Introduction to Model-Checking

Moritz Müller
Spring/Summer 2021

Finite automata

A nondeterministic finite automaton NFA is a tuple $\mathbb{A}=\left(S, \Sigma, s_{0}, \Delta, F\right)$:

- S is a set of states
- $s_{0} \in S$ is the initial state
- Σ is a finite nonempty set, called alphabet; elements are letters
- $\Delta \subseteq S \times \Sigma \times S$ transition relation
- $F \subseteq S$ set of final states

A deterministic finite automaton DFA is an NFA with $\Delta: S \times \Sigma \rightarrow S$

Finite automata

A nondeterministic finite automaton NFA is a tuple $\mathbb{A}=\left(S, \Sigma, s_{0}, \Delta, F\right)$:

- S is a set of states
- $s_{0} \in S$ is the initial state
- Σ is a finite nonempty set, called alphabet; elements are letters
- $\Delta \subseteq S \times \Sigma \times S$ transition relation
- $F \subseteq S$ set of final states

A deterministic finite automaton DFA is an NFA with $\Delta: S \times \Sigma \rightarrow S$

Executions $s_{0} a_{0} s_{1} a_{1} s_{2} \cdots$ defined as before
\mathbb{A} accepts $a_{0} \cdots a_{n-1}$ if there is such an execution with $s_{n} \in F$
$L(\mathbb{A}):=\left\{w \in \Sigma^{+} \mid \mathbb{A}\right.$ accepts $\left.w\right\}$: sets of this form are regular languages
\mathbb{A} and \mathbb{B} are equivalent iff $L(\mathbb{A})=L(\mathbb{B})$

Finite automata

Examples

$$
\begin{aligned}
& \Sigma=\{\mathbf{a}, \mathbf{b}\} \\
& \mathbf{L}=(\mathbf{a}+\mathbf{b}) * \mathbf{b}
\end{aligned}
$$

NFA

DFA

Determinization

Proposition

Every NFA is equivalent to a DFA.

Proof Given an NFA $\mathbb{A}=\left(S, \Sigma, s_{0}, \Delta, F\right)$. Define $\mathbb{A}^{\prime}=\left(S^{\prime}, \Sigma, s_{0}^{\prime}, \Delta^{\prime}, F^{\prime}\right)$ by

- $S^{\prime}:=P(S)$
$-s_{0}^{\prime}:=\left\{s_{0}\right\}$
- $\Delta^{\prime}:=$ set of (X, a, Y) with $X \subseteq S, a \in \Sigma$ and

$$
Y=\left\{s^{\prime} \in S \mid\left(s, a, s^{\prime}\right) \in \Delta, s \in X\right\}
$$

- $F^{\prime}:=\{X \subseteq S \mid X \cap F \neq \emptyset\}$

Then \mathbb{A}^{\prime} is a DFA with $L(\mathbb{A})=L\left(\mathbb{A}^{\prime}\right)$. qed

Remark ($S^{\prime}, \Sigma, s_{0}^{\prime}, \Delta^{\prime}, S^{\prime} \backslash F^{\prime}$) accepts $\Sigma^{+} \backslash L(\mathbb{A})$.

Regular languages

Exercise
Regular languages are closed under Boolean operations and projections.

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.
More specifically:
(a) For every NFA \mathbb{A} with k states there is a DFA \mathbb{B} with 2^{k} states and $L(\mathbb{B})=\Sigma^{+} \backslash L(\mathbb{A})$

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.
More specifically:
(a) For every NFA \mathbb{A} with k states there is a DFA \mathbb{B} with 2^{k} states and $L(\mathbb{B})=\Sigma^{+} \backslash L(\mathbb{A})$
(b) For all NFAs $\mathbb{A}, \mathbb{A}^{\prime}$ with k, k^{\prime} states resp., there is an NFA \mathbb{B} with $k+k^{\prime}+1$ states and $L(\mathbb{B})=L(\mathbb{A}) \cup L\left(\mathbb{A}^{\prime}\right)$

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.
More specifically:
(a) For every NFA \mathbb{A} with k states there is a DFA \mathbb{B} with 2^{k} states and $L(\mathbb{B})=\Sigma^{+} \backslash L(\mathbb{A})$
(b) For all NFAs $\mathbb{A}, \mathbb{A}^{\prime}$ with k, k^{\prime} states resp., there is an NFA \mathbb{B} with $k+k^{\prime}+1$ states and $L(\mathbb{B})=L(\mathbb{A}) \cup L\left(\mathbb{A}^{\prime}\right)$
(c) For every NFA \mathbb{A} over alphabet $\Sigma \times \Sigma^{\prime}$ with k states, there is an NFA \mathbb{B} with k states and
$L(\mathbb{B})=\left\{a_{0} \cdots a_{n-1} \in \Sigma \mid n>0, \exists b_{0}, \ldots b_{n-1} \in \Sigma^{\prime}:\left(a_{0}, b_{0}\right) \cdots\left(a_{n-1}, b_{n-1}\right) \in L(\mathbb{A})\right\}$

Regular languages

Exercise

Regular languages are closed under Boolean operations and projections.
More specifically:
(a) For every NFA \mathbb{A} with k states there is a DFA \mathbb{B} with 2^{k} states and $L(\mathbb{B})=\Sigma^{+} \backslash L(\mathbb{A})$
(b) For all NFAs $\mathbb{A}, \mathbb{A}^{\prime}$ with k, k^{\prime} states resp., there is an NFA \mathbb{B} with $k+k^{\prime}+1$ states and $L(\mathbb{B})=L(\mathbb{A}) \cup L\left(\mathbb{A}^{\prime}\right)$
(c) For every NFA \mathbb{A} over alphabet $\Sigma \times \Sigma^{\prime}$ with k states, there is an NFA \mathbb{B} with k states and
$L(\mathbb{B})=\left\{a_{0} \cdots a_{n-1} \in \Sigma \mid n>0, \exists b_{0}, \ldots b_{n-1} \in \Sigma^{\prime}:\left(a_{0}, b_{0}\right) \cdots\left(a_{n-1}, b_{n-1}\right) \in L(\mathbb{A})\right\}$
(d) For every alphabet Σ^{\prime} and NFA \mathbb{A} over alphabet Σ with k states, there is an NFA \mathbb{B} over $\Sigma \times \Sigma^{\prime}$ with k states and

$$
L(\mathbb{B})=\left\{\left(a_{0}, b_{0}\right) \cdots\left(a_{n-1}, b_{n-1}\right) \in\left(\Sigma \times \Sigma^{\prime}\right)^{+} \mid n>0, a_{0} \cdots a_{n-1} \in L(\mathbb{A})\right\}
$$

Words as structures

View a word $w=a_{0} \cdots a_{n-1} \in \Sigma^{+}$as a structure $\mathcal{S}(w)$:

- vocabulary: $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$:
- universe: $[n]=\{0, \ldots, n-1\}$
- $P_{a}^{\mathcal{S}(w)}:=\left\{i \in[n] \mid a_{i}=a\right\}$
$-\leq^{\mathcal{S}}(w):=$ the natural \leq.

Words as structures

View a word $w=a_{0} \cdots a_{n-1} \in \Sigma^{+}$as a structure $\mathcal{S}(w)$:

- vocabulary: $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$:
- universe: $[n]=\{0, \ldots, n-1\}$
$-P_{a}^{\mathcal{S}(w)}:=\left\{i \in[n] \mid a_{i}=a\right\}$
$-\leq^{\mathcal{S}(w)}:=$ the natural \leq.
An MSO-sentence φ defines

$$
L(\varphi)=\left\{w \in \Sigma^{+} \mid \mathcal{S}(w) \models \varphi\right\}
$$

Büchi's Theorem 1960
Exactly the regular languages are MSO-definable.

Proof of Büchi's Theorem

Let \mathbb{A} be an NFA, say, with $S=[k]$ and $s_{0}=0$.
Want $\varphi_{\mathbb{A}} \in \mathrm{MSO}$ such that $L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right)$.

Proof of Büchi's Theorem

Let \mathbb{A} be an NFA, say, with $S=[k]$ and $s_{0}=0$.
Want $\varphi_{\mathbb{A}} \in \operatorname{MSO}$ such that $L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right)$.

$$
\varphi_{\mathbb{A}}:=\exists X_{0} \cdots \exists X_{k-1}(\text { Part } \wedge \text { Init } \wedge \text { Trans } \wedge \text { Acc })
$$

Intuition: $X_{i}(x)$ means " \mathbb{A} is in state i when reading the letter in position x ".

Proof of Büchi's Theorem

Let \mathbb{A} be an NFA, say, with $S=[k]$ and $s_{0}=0$.
Want $\varphi_{\mathbb{A}} \in \operatorname{MSO}$ such that $L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right)$.

$$
\varphi_{\mathbb{A}}:=\exists X_{0} \cdots \exists X_{k-1}(\text { Part } \wedge \text { Init } \wedge \text { Trans } \wedge \text { Acc })
$$

Intuition: $X_{i}(x)$ means " \mathbb{A} is in state i when reading the letter in position x ".

- Part expresses that the X_{i} form a partition:

$$
\forall x\left(\bigvee_{i<k} X_{i}(x) \wedge \bigwedge_{i<j<k}\left(\neg X_{i}(x) \vee \neg X_{j}(x)\right)\right)
$$

- Init expresses that the computation starts in s_{0} :

$$
\forall x\left(\forall z x \leq z \rightarrow X_{0}(x)\right)
$$

Proof of Büchi's Theorem

Let \mathbb{A} be an NFA, say, with $S=[k]$ and $s_{0}=0$.
Want $\varphi_{\mathbb{A}} \in \mathrm{MSO}$ such that $L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right)$.

$$
\varphi_{\mathbb{A}}:=\exists X_{0} \cdots \exists X_{k-1}(\text { Part } \wedge \text { Init } \wedge \text { Trans } \wedge \text { Acc })
$$

Intuition: $X_{i}(x)$ means " \mathbb{A} is in state i when reading the letter in position x ".

- Trans expresses that successive states accord to Δ :

$$
\forall x \forall y\left(x \leq y \wedge \neg x=y \wedge \forall z(z \leq x \vee y \leq z) \rightarrow \bigvee_{(i, a, j) \in \Delta}\left(X_{i}(x) \wedge P_{a}(x) \wedge X_{j}(y)\right)\right)
$$

- Acc expresses that the computation accepts:

$$
\forall x\left(\forall z z \leq x \rightarrow \bigvee_{\substack{(i, a, j) \in \Delta \\ j \in F}}\left(X_{i}(x) \wedge P_{a}(x)\right)\right)
$$

Proof of Büchi's Theorem

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$.
Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi)=L\left(\mathbb{A}_{\varphi}\right)$.

