(x_{\text{real}}) = 0$. Then $\langle \ell, \eta \rangle \models \psi$ iff there is a path $\langle \ell, [\eta] \rangle = \langle \ell_0, [\eta_0] \rangle \ \langle \ell_1, [\eta_1] \rangle \cdots \langle \ell_n, [\eta_n] \rangle$

for some $n \in \mathbb{N}$ such that

$$\langle \ell_i, [\eta_i] \rangle \in Ext(\psi_0) \cup Ext(\psi_1)$$
 for all $i < n$
 $\langle \ell_n, [\eta_n] \rangle \in Ext(\psi_1)$
 $a \leq \eta_n(x_{\text{real}}) < b$

Then standard reachability algorithmics imply the theorem.

 \Rightarrow Assume $\langle \ell, \eta \rangle \models \psi$, i.e., there is a relevant path π in $TS(\mathbb{A})$

$$\langle \ell, \eta \rangle = \langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$$

such that $-\langle \ell^t, \eta^t \rangle$ at some time $\eta^t(x_{\text{real}}) = t \in [a, b)$ in π satisfies ψ_1

- all $\langle \ell', \eta' \rangle$ before $\langle \ell^t, \eta^t \rangle$ satisfy $\psi_0 \lor \psi_1$.

 \Rightarrow Assume $\langle \ell, \eta \rangle \models \psi$, i.e., there is a relevant path π in $TS(\mathbb{A})$

$$\langle \ell, \eta \rangle = \langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$$

such that $-\langle \ell^t, \eta^t \rangle$ at some time $\eta^t(x_{\text{real}}) = t \in [a, b)$ in π satisfies ψ_1

- all $\langle \ell', \eta' \rangle$ before $\langle \ell^t, \eta^t \rangle$ satisfy $\psi_0 \lor \psi_1$.

Choose $i \in \mathbb{N}$ and $d \in [0, d_i]$ such that

$$\langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \cdots \xrightarrow{\alpha_i} \langle \ell_i, \eta_i \rangle \xrightarrow{d} \langle \ell^t, \eta^t \rangle$$

This gives a finite path in $\mathbb{R}(\mathbb{A}, k)$:

$$\langle \ell_0, [\eta_0] \rangle \xrightarrow{\tau}^* \cdots \xrightarrow{\alpha_i} \langle \ell_i, [\eta_i] \rangle \xrightarrow{\tau}^* \langle \ell^t, [\eta^t] \rangle$$

where $\stackrel{\tau}{\rightarrow}^{*}$ abbreviates finitely many $\stackrel{\tau}{\rightarrow}$.

 \Rightarrow Assume $\langle \ell, \eta \rangle \models \psi$, i.e., there is a relevant path π in $TS(\mathbb{A})$

 $\langle \ell, \eta \rangle = \langle \ell_0, \eta_0 \rangle \xrightarrow{d_0} \langle \ell_0, \eta_0 + d_0 \rangle \xrightarrow{\alpha_0} \langle \ell_1, \eta_1 \rangle \xrightarrow{d_1} \langle \ell_1, \eta_1 + d_1 \rangle \xrightarrow{\alpha_1} \langle \ell_2, \eta_2 \rangle \xrightarrow{d_2} \cdots$ such that $- \langle \ell^t, \eta^t \rangle$ at some time $\eta^t(x_{\text{real}}) = t \in [a, b)$ in π satisfies ψ_1 $- \text{ all } \langle \ell', \eta' \rangle$ before $\langle \ell^t, \eta^t \rangle$ satisfy $\psi_0 \lor \psi_1$.

Choose $i \in \mathbb{N}$ and $d \in [0, d_i]$ such that

 $\langle \ell_0, \eta_0 \rangle \stackrel{d_0}{\to} \cdots \stackrel{\alpha_i}{\to} \langle \ell_i, \eta_i \rangle \stackrel{d}{\to} \langle \ell^t, \eta^t \rangle$

This gives a finite path in $\mathbb{R}(\mathbb{A}, k)$:

 $\langle \ell_0, [\eta_0] \rangle \stackrel{\tau}{\rightarrow}^* \cdots \stackrel{\alpha_i}{\rightarrow} \langle \ell_i, [\eta_i] \rangle \stackrel{\tau}{\rightarrow}^* \langle \ell^t, [\eta^t] \rangle$

where $\stackrel{\tau}{\rightarrow}^{*}$ abbreviates finitely many $\stackrel{\tau}{\rightarrow}$. Then

- $\langle \ell^t, [\eta^t] \rangle \in Ext(\psi_1)$

- for every other appearing $\langle \ell, [\eta] \rangle$ there is $\eta' \approx \eta$ such that $\langle \ell, \eta' \rangle$ is before $\langle \ell^t, \eta^t \rangle$ in π

hence $\langle \ell, [\eta] \rangle \in Ext(\psi_0) \cup Ext(\psi_1)$

 \leftarrow Given an as-described path in $\mathbb{R}(\mathbb{A}, k)$

 $\langle \ell_0, [\eta_0] \rangle \ \langle \ell_1, [\eta_1] \rangle \cdots \langle \ell_n, [\eta_n] \rangle$

Replace $\xrightarrow{\tau}$ by suitable \xrightarrow{d} and get for suitable $\eta'_i \approx \eta_i$ a path in $TS(\mathbb{A})$

 $\langle \ell_0, \eta_0 \rangle \ \langle \ell_1, \eta_1' \rangle \cdots \langle \ell_n, \eta_n' \rangle$

Make $\xrightarrow{d} / \xrightarrow{\alpha}$ alternating by contracting consecutive \xrightarrow{d} and adding $\xrightarrow{0}$ between consecutive $\xrightarrow{\alpha}$. Continue to a relevant path π (timelock-free).

 \leftarrow Given an as-described path in $\mathbb{R}(\mathbb{A}, k)$

 $\langle \ell_0, [\eta_0] \rangle \ \langle \ell_1, [\eta_1] \rangle \cdots \langle \ell_n, [\eta_n] \rangle$

Replace $\xrightarrow{\tau}$ by suitable \xrightarrow{d} and get for suitable $\eta'_i \approx \eta_i$ a path in $TS(\mathbb{A})$

 $\langle \ell_0, \eta_0 \rangle \ \langle \ell_1, \eta_1' \rangle \cdots \langle \ell_n, \eta_n' \rangle$

Make $\xrightarrow{d} / \xrightarrow{\alpha}$ alternating by contracting consecutive \xrightarrow{d} and adding $\xrightarrow{0}$ between consecutive $\xrightarrow{\alpha}$. Continue to a relevant path π (timelock-free).

Then

- $\langle \ell_n, \eta'_n \rangle$ is at time $\eta'_n(x_{\text{real}}) \in [a, b)$ in π and satisfies ψ_1 .

- for every $\langle \ell', \eta' \rangle$ before $\langle \ell_n, \eta'_n \rangle$ there is $i \leq n$ st $\ell' = \ell_i$ and $\eta' \approx \eta_i$, hence $\langle \ell', \eta' \rangle \models \psi_0 \lor \psi_1$.

 \square

Thus $\langle \ell, \eta \rangle \models \exists (\psi_0 \ U_{[a,b)} \ \psi_1).$