Proof of Büchi's Theorem

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$.
Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi)=L\left(\mathbb{A}_{\varphi}\right)$.
First step: massaging φ

$$
\begin{array}{ll}
\operatorname{Sing}(X):=\exists x(X(x) \wedge \forall y(X(y) \rightarrow x=y)) & \\
\operatorname{Before}(X, Y):=\forall x, y(X(x) \wedge Y(y) \rightarrow x \leq y)) & \text { for } a \in \Sigma \\
\operatorname{Letter}_{a}(X):=\forall x\left(X(x) \rightarrow P_{a}(x)\right) & \text { for }
\end{array}
$$

Proof of Büchi's Theorem

Let φ be an MSO-sentence in the vocabulary $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$.
Want NFA \mathbb{A}_{φ} over Σ such that $L(\varphi)=L\left(\mathbb{A}_{\varphi}\right)$.
First step: massaging φ

$$
\begin{array}{ll}
\operatorname{Sing}(X):=\exists x(X(x) \wedge \forall y(X(y) \rightarrow x=y)) & \\
\operatorname{Before}(X, Y):=\forall x, y(X(x) \wedge Y(y) \rightarrow x \leq y)) & \\
\operatorname{Letter}_{a}(X):=\forall x\left(X(x) \rightarrow P_{a}(x)\right) & \text { for } a \in \Sigma .
\end{array}
$$

An MSO-formula is ready for translation if it is obtained from the above formulas by means of $\neg, \vee, \exists Z$.

Claim: For every MSO-sentence φ there is an MSO-sentence φ^{*} that is ready for translation and such that

$$
L(\varphi)=L\left(\varphi^{*}\right)
$$

Proof of Büchi's Theorem

Proof of Claim: for x, y, \ldots let X, Y, \ldots be new set variables.
Define $\varphi(x, y, \ldots, \bar{Z}) \mapsto \varphi^{*}(X, Y, \ldots, \bar{Z})$ such that:
for all words $w \in \Sigma^{+}$, say of length n, we have

$$
\mathcal{S}(w) \models \varphi(i, j, \ldots, \bar{A}) \Longleftrightarrow \mathcal{S}(w) \models \varphi^{*}(\{i\},\{j\}, \ldots, \bar{A})
$$

for all $i, j, \ldots \in[n]$ and all tuples \bar{A} of subsets of $[n]$.

Proof of Büchi's Theorem

Proof of Claim: for x, y, \ldots let X, Y, \ldots be new set variables.
Define $\varphi(x, y, \ldots, \bar{Z}) \mapsto \varphi^{*}(X, Y, \ldots, \bar{Z})$ such that:
for all words $w \in \Sigma^{+}$, say of length n, we have

$$
\mathcal{S}(w) \models \varphi(i, j, \ldots, \bar{A}) \Longleftrightarrow \mathcal{S}(w) \models \varphi^{*}(\{i\},\{j\}, \ldots, \bar{A})
$$

for all $i, j, \ldots \in[n]$ and all tuples \bar{A} of subsets of $[n]$.
$(x \leq y)^{*}:=\operatorname{Before}(X, Y)$
$\left(P_{a}(x)\right)^{*}:=\operatorname{Letter}_{a}(X)$
$(\varphi \vee \psi)^{*}:=\varphi^{*} \vee \psi^{*}$
$(\neg \varphi)^{*}:=\neg \varphi^{*}$
$(\exists Z \varphi)^{*}:=\exists Z \varphi^{*}$
$(\exists x \varphi)^{*}:=\exists X\left(\operatorname{Sing}(X) \wedge \varphi^{*}\right)$
The claim is proved.

Proof of Büchi's Theorem

Let $\varphi \in \operatorname{MSO}$. Want NFA \mathbb{A}_{φ} such that $L(\varphi)=L\left(\mathbb{A}_{\varphi}\right)$.
Second step: translation
An MSO-formula $\varphi\left(Z_{0}, Z_{1}\right)$ defines

$$
L\left(\varphi\left(Z_{0}, Z_{1}\right)\right):=\left\{w \in(\Sigma \times\{0,1\} \times\{0,1\})^{+} \mid w \text { satisfies } \varphi\left(Z_{0}, Z_{1}\right)\right\}
$$

Proof of Büchi's Theorem

Let $\varphi \in \operatorname{MSO}$. Want $\operatorname{NFA} \mathbb{A}_{\varphi}$ such that $L(\varphi)=L\left(\mathbb{A}_{\varphi}\right)$.
Second step: translation
An MSO-formula $\varphi\left(Z_{0}, Z_{1}\right)$ defines

$$
L\left(\varphi\left(Z_{0}, Z_{1}\right)\right):=\left\{w \in(\Sigma \times\{0,1\} \times\{0,1\})^{+} \mid w \text { satisfies } \varphi\left(Z_{0}, Z_{1}\right)\right\}
$$

Write $w \in(\Sigma \times\{0,1\} \times\{0,1\})^{n}$ as

$$
w=\left(a_{0}, b_{0}^{0}, b_{1}^{0}\right) \cdots\left(a_{n-1}, b_{0}^{n-1}, b_{1}^{n-1}\right)
$$

w satisfies $\varphi\left(Z_{0}, Z_{1}\right)$ if $\mathcal{S}\left(a_{0} \cdots a_{n-1}\right) \vDash \varphi\left(A_{0}, A_{1}\right)$,
where

$$
\begin{aligned}
& A_{0}:=\left\{i \in[n] \mid b_{0}^{i}=1\right\} \\
& A_{1}:=\left\{i \in[n] \mid b_{1}^{i}=1\right\}
\end{aligned}
$$

$$
\begin{array}{l|ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
A_{0}=\{1,3\} & 0 & 1 & 0 & 1 & 0 \\
A_{1}=\{0,3\} & 1 & 0 & 0 & 1 & 0
\end{array}
$$

Proof of Büchi's Theorem

Let φ be ready for translation. Write

$$
\varphi=\varphi(\bar{Z})
$$

where \bar{Z} subsumes all (bound and free) set variables in φ.
Define $\mathbb{B}_{\varphi(\bar{Z})}$ such that $L\left(\mathbb{B}_{\varphi(\bar{Z})}\right)=L(\varphi(\bar{Z}))$:

Proof of Büchi's Theorem

Let φ be ready for translation. Write

$$
\varphi=\varphi(\bar{Z})
$$

where \bar{Z} subsumes all (bound and free) set variables in φ.
Define $\mathbb{B}_{\varphi(\bar{Z})}$ such that $L\left(\mathbb{B}_{\varphi(\bar{Z})}\right)=L(\varphi(\bar{Z}))$:

- φ is $\operatorname{Sing}\left(Z_{i}\right), \operatorname{Letter}_{a}\left(Z_{i}\right), \operatorname{Before}\left(Z_{i}, Z_{j}\right)$: Exercise!
- if φ is $(\psi \vee \chi)$, use closure under union Ex-(b).
i.e., given $\mathbb{B}_{\psi(\bar{Z})}, \mathbb{B}_{\chi(\bar{Z})}$, choose $\mathbb{B}_{\varphi(\bar{Z})}$ such that

$$
L\left(\mathbb{B}_{\varphi(\bar{Z})}\right)=L\left(\mathbb{B}_{\psi(\bar{Z})}\right) \cup L\left(\mathbb{B}_{\chi(\bar{Z})}\right) .
$$

- if φ is $\neg \psi$, use closure under complementation Ex-(a).
- if φ is $\exists Z_{i} \psi$, use closure under projection Ex-(c) and padding Ex-(d).

Proof of Büchi's Theorem

Final move

given a MSO sentence φ, compute φ^{*} ready for translation as described, construct $\mathbb{B}_{\varphi^{*}}$ as described, define \mathbb{A}_{φ} over Σ from $\mathbb{B}_{\varphi^{*}}$ by projection.

Then $L\left(\mathbb{A}_{\varphi}\right)=L(\varphi)$.

Proof of Büchi's Theorem

Final move

given a MSO sentence φ, compute φ^{*} ready for translation as described, construct $\mathbb{B}_{\varphi^{*}}$ as described, define \mathbb{A}_{φ} over Σ from $\mathbb{B}_{\varphi^{*}}$ by projection.

Then $L\left(\mathbb{A}_{\varphi}\right)=L(\varphi)$.

Remark There described functions $\varphi \mapsto \mathbb{A}_{\varphi}$ and $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$ are computable.

Corollaries of Büchi's Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi's Theorem - effective version
There are computable functions

$$
\varphi \mapsto \mathbb{A}_{\varphi} \text { and } \mathbb{A} \mapsto \varphi_{\mathbb{A}}
$$

from $\operatorname{MSO}\left[\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]$-sentences to DFAs over Σ and back such that

$$
L(\varphi)=L\left(\mathbb{A}_{\varphi}\right) \text { and } L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right)
$$

Corollaries of Büchi's Theorem: collapse of MSO over words

Let Σ be a finite alphabet.

Büchi's Theorem - effective version

There are computable functions

$$
\varphi \mapsto \mathbb{A}_{\varphi} \text { and } \mathbb{A} \mapsto \varphi_{\mathbb{A}}
$$

from MSO[\{ $\left.\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]$-sentences to DFAs over Σ and back such that

$$
L(\varphi)=L\left(\mathbb{A}_{\varphi}\right) \text { and } L(\mathbb{A})=L\left(\varphi_{\mathbb{A}}\right) .
$$

Corollary
There is a computable function that maps a given $\operatorname{MSO}\left[\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]-$ sentence ψ to an MSO[\{ $\left.\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]$-sentence φ of the form

$$
\exists \bar{X} \varphi_{0}
$$

where φ_{0} is first-order such that for all $w \in \Sigma^{+}$:

$$
\mathcal{S}(w) \models \psi \quad \Longleftrightarrow \quad \mathcal{S}(w) \models \varphi .
$$

Proof Set $\varphi:=\varphi_{\mathbb{A}_{\psi}}$ as in the proof of Büchi's theorem.

Corollaries of Büchi's Theorem: model-checking MSO over words

Corollary The problem
Input: $w \in \Sigma^{+}$, MSO sentence φ.
Problem: $\mathcal{S}(w) \models \varphi$.
is decidable in time $O(f(|\varphi|)+|w|)$ for some function $f: \mathbb{N} \rightarrow \mathbb{N}$.

Corollaries of Büchi's Theorem: model-checking MSO over words

Corollary The problem
Input: $w \in \Sigma^{+}$, MSO sentence φ.
Problem: $\mathcal{S}(w) \vDash \varphi$.
is decidable in time $O(f(|\varphi|)+|w|)$ for some function $f: \mathbb{N} \rightarrow \mathbb{N}$.
Proof Given w, φ compute the DFA $\mathbb{A}_{\varphi}=\left(S, s_{0}, \Delta, F\right)$.
Check whether \mathbb{A}_{φ} accepts $w=a_{0} \cdots a_{n-1}$:

```
\(s \leftarrow s_{0}\)
\(i \leftarrow 0\)
while \(i<n\) do:
        \(a \leftarrow a_{i}\)
        \(s \leftarrow \Delta(s, a)\)
        \(i \leftarrow i+1\)
if \(s \in F\), accept, else reject.
```

We assume each line needs constant time.

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.

Proof

Let $\mathbb{A}=\left(S, s_{0}, \Delta, F\right)$ be an NFA with $L(\mathbb{A})=L$. Let $p:=|S|$.
Let $w=a_{0} \cdots a_{n-1} \in L$ with $n \geq p$ and let

$$
s_{0} a_{0} s_{1} a_{1} s_{2} a_{2} \cdots s_{n-1} a_{n-1} s_{n}
$$

be an execution with $s_{n} \in F$.

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.
Proof
Let $\mathbb{A}=\left(S, s_{0}, \Delta, F\right)$ be an NFA with $L(\mathbb{A})=L$. Let $p:=|S|$.
Let $w=a_{0} \cdots a_{n-1} \in L$ with $n \geq p$ and let

$$
s_{0} a_{0} s_{1} a_{1} s_{2} a_{2} \cdots s_{n-1} a_{n-1} s_{n}
$$

be an execution with $s_{n} \in F$. Choose $i<j \leq n$ with $s_{i}=s_{j}$. Set

$$
\begin{aligned}
x & :=a_{0} \cdots a_{i-1} \\
y & :=a_{i} \cdots a_{j-1} \\
z & :=a_{j} \cdots a_{n-1}
\end{aligned}
$$

Repeating $a_{i} s_{i+1} \cdots a_{j-1} s_{j}$ for n times is again an execution.

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.

Example $\left\{a^{k} b^{k} \mid k>0\right\}$ is not regular, hence not MSO-definable.

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.

Example $\left\{a^{k} b^{k} \mid k>0\right\}$ is not regular, hence not MSO-definable.

Example

View a word over $\Sigma=\{a, b\}$ as a tachograph recording: a means "driving", b means "resting"

Law: "every driving time must be followed by an equally long time of resting."
Legal tachogaphs recordings:

$$
L:=\left\{b^{m} a^{i_{1}} b^{i_{1}} \cdots a^{i_{n}} b^{i_{n}} \mid n, m \in \mathbb{N}, i_{1}, \ldots, i_{n} \in \mathbb{N}\right\}
$$

Not MSO-definable (Exercise).

Corollaries of Büchi's Theorem: MSO inexpressibility over words

Rabin, Scott 1959: Pumping Lemma Let L be regular.
There is $p \in \mathbb{N}$ such that every $w \in L$ with $|w| \geq p$ can be written

$$
w=x y z
$$

with $|x y| \leq p$ and y not empty such that for all $n \in \mathbb{N}: x y^{n} z \in L$.

Example $\left\{a^{k} b^{k} \mid k>0\right\}$ is not regular.

Exercise

There is no MSO[\{ $\left.\leq\} \cup\left\{P_{a}, P_{b}\right\}\right]$-formula $\varphi(x, y, z)$ such that for all $w \in\{a, b\}^{+}$ and all $i, j, k \in[|w|]$

$$
i+j=k \Longleftrightarrow \mathcal{S}(w) \models \varphi(i, j, k) .
$$

Lower bounds

NFA A:

Lower bounds

NFA \mathbb{A} :

$L(\mathbb{A})=L_{4}:=\left\{w \in\{a, b\}^{+} \mid\right.$4th letter from right in w is $\left.a\right\}$

Lower bounds

NFA \mathbb{A} :

$L(\mathbb{A})=L_{4}:=\left\{w \in\{a, b\}^{+} \mid\right.$4th letter from right in w is $\left.a\right\}$

Proposition Let $k \in \mathbb{N}_{>0}$. Every DFA \mathbb{A} with $L(\mathbb{A})=L_{k}$ has at least 2^{k} states.
Proof Assume \mathbb{A} is a DFA with $<2^{k}$ states.
There exists distinct $x=x_{0} \cdots x_{k-1}, y=y_{0} \cdots y_{k-1} \in\{a, b\}^{k}$ such that \mathbb{A} on x, y reaches the same state.

Say, $x_{i} \neq y_{i}$. Then \mathbb{A} accepts $x b^{k-i}$ iff \mathbb{A} accepts $y b^{k-i}$.
Exactly one is in L_{k}. Hence $L(\mathbb{A}) \neq L_{k}$.

Lower bounds

Corollary

The problem
Input: $w \in \Sigma^{+}$, MSO sentence φ. Problem: $\mathcal{S}(w) \vDash \varphi$.
is decidable in time $O(f(|\varphi|)+|w|)$ for some computable $f: \mathbb{N} \rightarrow \mathbb{N}$.

Lower bounds

Frick, Grohe 2004

Assume $P \neq N P$.
The problem
Input: $w \in \Sigma^{+}$, MSO sentence φ.
Problem: $\mathcal{S}(w) \vDash \varphi$.
is not decidable in time $O\left(f(|\varphi|) \cdot|w|^{c}\right)$ for any $c \in \mathbb{N}$ and elementary f.

Lower bounds

Frick, Grohe 2004

Assume $P \neq N P$.
The problem
Input: $w \in \Sigma^{+}$, MSO sentence φ.
Problem: $\mathcal{S}(w) \models \varphi$.
is not decidable in time $O\left(f(|\varphi|) \cdot|w|^{c}\right)$ for any $c \in \mathbb{N}$ and elementary f.
$f: \mathbb{N} \rightarrow \mathbb{N}$ is elementary if there is $h \in \mathbb{N}$ such that for all $k \in \mathbb{N}$:

$$
f(k) \leq 2^{2^{2^{k}}} \quad(h \text {-fold exponential) }
$$

Lower bounds

Frick, Grohe 2004

Assume FPT $\neq \mathrm{AW}[*]$.
The problem
Input: $w \in \Sigma^{+}, \mathrm{FO}$ sentence φ.
Problem: $\mathcal{S}(w) \vDash \varphi$.
is not decidable in time $O\left(f(|\varphi|) \cdot|w|^{c}\right)$ for any $c \in \mathbb{N}$ and elementary f.
$f: \mathbb{N} \rightarrow \mathbb{N}$ is elementary if there is $h \in \mathbb{N}$ such that for all $k \in \mathbb{N}$:

$$
f(k) \leq 2^{2^{2^{k}}} \quad(h \text {-fold exponential })
$$

ω-regular languages

A (non)deterministic Büchi automaton (NBA) DBA is an (NFA) DBA

$$
\mathbb{A}=\left(S, s_{0}, \Delta, F\right)
$$

\mathbb{A} accepts an infinite word

$$
\sigma=a_{0} a_{1} a_{2} \cdots \in \Sigma^{\omega}
$$

if there exists an execution

$$
s_{0} a_{0} s_{1} a_{1} s_{2} a_{2} s_{3} \cdots
$$

such that $s_{i} \in F$ for infinitely many $i \in \mathbb{N}$.
An ω-regular language is a subset of Σ^{ω} of the form

$$
L_{\omega}(\mathbb{A}):=\left\{\sigma \in \Sigma^{\omega} \mid \mathbb{A} \text { accepts } \sigma\right\}
$$

for some NBA \mathbb{A}.

Examples

\mathbb{A}

\mathbb{B}

$$
\begin{aligned}
& L(\mathbb{A})=\{a\}^{+} \\
& L_{\omega}(\mathbb{A})=\{a a a \cdots\}
\end{aligned}
$$

$$
\begin{aligned}
& L(\mathbb{B})=\{a\}^{+} \\
& L_{\omega}(\mathbb{B})=\emptyset
\end{aligned}
$$

Examples

A

$L(\mathbb{A})=\{a\}^{+}$
$L_{\omega}(\mathbb{A})=\{a a a \cdots\}$
\mathbb{A}

$$
\begin{aligned}
& L(\mathbb{A})=\left\{a^{2 n+1} \mid n \in \mathbb{N}\right\} \\
& L_{\omega}(\mathbb{A})=\{a a a \cdots\}
\end{aligned}
$$

\mathbb{B}

$L(\mathbb{B})=\{a\}^{+}$
$L_{\omega}(\mathbb{B})=\emptyset$
\mathbb{B}

$L(\mathbb{B})=\left\{a^{2 n} \mid n \in \mathbb{N}>0\right\}$
$L_{\omega}(\mathbb{B})=\{a a a \cdots\}$

Determinization fails

Proposition

There is an ω-regular language L such that $L \neq L_{\omega}(\mathbb{A})$ for every DBA \mathbb{A}. Proof Let $\Sigma=\{a, b\}$ and let L contain the words with finitely many a. L is ω-regular:

Determinization fails

Proposition

There is an ω-regular language L such that $L \neq L_{\omega}(\mathbb{A})$ for every DBA \mathbb{A}. Proof Let $\Sigma=\{a, b\}$ and let L contain the words with finitely many a. L is ω-regular:

Let \mathbb{A} be a DBA and assume $L_{\omega}(\mathbb{A})=L$.
Its accepting run on $b b b b \cdots$ visits a final state, say after reading $b^{n_{0}}$. This run is continued to an accepting run of $b^{n_{0}} a b b b \cdots \in L$.
Choose n_{1} such that \mathbb{A} is in a final state after reading $b^{n_{0}} a b^{n_{1}}$.
Continue. Get accepting run on

$$
b^{n_{0}} a b^{n_{1}} a b^{n_{2}} a \cdots
$$

Outside L, contradiction.

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:
there is a computable function that maps an NBA \mathbb{A} to an NBA \mathbb{B} such that $\Sigma^{\omega} \backslash L_{\omega}(\mathbb{A})=L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combinations and projections.

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:
there is a computable function that maps an NBA \mathbb{A} to an NBA \mathbb{B} such that $\Sigma^{\omega} \backslash L_{\omega}(\mathbb{A})=L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combinations and projections.

Intersection

- A generalized NBA \mathbb{A} is a tuple $\left(S, s_{0}, \Delta, \mathcal{F}\right)$ like an NBA but with $\mathcal{F} \subseteq 2^{S}$.
- \mathbb{A} accepts $a_{0} a_{1} \cdots \in \Sigma^{\omega}$ iff there is an execution $s_{0} a_{0} s_{1} a_{1} \cdots$ such that for all $F \in \mathcal{F}$ there are infinitely many $i \in \mathbb{N}$ with $s_{i} \in F$.

Complementation

McNaughton 1966

The set of ω-regular languages is effectively closed under complementation:
there is a computable function that maps an NBA \mathbb{A} to an NBA \mathbb{B} such that $\Sigma^{\omega} \backslash L_{\omega}(\mathbb{A})=L_{\omega}(\mathbb{B})$.

Proof omitted. As before:

Corollary

The set of ω-regular languages is effectively closed under Boolean combinations and projections.

Intersection

- A generalized NBA \mathbb{A} is a tuple $\left(S, s_{0}, \Delta, \mathcal{F}\right)$ like an NBA but with $\mathcal{F} \subseteq 2^{S}$.
- \mathbb{A} accepts $a_{0} a_{1} \cdots \in \Sigma^{\omega}$ iff there is an execution $s_{0} a_{0} s_{1} a_{1} \cdots$ such that for all $F \in \mathcal{F}$ there are infinitely many $i \in \mathbb{N}$ with $s_{i} \in F$.
Exercise For every GNBA \mathbb{A} there is an NBA \mathbb{B} st $L_{\omega}(\mathbb{A})=L_{\omega}(\mathbb{B})$.
Exercise For all GNBAs $\mathbb{A}, \mathbb{A}^{\prime}$ there is a GNBA \mathbb{B} st $L_{\omega}(\mathbb{A}) \cap L_{\omega}\left(\mathbb{A}^{\prime}\right)=L_{\omega}(\mathbb{B})$.

Büchi again

Let Σ be a finite alphabet. View $\sigma=a_{0} a_{1} \cdots \in \Sigma^{\omega}$ as a structure $\mathcal{S}(\sigma)$:

- vocabulary: $\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}$:
- universe: \mathbb{N}
- $P_{a}^{\mathcal{S}(\sigma)}:=\left\{i \in \mathbb{N} \mid a_{i}=a\right\}$
$-\leq^{\mathcal{S}(\sigma)}:=$ the natural \leq.
An MSO-sentence φ defines $L_{\omega}(\varphi)=\left\{\sigma \in \Sigma^{\omega} \mid \mathcal{S}(\sigma) \models \varphi\right\}$

Büchi's theorem - ω-version

There are computable functions

$$
\varphi \mapsto \mathbb{A}_{\varphi} \text { and } \mathbb{A} \mapsto \varphi_{\mathbb{A}}
$$

from MSO-sentences to NBAs and back such that

$$
L_{\omega}(\varphi)=L_{\omega}\left(\mathbb{A}_{\varphi}\right) \text { and } L_{\omega}(\mathbb{A})=L_{\omega}\left(\varphi_{\mathbb{A}}\right) .
$$

Proof As before. Exercise Define $\mathbb{A} \mapsto \varphi_{\mathbb{A}}$.

Corollaries

Corollary The following problems are decidable.

Input: $\operatorname{MSO}\left[\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]$-sentence φ.
Problem: is there a $\sigma \in \Sigma^{\omega}$ such that $\mathcal{S}(\sigma) \vDash \varphi$?

Input: $\operatorname{MSO}\left[\{\leq\} \cup\left\{P_{a} \mid a \in \Sigma\right\}\right]$-sentences φ, ψ.
Problem: are φ and ψ equivalent in all structures $\mathcal{S}(\sigma)$ for $\sigma \in \Sigma^{\omega}$?

Proof Second follows from first.
First: compute \mathbb{A}_{φ}, check whether $L_{\omega}\left(\mathbb{A}_{\varphi}\right)=\emptyset$.
Equivalently: check whether there is a final state that is reachable from the initial state and lies on a cycle.

Linear time properties

Transition system \mathbb{T} consists of:
S set of states
$I \subseteq S$ a set of initial states
Act set of states
$\rightarrow \subseteq S \times A c t \times S$ transition relation
$A P$ set of propositional variables
$L: S \rightarrow 2^{A P}$ labeling
Additional assumption: for all $s \in S$ there are $\alpha \in A c t, s^{\prime} \in S: s \xrightarrow{\alpha} s^{\prime}$
The trace of an execution $s_{0} \alpha_{0} s_{1} \alpha_{1} s_{2} \alpha_{2} \cdots$ is

$$
L\left(s_{0}\right) L\left(s_{1}\right) L\left(s_{2}\right) \cdots \in \Sigma^{\omega}
$$

where $\Sigma:=2^{A P}$.
Linear time property: subset $P \subseteq \Sigma^{\omega}$.
\mathbb{T} satisfies P if every trace of (an execution of) \mathbb{T} is in P.

Linear time properties

- closure $\mathrm{cl}(P):=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ every finite prefix of σ is a prefix of some $\left.\tau \in P\right\}$ Exercise $\quad P \subseteq \mathrm{cl}(P), \quad \mathrm{cl}(\mathrm{cl}(P))=\mathrm{cl}(P), \quad \mathrm{cl}(P \cup Q)=\mathrm{cl}(P) \cup \mathrm{cl}(Q)$

Linear time properties

- closure $\quad \operatorname{cl}(P):=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ every finite prefix of σ is a prefix of some $\left.\tau \in P\right\}$ Exercise $\quad P \subseteq \mathrm{cl}(P), \quad \mathrm{cl}(\mathrm{cl}(P))=\mathrm{cl}(P), \quad \mathrm{cl}(P \cup Q)=\mathrm{cl}(P) \cup \mathrm{cl}(Q)$
- "something bad never happens": P safety property iff $\mathrm{cl}(P)=P$
iff every $\sigma \notin P$ has a P-bad prefix (no element of P has this prefix)

Linear time properties

- closure $\operatorname{cl}(P):=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ every finite prefix of σ is a prefix of some $\left.\tau \in P\right\}$ Exercise $\quad P \subseteq \mathrm{cl}(P), \quad \mathrm{cl}(\mathrm{cl}(P))=\mathrm{cl}(P), \quad \mathrm{cl}(P \cup Q)=\mathrm{cl}(P) \cup \mathrm{cl}(Q)$
- "something bad never happens": P safety property iff $\mathrm{cl}(P)=P$
iff every $\sigma \notin P$ has a P-bad prefix (no element of P has this prefix)
Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).

Linear time properties

- closure $\quad \operatorname{cl}(P):=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ every finite prefix of σ is a prefix of some $\left.\tau \in P\right\}$ Exercise $\quad P \subseteq \mathrm{cl}(P), \quad \mathrm{cl}(\mathrm{cl}(P))=\mathrm{cl}(P), \quad \mathrm{cl}(P \cup Q)=\mathrm{cl}(P) \cup \mathrm{cl}(Q)$
- "something bad never happens": P safety property iff $\mathrm{cl}(P)=P$
iff every $\sigma \notin P$ has a P-bad prefix (no element of P has this prefix)
Exercise Two TSs have the same finite prefixes of traces
iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).
- "something good will happen": P liveness property iff $\mathrm{cl}(P)=\Sigma^{\omega}$ iff every $w \in \Sigma^{+}$is prefix of some $\sigma \in P$.

Linear time properties

- closure $\quad \operatorname{cl}(P):=\left\{\sigma \in \Sigma^{\omega} \mid\right.$ every finite prefix of σ is a prefix of some $\left.\tau \in P\right\}$

Exercise $\quad P \subseteq \mathrm{cl}(P), \quad \mathrm{cl}(\mathrm{cl}(P))=\mathrm{cl}(P), \quad \mathrm{cl}(P \cup Q)=\mathrm{cl}(P) \cup \mathrm{cl}(Q)$

- "something bad never happens": P safety property iff $\mathrm{cl}(P)=P$
iff every $\sigma \notin P$ has a P-bad prefix (no element of P has this prefix)
Exercise Two TSs have the same finite prefixes of traces iff satisfy the same safety properties
(for finite TSs) iff trace-equivalent (have the same traces).
- "something good will happen": P liveness property iff $\mathrm{cl}(P)=\Sigma^{\omega}$ iff every $w \in \Sigma^{+}$is prefix of some $\sigma \in P$.

Remark

Every $P \subseteq \Sigma^{\omega}$ is the intersection of a safety and a liveness property, namely:

$$
P=\mathrm{cl}(P) \cap\left(P \cup\left(\Sigma^{\omega} \backslash \mathrm{cl}(P)\right)\right)
$$

Indeed: $\operatorname{cl}\left(P \cup\left(\Sigma^{\omega} \backslash \mathrm{cl}(P)\right)\right)=\mathrm{cl}(P) \cup \mathrm{cl}\left(\Sigma^{\omega} \backslash \mathrm{cl}(P)\right)=\Sigma^{\omega}$

Trace automaton

Proposition The set of traces of a transition system is ω-regular.
Proof Given $\mathbb{T}=(S, I, A c t, \rightarrow, A P, L)$.
Define $N B A \mathbb{A}_{\mathbb{T}}$:
states $S \cup\left\{s_{0}\right\}$ for a new $s_{0} \notin S$
initial state s_{0}
alphabet $\Sigma:=2^{A P}$
transition relation contains (s, a, s^{\prime}) iff

$$
\begin{aligned}
& a=L(s) \text { and } s \xrightarrow{\text { any }} s^{\prime} \text { (i.e., } s \xrightarrow{\alpha} s^{\prime} \text { for some } \alpha \in A c t \text {), or, } \\
& s=s_{0} \text { and } s^{\prime \prime} \xrightarrow{\text { any }} s^{\prime} \text { and } a=L\left(s^{\prime \prime}\right) \text { for some } s^{\prime \prime} \in I .
\end{aligned}
$$

final states S
Then $L_{\omega}\left(\mathbb{A}_{\mathbb{T}}\right)=$ the set of traces of \mathbb{T}.

Model-checking MSO-definable linear time properties

Main Theorem The problem
Input: transition system \mathbb{T}, MSO sentence φ.
Problem: $\mathcal{S}(\sigma) \models \varphi$ for every trace σ of \mathbb{T} ?
is decidable in time $O(f(|\varphi|) \cdot|\mathbb{T}|)$ for some computable $f: \mathbb{N} \rightarrow \mathbb{N}$.

Model-checking MSO-definable linear time properties

Main Theorem The problem
Input: transition system \mathbb{T}, MSO sentence φ.
Problem: $\mathcal{S}(\sigma) \models \varphi$ for every trace σ of \mathbb{T} ?
is decidable in time $O(f(|\varphi|) \cdot|\mathbb{T}|)$ for some computable $f: \mathbb{N} \rightarrow \mathbb{N}$.

Proof Compute trace automaton $\mathbb{A}_{\mathbb{T}}$ of size $O(|\mathbb{T}|)$
Compute NBA $\mathbb{A}_{\checkmark \varphi}$ of Büchi's Theorem
Compute NBA \mathbb{B} of size $O\left(\left|\mathbb{A}_{\neg \varphi}\right| \cdot\left|\mathbb{A}_{\mathbb{T}}\right|\right)$ (earlier Exercise) with

$$
L_{\omega}(\mathbb{B})=L_{\omega}\left(\mathbb{A}_{\mathbb{T}}\right) \cap L_{\omega}\left(\mathbb{A}_{\neg \varphi}\right) .
$$

Check whether $L_{\omega}(\mathbb{B})=\emptyset\left(\right.$ iff $\left.L_{\omega}\left(\mathbb{A}_{\mathbb{T}}\right) \subseteq L_{\omega}(\varphi)\right)$
check no cycle contains a reachable final state
standard techniques do this in time $O(|\mathbb{B}|)$

Linear temporal logic

LTL-formulas over a set of propositional variables AP generated by

$$
\frac{}{p} p \in A P \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi}{X \varphi} \quad \frac{\varphi \psi}{(\varphi U \psi)}
$$

Linear temporal logic

LTL-formulas over a set of propositional variables $A P$ generated by

$$
\bar{p} p \in A P \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi}{X \varphi} \quad \frac{\varphi \psi}{(\varphi U \psi)}
$$

LTL semantics over $\sigma=a_{0} a_{1} \cdots \in \Sigma^{\omega}$ for $\Sigma:=2^{A P}$ and $i \in \mathbb{N}$:

$$
\begin{array}{ll}
\sigma, i \models p & \Longleftrightarrow p \in a_{i} \\
\sigma, i \neq \neg \varphi & \Longleftrightarrow \sigma, i \not \models \varphi \\
\sigma, i \neq(\varphi \wedge \psi) & \Longleftrightarrow \sigma, i \models \varphi \text { and } \sigma, i \models \psi \\
\text { Next } & \\
\sigma, i \models X \varphi & \Longleftrightarrow \sigma, i+1 \models \varphi \\
\text { Until } \\
\sigma, i \models(\varphi U \psi) & \Longleftrightarrow \text { there is } j \geq i: \sigma, j \models \psi \text { and } \sigma, k \models \varphi \text { for all } i \leq k<j
\end{array}
$$

Linear temporal logic

LTL-formulas over a set of propositional variables $A P$ generated by

$$
\bar{p} p \in A P \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi}{X \varphi} \quad \frac{\varphi \psi}{(\varphi U \psi)}
$$

LTL semantics over $\sigma=a_{0} a_{1} \cdots \in \Sigma^{\omega}$ for $\Sigma:=2^{A P}$ and $i \in \mathbb{N}$:

$$
\begin{array}{ll}
\sigma, i \neq p & \Longleftrightarrow p \in a_{i} \\
\sigma, i=\neg \varphi & \Longleftrightarrow \sigma, \neq \varphi \\
\sigma, i=(\varphi \wedge \psi) & \Longleftrightarrow \sigma, i=\varphi \text { and } \sigma, i \models \psi \\
\text { Next } & \Longleftrightarrow \sigma, i+1 \models \varphi \\
\sigma, i \models X \varphi & \Longleftrightarrow \text { there is } j \geq i: \sigma, j \models \psi \text { and } \sigma, k \models \varphi \text { for all } i \leq k<j \\
\text { Until } \\
\sigma, i \models(\varphi U \psi) & \Longleftrightarrow \text { 尼 } \\
\varphi \text { defines } L_{\omega}(\varphi):=\left\{\sigma \in \Sigma^{\omega} \mid \sigma, 0 \models \varphi\right\}
\end{array}
$$

Linear temporal logic

- Connectives $\vee, \rightarrow, \ldots$ defined as usual $; \perp:=(p \wedge \neg p) ; \top:=\neg \perp$.
- Eventually $\diamond \varphi:=\top U \varphi$

$$
\sigma, i \models \diamond \varphi \Longleftrightarrow \text { there is } j \geq i: \sigma, j \models \varphi
$$

- Always $\square \varphi:=\neg \diamond \neg \varphi$

$$
\sigma, i \models \square \varphi \Longleftrightarrow \text { for all } j \geq i: \sigma, j \models \varphi
$$

Linear temporal logic

- Connectives $\vee, \rightarrow, \ldots$ defined as usual; $\perp:=(p \wedge \neg p) ; \top:=\neg \perp$.
- Eventually $\Delta \varphi:=\top U \varphi$

$$
\sigma, i \models \diamond \varphi \Longleftrightarrow \text { there is } j \geq i: \sigma, j \models \varphi
$$

- Always $\square \varphi:=\neg \diamond \neg \varphi$

$$
\sigma, i \models \square \varphi \Longleftrightarrow \text { for all } j \geq i: \sigma, j \models \varphi
$$

Exercise $\varphi \equiv \psi$ means $L_{\omega}(\varphi)=L_{\omega}(\psi)$.
Dualities: $\neg \square p \equiv \diamond \neg p, \quad \neg X p \equiv X \neg p$
Idempotencies: $\square \square p \equiv \square p, \quad p U(p U q) \equiv p U q, \quad(p U q) U q \equiv p U q$
Absorption laws: $\diamond \square \diamond p \equiv \square \diamond p, \quad \square \diamond \square p \equiv \diamond \square p$
Distributive laws: $\square(p \wedge q) \equiv \square p \wedge \square q, \quad \diamond(p \vee q) \equiv \diamond p \vee \diamond q, \quad X(p U q) \equiv X p U X q$
Expansion law: $p U q \equiv q \vee(p \wedge X(p U q))$

Linear temporal logic

- Connectives $\vee, \rightarrow, \ldots$ defined as usual; $\perp:=(p \wedge \neg p) ; \top:=\neg \perp$.
- Eventually $\diamond \varphi:=\top U \varphi$

$$
\sigma, i \models \diamond \varphi \Longleftrightarrow \text { there is } j \geq i: \sigma, j \models \varphi
$$

- Always $\square \varphi:=\neg \diamond \neg \varphi$

$$
\sigma, i \models \square \varphi \Longleftrightarrow \text { for all } j \geq i: \sigma, j \models \varphi
$$

Example imagine a transition system including a traffic light: propositional variables $g, y, r \in A P$ indicating "green", "yellow", "red".
"Once red, the light turns eventually green"

$$
\square(r \rightarrow \diamond g)
$$

"Once red, the light turns eventually green after being yellow for some time"

$$
\square(r \rightarrow r U(y \wedge X(y U g)))
$$

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

$$
\varphi \mapsto \varphi^{\mathrm{fo}} \quad \text { and } \quad \psi \mapsto \psi^{\mathrm{tI}}
$$

from LTL-formulas to FO-formulas and back, such that

$$
L_{\omega}(\varphi)=L_{\omega}\left(\varphi^{\mathrm{fo}}\right) \quad \text { and } \quad L_{\omega}(\psi)=L_{\omega}\left(\psi^{|\mathrm{tt}|}\right)
$$

LTL versus FO

Theorem (Kamp 1968)

There are computable functions

$$
\varphi \mapsto \varphi^{\text {fo }} \quad \text { and } \quad \psi \mapsto \psi^{|t|}
$$

from LTL-formulas to FO-formulas and back, such that

$$
L_{\omega}(\varphi)=L_{\omega}\left(\varphi^{\mathrm{fo}}\right) \quad \text { and } \quad L_{\omega}(\psi)=L_{\omega}\left(\psi^{\mid \mathrm{tI}}\right)
$$

Proof of the easy part: let $A P$ be the Boolean variables in φ and $\Sigma:=2^{A P}$. Define $\varphi \mapsto \varphi^{*}(x)$ from LTL-to FO-formulas such that for all $\sigma \in \Sigma^{\omega}$ and $i \in \mathbb{N}$

$$
\begin{aligned}
& \quad \sigma, i \models \mathrm{LTL} \varphi \Longleftrightarrow \mathcal{S}(\sigma) \models_{\mathrm{FO}} \varphi^{*}(i) \\
& p^{*}:=\bigvee_{p \in a \in \Sigma} P_{a}(x), \\
& (\neg \varphi)^{*}:=\neg \varphi^{*}(x), \\
& (\varphi \wedge \psi)^{*}:=\varphi^{*}(x) \wedge \psi^{*}(x) \\
& (X \varphi)^{*}:=\exists y\left(x \leq y \wedge \neg x=y \wedge \forall z(z \leq x \vee y \leq z) \wedge \varphi^{*}(y)\right), \\
& (\varphi U \psi)^{*}:=\exists y\left(x \leq y \wedge \psi^{*}(y) \wedge \forall z\left(x \leq z \wedge z \leq y \wedge \neg z=y \rightarrow \varphi^{*}(z)\right)\right) .
\end{aligned}
$$

LTL Model-Checking

Theorem (Vardi, Wolper 1994)
There is a computable function that maps every LTL-formula φ to an NBA \mathbb{A}_{φ} of size $2^{O(|\varphi|)}$ such that

$$
L_{\omega}(\varphi)=L_{\omega}\left(\mathbb{A}_{\varphi}\right) .
$$

LTL Model-Checking

Theorem (Vardi, Wolper 1994)

There is a computable function that maps every LTL-formula φ to an NBA \mathbb{A}_{φ} of size $2^{O(|\varphi|)}$ such that

$$
L_{\omega}(\varphi)=L_{\omega}\left(\mathbb{A}_{\varphi}\right)
$$

Proof
$\Gamma:=$ set of subformulas of φ,
$A P:=$ set of Boolean variables in φ,
$\Sigma:=2^{A P}$.
$\Gamma_{i}^{\sigma}:=\{\psi \in \Gamma \mid \sigma, i \models \psi\} \quad$ where $\sigma \in \Sigma^{\omega}$ and $i \in \mathbb{N}$
This is a type: a set $s \subseteq \Gamma$ such that for formulas in Γ

$$
\begin{aligned}
& \psi_{0} \wedge \psi_{1} \in s \Longleftrightarrow \psi_{0} \in s \text { and } \psi_{1} \in s, \\
& \neg \psi \in s \Longleftrightarrow \psi \notin s \\
& \psi_{1} \in s \Longrightarrow \psi_{0} U \psi_{1} \in s \Longrightarrow \psi_{0} \in s \text { or } \psi_{1} \in s .
\end{aligned}
$$

Let S denote the set of types.

LTL Model-Checking

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^{S}$ of size $|\varphi|$ such that for all $s_{0} \in S, \sigma=a_{0} a_{1} \cdots \Sigma^{\omega}$ tfae:
(a) $s_{0} a_{0} s_{1} a_{1} \cdots$ is an accepting run of the $\operatorname{GNBA}\left(S, s_{0}, \Sigma, \Delta, \mathcal{F}\right)$
(b) $\Gamma_{i}^{\sigma}=s_{i}$ for all $i \in \mathbb{N}$.

LTL Model-Checking

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^{S}$ of size $|\varphi|$ such that for all $s_{0} \in S, \sigma=a_{0} a_{1} \cdots \Sigma^{\omega}$ tfae:
(a) $s_{0} a_{0} s_{1} a_{1} \cdots$ is an accepting run of the $\operatorname{GNBA}\left(S, s_{0}, \Sigma, \Delta, \mathcal{F}\right)$
(b) $\Gamma_{i}^{\sigma}=s_{i}$ for all $i \in \mathbb{N}$.

Suffices!
Consider GNBA $\mathbb{A}:=\left(S \cup\left\{s_{0}^{*}\right\}, \Sigma, s_{0}^{*}, \Delta^{*}, \mathcal{F}\right)$ with new s_{0}^{*} and
$\Delta^{*}:=\Delta \cup\left\{\left(s_{0}^{*}, a, s\right) \mid\right.$ exists $s_{0} \in S: \varphi \in s_{0}$ and $\left.\left(s_{0}, a, s\right) \in \Delta\right\}$
satisfies $L_{\omega}(\mathbb{A})=L_{\omega}(\varphi)$.
Exercise gives equivalent $\operatorname{NBA} \mathbb{A}_{\varphi}$ with $|\mathcal{F}| \cdot\left|S \cup\left\{s_{0}^{*}\right\}\right| \leq 2^{2|\varphi|}$ many states.

LTL Model-Checking

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^{S}$ of size $|\varphi|$ such that for all $s_{0} \in S, \sigma=a_{0} a_{1} \cdots \Sigma^{\omega}$ tfae:
(a) $s_{0} a_{0} s_{1} a_{1} \cdots$ is an accepting run of the GNBA $\left(S, s_{0}, \Sigma, \Delta, \mathcal{F}\right)$
(b) $\Gamma_{i}^{\sigma}=s_{i}$ for all $i \in \mathbb{N}$.
Δ contains (s, a, s^{\prime}) iff $a=s \cap A P$ and for formulas in Γ

$$
\begin{aligned}
& X \psi \in s \Longleftrightarrow \psi \in s^{\prime} \\
& \psi_{0} U \psi_{1} \in s \Longleftrightarrow \psi_{1} \in s \text { or, both } \psi_{0} \in s \text { and } \psi_{0} U \psi_{1} \in s^{\prime}
\end{aligned}
$$

\mathcal{F} contains for every $\psi_{0} U \psi_{1} \in \Gamma$ the set $\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$

LTL Model-Checking

Claim Types can be computed by an automaton: there are $\Delta \subseteq S \times \Sigma \times S$, $\mathcal{F} \subseteq 2^{S}$ of size $|\varphi|$ such that for all $s_{0} \in S, \sigma=a_{0} a_{1} \cdots \Sigma^{\omega}$ tfae:
(a) $s_{0} a_{0} s_{1} a_{1} \cdots$ is an accepting run of the GNBA $\left(S, s_{0}, \Sigma, \Delta, \mathcal{F}\right)$
(b) $\Gamma_{i}^{\sigma}=s_{i}$ for all $i \in \mathbb{N}$.
Δ contains (s, a, s^{\prime}) iff $a=s \cap A P$ and for formulas in Γ

$$
\begin{aligned}
& X \psi \in s \Longleftrightarrow \psi \in s^{\prime} \\
& \psi_{0} U \psi_{1} \in s \Longleftrightarrow \psi_{1} \in s \text { or, both } \psi_{0} \in s \text { and } \psi_{0} U \psi_{1} \in s^{\prime}
\end{aligned}
$$

\mathcal{F} contains for every $\psi_{0} U \psi_{1} \in \Gamma$ the set $\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$
Fix $s_{0} \in S$. (b) \Rightarrow (a) easy. For (a) \Rightarrow (b) show

$$
\sigma, i \models \psi \Longleftrightarrow \psi \in s_{i}
$$

for all $\psi \in \Gamma$ by induction on ψ. Case $\psi=\psi_{0} U \psi_{1}$. For simplicity $i=0$. Show:

$$
\sigma, 0 \models \psi_{0} U \psi_{1} \Longleftrightarrow \psi_{0} U \psi_{1} \in s_{0}
$$

LTL Model-Checking
$\Delta \quad \psi_{0} U \psi_{1} \in s \Longleftrightarrow \psi_{1} \in s$ or, both $\psi_{0} \in s$ and $\psi_{0} U \psi_{1} \in s^{\prime}$
$\mathcal{F} \ni\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$
Want $\quad \sigma, 0 \models \psi_{0} U \psi_{1} \Longleftrightarrow \psi_{0} U \psi_{1} \in s_{0}$.

LTL Model-Checking

$\triangle \quad \psi_{0} U \psi_{1} \in s \Longleftrightarrow \psi_{1} \in s$ or, both $\psi_{0} \in s$ and $\psi_{0} U \psi_{1} \in s^{\prime}$
$\mathcal{F} \ni\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$
Want $\quad \sigma, 0 \vDash \psi_{0} U \psi_{1} \Longleftrightarrow \psi_{0} U \psi_{1} \in s_{0}$.
\Rightarrow choose i such that: $\sigma, i \models \psi_{1}$ and $\sigma, j \models \psi_{0}$ for all $j<i$
by induction: $\psi_{1} \in s_{i}$ and $\psi_{0} \in s_{j}$ for all $j<i$
by type-definition: $\psi_{0} U \psi_{1} \in s_{i}$
as $\psi_{0} \in s_{i-1}$, by Δ-definition: $\psi_{0} U \psi_{1} \in s_{i-1}$
continue. . . $\psi_{0} U \psi_{1} \in s_{0}$.

LTL Model-Checking

$\triangle \quad \psi_{0} U \psi_{1} \in s \Longleftrightarrow \psi_{1} \in s$ or, both $\psi_{0} \in s$ and $\psi_{0} U \psi_{1} \in s^{\prime}$
$\mathcal{F} \ni\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$
Want $\sigma, 0 \models \psi_{0} U \psi_{1} \Longleftrightarrow \psi_{0} U \psi_{1} \in s_{0}$.
\Leftarrow by type-definition: $\psi_{0} \in s_{0}$ or $\psi_{1} \in s_{0}$
if $\psi_{1} \in s_{0}$: by induction $\sigma, 0 \models \psi_{1}$, so $\sigma, 0 \models \psi_{0} U \psi_{1}$ done!
else $\psi_{0} \in s_{0} \not \nexists \psi_{1}$: by Δ-definition $\psi_{0} U \psi_{1} \in s_{1}$
by type-definition: $\psi_{0} \in s_{1}$ or $\psi_{1} \in s_{1}$
if $\psi_{1} \in s_{1}$: by induction $\sigma, 1 \models \psi_{1}$ and $\sigma, 0 \models \psi_{0}$, so $\sigma, 0 \models \psi_{0} U \psi_{1}$ done!
else $\psi_{0} \in s_{1} \not \nexists \psi_{1}$: by Δ-definition $\psi_{0} U \psi_{1} \in s_{2}$
\ldots continue until $\psi_{0} U \psi_{1} \in s_{j} \in\left\{s \mid \psi_{0} U \psi_{1} \notin s\right\} \cup\left\{s \mid \psi_{1} \in s\right\}$.
Then $\psi_{1} \in s_{j}$: done!

LTL Model-Checking

As before:
Corollary The problem

Input: a transition system \mathbb{T}, an LTL-formula φ.
Problem: $\sigma, 0 \models \varphi$ for every trace σ of \mathbb{T} ?
is decidable in time $2^{O(|\varphi|)} \cdot|\mathbb{T}|$.

LTL Model-Checking

Proposition

LTL-formulas φ do not have equivalent NBAs with $2^{o(\sqrt{|\varphi|})}$ states.
Proof Let $A P=\{p\}$. For $n \in \mathbb{N}$ let L_{n} contain the words

$$
a_{0} a_{1} \cdots a_{n-1} a_{0} a_{1} \cdots a_{n-1} \emptyset \emptyset \cdots
$$

Defined by the size $O\left(n^{2}\right)$ formula

$$
\bigwedge_{i<n}\left(X^{i} p \leftrightarrow X^{n+i} p\right)
$$

Let \mathbb{A} be an NBA with $L_{\omega}(\mathbb{A})=L_{n}$. For each $a_{0} \cdots a_{n-1} \in 2^{A P}$ there is a state $q\left(a_{0} \cdots a_{n-1}\right)$ such that \mathbb{A} with this starting state accepts

$$
a_{0} a_{1} \cdots a_{n-1} \emptyset \emptyset \cdots .
$$

This is not true for $q\left(a_{0}^{\prime} \cdots a_{n-1}^{\prime}\right)$ for every $a_{0}^{\prime} \cdots a_{n-1}^{\prime} \neq a_{0} \cdots a_{n-1}$.
Hence the states $q\left(a_{0} \cdots a_{n-1}\right)$ are pairwise distinct.
Hence \mathbb{A} has at least 2^{n} many states.

Timed automata

Timed automata

Timed automata

Timed automaton \mathbb{A} consists of:

Loc finite set of locations
$L o c_{0} \subseteq L o c$ initial locations
Act finite set of actions
$A P$ finite set of propositional variables
$L: L o c \rightarrow 2^{A P}$ a labeling

Timed automata

Timed automaton \mathbb{A} consists of:
Loc finite set of locations
Loco \subseteq Loc initial locations
Act finite set of actions
$A P$ finite set of propositional variables
$L: L o c \rightarrow 2^{A P}$ a labeling
C finite set of clocks
Inv : Loc $\rightarrow C C:=$ finite sets of clock constraints

$$
\begin{array}{ll}
& x \in C \\
x \sim k \text { where } & k \in \mathbb{N} \\
& \sim \in\{<, \leq,=,>, \geq\}
\end{array}
$$

$\hookrightarrow \subseteq L o c \times C C \times A c t \times 2^{C} \times L o c$
View $\left(\ell, g, \alpha, X, \ell^{\prime}\right) \in \hookrightarrow$ as an arrow from ℓ to ℓ^{\prime} labeled by a guard $g \in C C$, an action $\alpha \in$ Act and a set of clocks $X \subseteq C$ that are reset.

Timed automata: example

$L o c=A P=\{u p$, down, goingup, comingdown $\}, \quad L o c_{0}=\{u p\}, \quad L(\ell)=\{\ell\}$
$C=\{x\}$
Act $=\{$ raise, lower,$\tau\}$

Timed automata: example

Loc $=A P=\{$ up, down, goingup, comingdown $\}, \quad L o c_{0}=\{u p\}, \quad L(\ell)=\{\ell\}$
$C=\{x\}$
Act $=\{$ raise, lower,$\tau\}$
$\operatorname{Inv}(u p)=\emptyset$
$\operatorname{Inv}($ comingdown $)=\{x \leq 1\}$
$($ up,\emptyset, lower, $\{x\}$, comingdown $) \in \hookrightarrow$
(goingup, $\{x \geq 1\}, \tau, \emptyset, u p) \in \hookrightarrow$

Transition system $T S(\mathbb{A})$ of \mathbb{A} :
states: $\langle\ell, \eta\rangle$ with $\ell \in L o c$ and $\eta: C \rightarrow \mathbb{R}_{\geq 0}$ a clock valuation initial states: $\langle\ell, \eta\rangle$ with $\ell \in L_{o c} 0_{0}$ and η is constantly 0 .
propositional variables: $A P$ ن́ clock constraints
labeling of $\langle\ell, \eta\rangle$ is $L(\ell) \cup\{x \sim k \mid \eta(x) \sim k, x \in C\}$ actions: Act $\dot{\cup} \mathbb{R} \geq 0$

Transition system $T S(\mathbb{A})$ of \mathbb{A} :
states: $\langle\ell, \eta\rangle$ with $\ell \in L o c$ and $\eta: C \rightarrow \mathbb{R}_{\geq 0}$ a clock valuation initial states: $\langle\ell, \eta\rangle$ with $\ell \in L_{o c} 0_{0}$ and η is constantly 0 .
propositional variables: $A P$ ن́ clock constraints labeling of $\langle\ell, \eta\rangle$ is $L(\ell) \cup\{x \sim k \mid \eta(x) \sim k, x \in C\}$ actions: Act $\cup \mathbb{R}_{\geq 0}$
discrete transitions $\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ where $\alpha \in$ Act and

- $\left(\ell, g, \alpha, X, \ell^{\prime}\right) \in \hookrightarrow$
- η satisfies $g \quad$ (ie. $\eta(x) \sim k$ for all $x \sim k \in g$)
- $\eta^{\prime}(x)= \begin{cases}\eta(x) & x \notin X \\ 0 & x \in X\end{cases}$
- η^{\prime} satisfies $\operatorname{Inv}(\ell)$
delay transitions $\langle\ell, \eta\rangle \xrightarrow{d}\langle\ell, \eta+d\rangle$ where $d \in \mathbb{R}_{\geq 0}$ and
- $(\eta+d)(x)=\eta(x)+d$ for all $x \in C$
- $\eta+d^{\prime}$ satisfies $\operatorname{Inv}(\ell)$ for all $d^{\prime} \in[0, d]$.

Executing timed automata

- Relevant paths starting at $\left\langle\ell_{0}, \eta_{0}\right\rangle$ have the form

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{1}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{\}}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

where $\alpha_{i} \in A c t, d_{i} \in \mathbb{R}_{\geq 0}$ and $\sum_{i} d_{i}=\infty$, or:

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}} \cdots \xrightarrow{\alpha_{k-1}}\left\langle\ell_{k}, \eta_{k}\right\rangle \xrightarrow{d_{k}}\left\langle\ell_{k}, \eta_{k}+1\right\rangle \xrightarrow{d_{k+1}}\left\langle\ell_{k}, \eta_{k}+2\right\rangle \xrightarrow{d_{k+2}} \cdots
$$

where $1=d_{k}=d_{k+1}=\ldots$

Executing timed automata

- Relevant paths starting at $\left\langle\ell_{0}, \eta_{0}\right\rangle$ have the form

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{1}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{l}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

where $\alpha_{i} \in A c t, d_{i} \in \mathbb{R}_{\geq 0}$ and $\sum_{i} d_{i}=\infty$, or:

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}} \cdots \xrightarrow{\alpha_{k-1}}\left\langle\ell_{k}, \eta_{k}\right\rangle \xrightarrow{d_{k}}\left\langle\ell_{k}, \eta_{k}+1\right\rangle \xrightarrow{d_{k+1}}\left\langle\ell_{k}, \eta_{k}+2\right\rangle \xrightarrow{d_{k+2}} \cdots
$$

where $1=d_{k}=d_{k+1}=\ldots$

- $\langle\ell, \eta\rangle$ is at time $t \in \mathbb{R}_{\geq 0}$ in a relevant path π iff
there are $i \in \mathbb{N}, d \in\left[0, d_{i}\right]$ such that $\ell=\ell_{i}$ and $\eta=\eta_{i}+d$ and $t=\sum_{j \leq i} d_{j}+d$.

Executing timed automata

- Relevant paths starting at $\left\langle\ell_{0}, \eta_{0}\right\rangle$ have the form

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{1}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{1}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

where $\alpha_{i} \in A c t, d_{i} \in \mathbb{R}_{\geq 0}$ and $\sum_{i} d_{i}=\infty$, or:

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}} \cdots \xrightarrow{\alpha_{k-1}}\left\langle\ell_{k}, \eta_{k}\right\rangle \xrightarrow{d_{k}}\left\langle\ell_{k}, \eta_{k}+1\right\rangle \xrightarrow{d_{k+1}}\left\langle\ell_{k}, \eta_{k}+2\right\rangle \xrightarrow{d_{k+2}} \cdots
$$

where $1=d_{k}=d_{k+1}=\ldots$

- $\langle\ell, \eta\rangle$ is at time $t \in \mathbb{R}_{\geq 0}$ in a relevant path π iff
there are $i \in \mathbb{N}, d \in\left[0, d_{i}\right]$ such that $\ell=\ell_{i}$ and $\eta=\eta_{i}+d$ and $t=\sum_{j \leq i} d_{j}+d$.
- Then $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ before $\langle\ell, \eta\rangle$ iff $\langle\ell, \eta\rangle$ after $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ iff
$\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ is at some time $t^{\prime}<t$ in π, or, $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ is at time t in π and $\ell^{\prime}=\ell_{j}$ for some $j<i$.
E.g. above: $\left\langle\ell_{1}, \eta_{1}\right\rangle$ is at time d_{0}, and $\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle$ too and before $\left\langle\ell_{1}, \eta_{1}\right\rangle$.

Executing timed automata: example

write $\eta(x) \in \mathbb{R}_{\geq 0}$ instead $\eta:\{x\} \rightarrow \mathbb{R}_{\geq 0}$:
$\langle u p, 1.318\rangle$ at time 1.318
before \langle comingdown, 0\rangle at time 1.318
before <comingdown, 0.002 〉 at time 1.32
before \langle goingup, 0.5\rangle is at time 4.2

Executing timed automata: example

$\langle u p, 0\rangle \xrightarrow{1.318}\langle u p, 1.318\rangle \xrightarrow{\text { lower }}\langle$ comingdown, 0$\rangle \xrightarrow{0.854}\langle$ comingdown, 0.854〉
$\xrightarrow{\tau}\langle$ down, 0.854$\rangle \xrightarrow{1.528}\langle$ down, 2.382$\rangle \xrightarrow{\text { raise }}\langle$ goingup, 0$\rangle \xrightarrow{1.3971}\langle$ goingup, 1.3971 \rangle

Timed computation tree logic

TCTL-formulas over $A P \cup C C$ generated by

$$
\bar{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi \psi}{\forall\left(\varphi U_{I} \psi\right)} \quad \frac{\varphi \psi}{\exists\left(\varphi U_{I} \psi\right)}
$$

where $p \in A P \cup C C, I$ an interval $[a, b),(a, b],(a, b),[a, b]$ for $a \leq b$ in $\mathbb{N} \cup\{\infty\}$.

Timed computation tree logic

TCTL-formulas over $A P \cup C C$ generated by

$$
\bar{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi \psi}{\forall\left(\varphi U_{I} \psi\right)} \quad \frac{\varphi \psi}{\exists\left(\varphi U_{I} \psi\right)}
$$

where $p \in A P \cup C C, I$ an interval $[a, b),(a, b],(a, b),[a, b]$ for $a \leq b$ in $\mathbb{N} \cup\{\infty\}$.
TCTL semantics over TS (\mathbb{A}) :

$$
\begin{array}{lll}
\langle\ell, \eta\rangle=p & \Longleftrightarrow p \in L(\ell) & \text { for } p \in A P \\
\langle\ell, \eta\rangle=x \sim k & \Longleftrightarrow \eta(x) \sim k & \text { for } x \sim k \in C C \\
\langle\ell, \eta\rangle=\neg \varphi & \Longleftrightarrow\langle\ell, \eta\rangle \neq \varphi & \\
\langle\ell, \eta\rangle=\varphi \wedge \psi & \Longleftrightarrow\langle\ell, \eta\rangle \vDash \varphi \text { and }\langle\ell, \eta\rangle \models \psi &
\end{array}
$$

Timed computation tree logic

TCTL-formulas over $A P \cup C C$ generated by

$$
\bar{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi \psi}{\forall\left(\varphi U_{I} \psi\right)} \quad \frac{\varphi \psi}{\exists\left(\varphi U_{I} \psi\right)}
$$

where $p \in A P \cup C C, I$ an interval $[a, b),(a, b],(a, b),[a, b]$ for $a \leq b$ in $\mathbb{N} \cup\{\infty\}$. TCTL semantics over $T S(\mathbb{A})$:

$$
\begin{array}{lll}
\langle\ell, \eta\rangle=p & \Longleftrightarrow p \in L(\ell) & \text { for } p \in A P \\
\langle\ell, \eta\rangle=x \sim k & \Longleftrightarrow \eta(x) \sim k & \text { for } x \sim k \in C C \\
\langle\ell \eta\rangle=\neg \varphi & \Longleftrightarrow\langle\ell, \eta\rangle \not \equiv \varphi & \\
\langle\ell, \eta\rangle=\varphi \wedge \psi & \Longleftrightarrow\langle\ell, \eta\rangle \models \varphi \text { and }\langle\ell, \eta\rangle \models \psi & \\
\langle\ell, \eta\rangle=\forall\left(\varphi U_{I} \psi\right) & \Longleftrightarrow &
\end{array}
$$

for every relevant path π starting at $\langle\ell, \eta\rangle$
there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that

$$
\begin{aligned}
& \left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \equiv \psi \text { and } \\
& \left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle=\varphi \vee \psi \text { for all states }\left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle \text { before }\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle .
\end{aligned}
$$

Timed computation tree logic

TCTL-formulas over $A P \cup C C$ generated by

$$
\bar{p} \quad \frac{\varphi}{\neg \varphi} \quad \frac{\varphi \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi \psi}{\forall\left(\varphi U_{I} \psi\right)} \quad \frac{\varphi \psi}{\exists\left(\varphi U_{I} \psi\right)}
$$

where $p \in A P \cup C C, I$ an interval $[a, b),(a, b],(a, b),[a, b]$ for $a \leq b$ in $\mathbb{N} \cup\{\infty\}$. TCTL semantics over $T S(\mathbb{A})$:

$$
\begin{array}{lll}
\langle\ell, \eta\rangle \equiv p & \Longleftrightarrow p \in L(\ell) & \text { for } p \in A P \\
\langle\ell, \eta\rangle=x \sim k & \Longleftrightarrow \eta(x) \sim k & \text { for } x \sim k \in C C \\
\langle\ell, \eta\rangle=\neg \varphi & \Longleftrightarrow\langle\ell, \eta\rangle \not \equiv \varphi & \\
\langle\ell, \eta\rangle \models \varphi \wedge \psi & \Longleftrightarrow\langle\ell, \eta\rangle \models \varphi \text { and }\langle\ell, \eta\rangle \models \psi & \\
\langle\ell, \eta\rangle \models \exists\left(\varphi U_{I} \psi\right) & \Longleftrightarrow &
\end{array}
$$

for some relevant path π starting at $\langle\ell, \eta\rangle$
there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that

$$
\begin{aligned}
& \left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \equiv \psi \text { and } \\
& \left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle \equiv \varphi \vee \psi \text { for all states }\left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle \text { before }\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \text {. }
\end{aligned}
$$

Timed computation tree logic

$\forall \diamond_{I} \varphi:=\forall\left(\top U_{I} \varphi\right)$
$\langle\ell, \eta\rangle \models \forall\rangle_{I} \varphi$ iff for every relevant path π starting at $\langle\ell, \eta\rangle$
there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$
$\exists \diamond_{I} \varphi:=\exists\left(\top U_{I} \varphi\right)$
$\langle\ell, \eta\rangle \models \forall\rangle_{I} \varphi$ iff for some relevant path π starting at $\langle\ell, \eta\rangle$
there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$

Timed computation tree logic

$\forall \diamond_{I} \varphi:=\forall\left(\top U_{I} \varphi\right)$
$\langle\ell, \eta\rangle \vDash \forall \nabla_{I} \varphi$ iff for every relevant path π starting at $\langle\ell, \eta\rangle$ there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$
$\exists \diamond_{I} \varphi:=\exists\left(\top U_{I} \varphi\right)$
$\langle\ell, \eta\rangle \models \forall\rangle_{I} \varphi$ iff for some relevant path π starting at $\langle\ell, \eta\rangle$
there is a state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in π such that $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$
$\forall \square_{I} \varphi:=\neg \exists \diamond_{I} \neg \varphi$
$\langle\ell, \eta\rangle \models \forall \square_{I} \varphi$ iff for every relevant path π starting at $\langle\ell, \eta\rangle$
for all states $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in $\pi:\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$
$\exists \square_{I} \varphi:=\neg \forall \diamond_{I} \neg \varphi$
$\langle\ell, \eta\rangle \models \exists \square_{I} \varphi$ iff for some relevant path π starting at $\langle\ell, \eta\rangle$
for all states $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ at some time $t \in I$ in $\pi:\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \vDash \varphi$
Omit subscript $I=[0, \infty)$.

Timed computation tree logic

Leads-to operator
$\varphi \rightsquigarrow \psi:=\forall \square(\varphi \rightarrow \forall \diamond \psi)$
$\langle\ell, \eta\rangle \models \varphi \rightsquigarrow \psi$
iff
for every relevant path π starting at $\langle\ell, \eta\rangle$
for every state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \vDash \varphi$ at some time $t \in[0, \infty)$ in π :
for all relevant paths π^{\prime} starting at $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$
there are a state $\left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle$ at some time $t^{\prime} \in[0, \infty)$ in π^{\prime} st $\left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle \models \psi$
iff
for every relevant path π starting at $\langle\ell, \eta\rangle$ and every $t \in[0, \infty)$:
for every state $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \varphi$ at time t in π
there is a state $\left\langle\ell^{\prime \prime}, \eta^{\prime \prime}\right\rangle \models \psi$ after $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$.

Timed computation tree logic

Elimination of time constraints
Assume there is a clock $z \in C$ that is never reset and assume $\eta(z)=0$.

$$
\begin{array}{lll}
\langle\ell, \eta\rangle \vDash \forall\left(p U_{[a, b)} q\right) & \Longleftrightarrow & \langle\ell, \eta\rangle \models \forall((p \vee q) U(z \geq a \wedge z<b \wedge q)) \\
\langle\ell, \eta\rangle \vDash \forall \diamond_{[a, b)} q & \Longleftrightarrow & \langle\ell, \eta\rangle \models \forall \diamond(z \geq a \wedge z<b \wedge q) \\
\langle\ell, \eta\rangle \vDash \forall \square_{[a, b)} q & \Longleftrightarrow & \langle\ell, \eta\rangle \models \forall \square(z \geq a \wedge z<b \rightarrow q)
\end{array}
$$

Caution

trick useless for iterated modalities

UPPAAL
supports

$$
\forall \square \varphi, \quad \forall \diamond \varphi, \quad \exists \square \varphi, \quad \forall \diamond \varphi, \quad \varphi \rightsquigarrow \psi
$$

for φ, ψ in propositional logic.

Timed computation tree logic: examples

The initial state $\langle u p, 0\rangle$ of the associated transition system satisfies:
$\forall \square$ (comingdown $\rightarrow x \leq 1$)
comingdown $\rightsquigarrow($ down $\wedge x \leq 1)$
goingup $\rightsquigarrow(1 \leq x \wedge x \leq 2 \wedge u p)$

Timed computation tree logic: examples

The initial state $\langle u p, 0\rangle$ of the associated transition system satisfies:
$\forall \square$ (comingdown $\rightarrow x \leq 1$)
comingdown $\rightsquigarrow($ down $\wedge x \leq 1)$
goingup $\rightsquigarrow(1 \leq x \wedge x \leq 2 \wedge u p)$
$\forall \square\left(\right.$ goingup $\left.\wedge x=0 \rightarrow \forall \diamond_{[1,2]} u p\right)$
$\forall \square\left(\right.$ goingup $\left.\wedge x>1 \rightarrow \forall \diamond_{[0,1)} u p\right)$

Model-checking TCTL: theorem

\mathbb{A} is timelock free iff at reachable states of $T S(\mathbb{A})$ start relevant paths.

Model-checking TCTL: theorem

\mathbb{A} is timelock free iff at reachable states of $T S(\mathbb{A})$ start relevant paths.

Theorem (Alur, Courcoubetis, Dill 1990)
The promise problem
Input: a timelock-free timed automaton \mathbb{A}, a TCTL-formula φ
Problem: does every initial state of $T S(\mathbb{A})$ satisfy φ ?
is decidable in time

$$
k^{O(c)} \cdot|\varphi| \cdot|\mathbb{A}|
$$

where c is the number of clocks in \mathbb{A} and $k \geq c$ upper bounds the natural numbers appearing in φ and \mathbb{A}.

Model-checking TCTL: proof

Assume \mathbb{A} has a clock $x_{\text {real }} \in C$ not mentioned in guards, invariants or φ.
For $r \in \mathbb{R}_{\geq 0}$ write $\langle r\rangle:=r-\lfloor r\rfloor$. E.g., $\langle 1.23\rangle=0.23$.
$\eta \approx \eta^{\prime}$ iff

- for all $x \in C:\lfloor\eta(x)\rfloor$ and $\left\lfloor\eta^{\prime}(x)\right\rfloor$ are equal or both $\geq k$.
- for all $x, y \in C$ with $\eta(x)<k, \eta(y)<k: \quad \begin{array}{ll}\langle\eta(x)\rangle \leq\langle\eta(y)\rangle \text { iff }\left\langle\eta^{\prime}(x)\right\rangle \leq\left\langle\eta^{\prime}(y)\right\rangle \\ & \langle\eta(x)\rangle=0 \text { iff }\left\langle\eta^{\prime}(x)\right\rangle=0\end{array}$

Claim: if $\eta \approx \eta^{\prime}$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta+d \approx \eta^{\prime}+d^{\prime}$ for some $d^{\prime} \in \mathbb{R}_{\geq 0}$

Model-checking TCTL: proof

Assume \mathbb{A} has a clock $x_{\text {real }} \in C$ not mentioned in guards, invariants or φ.
For $r \in \mathbb{R}_{\geq 0}$ write $\langle r\rangle:=r-\lfloor r\rfloor$. E.g., $\langle 1.23\rangle=0.23$.
$\eta \approx \eta^{\prime} \mathrm{iff}$

- for all $x \in C:\lfloor\eta(x)\rfloor$ and $\left\lfloor\eta^{\prime}(x)\right\rfloor$ are equal or both $\geq k$.
- for all $x, y \in C$ with $\eta(x)<k, \eta(y)<k: \quad \begin{aligned} & \langle\eta(x)\rangle \leq\langle\eta(y)\rangle \text { iff }\left\langle\eta^{\prime}(x)\right\rangle \leq\left\langle\eta^{\prime}(y)\right\rangle \\ & \langle\eta(x)\rangle=0 \text { iff }\left\langle\eta^{\prime}(x)\right\rangle=0\end{aligned}$

Claim: if $\eta \approx \eta^{\prime}$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta+d \approx \eta^{\prime}+d^{\prime}$ for some $d^{\prime} \in \mathbb{R}_{\geq 0}$
Suffices for $d<1 \quad$ (then choose $d^{\prime \prime}$ for $\langle d\rangle$ and set $d^{\prime}:=\lfloor d\rfloor+d^{\prime \prime}$)
If there is $x \in C$ such that $d=1-\langle\eta(x)\rangle$, set $d^{\prime}:=1-\left\langle\eta^{\prime}(x)\right\rangle$
Otw order clocks $x_{1} \leq \cdots \leq x_{c}$ according $\langle\eta(x)\rangle$ (equivalently $\left\langle\eta^{\prime}(x)\right\rangle$) choose $i \leq c+1$ such that $+d$ moves $\eta\left(x_{i}\right), \ldots, \eta\left(x_{c}\right)$ but not $\eta\left(x_{1}\right), \ldots, \eta\left(x_{i-1}\right)$ from below to above some integer
choose d^{\prime} that does the same for η^{\prime}

Model-checking TCTL: proof

Assume \mathbb{A} has a clock $x_{\text {real }} \in C$ not mentioned in guards, invariants or φ.
For $r \in \mathbb{R}_{\geq 0}$ write $\langle r\rangle:=r-\lfloor r\rfloor$. E.g., $\langle 1.23\rangle=0.23$.
$\eta \approx \eta^{\prime}$ iff

- for all $x \in C:\lfloor\eta(x)\rfloor$ and $\left\lfloor\eta^{\prime}(x)\right\rfloor$ are equal or both $\geq k$.
- for all $x, y \in C$ with $\eta(x)<k, \eta(y)<k: \quad \begin{array}{ll}\langle\eta(x)\rangle \leq\langle\eta(y)\rangle \text { iff }\left\langle\eta^{\prime}(x)\right\rangle \leq\left\langle\eta^{\prime}(y)\right\rangle \\ \langle\eta(x)\rangle & =0 \text { iff }\left\langle\eta^{\prime}(x)\right\rangle=0\end{array}$

Claim: if $\eta \approx \eta^{\prime}$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta+d \approx \eta^{\prime}+d^{\prime}$ for some $d^{\prime} \in \mathbb{R}_{\geq 0}$
Get: for $\eta_{0} \approx \eta_{0}^{\prime}$ and a relevant path

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{9}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{3}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

there are $d_{i}^{\prime} \in \mathbb{R}_{\geq 0}$ and $\eta_{i}^{\prime} \approx \eta_{i}$ such that

$$
\left\langle\ell_{0}, \eta_{0}^{\prime}\right\rangle \xrightarrow{d_{3}^{\prime}}\left\langle\ell_{0}, \eta_{0}^{\prime}+d_{0}^{\prime}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}^{\prime}\right\rangle \xrightarrow{d_{3}^{\prime}}\left\langle\ell_{1}, \eta_{1}^{\prime}+d_{1}^{\prime}\right\rangle \xrightarrow{\alpha_{3}}\left\langle\ell_{2}, \eta_{2}^{\prime}\right\rangle \xrightarrow{d_{3}^{\prime}} \cdots
$$

is a relevant path (by the proof of the claim).

Model-checking TCTL: proof

Assume \mathbb{A} has a clock $x_{\text {real }} \in C$ not mentioned in guards, invariants or φ. For $r \in \mathbb{R}_{\geq 0}$ write $\langle r\rangle:=r-\lfloor r\rfloor$. E.g., $\langle 1.23\rangle=0.23$.
$\eta \approx \eta^{\prime}$ iff

- for all $x \in C:\lfloor\eta(x)\rfloor$ and $\left\lfloor\eta^{\prime}(x)\right\rfloor$ are equal or both $\geq k$.
- for all $x, y \in C$ with $\eta(x)<k, \eta(y)<k: \quad \begin{aligned} & \langle\eta(x)\rangle \leq\langle\eta(y)\rangle \text { iff }\left\langle\eta^{\prime}(x)\right\rangle \leq\left\langle\eta^{\prime}(y)\right\rangle \\ & \langle\eta(x)\rangle=0 \text { iff }\left\langle\eta^{\prime}(x)\right\rangle=0\end{aligned}$

Claim: if $\eta \approx \eta^{\prime}$ and $d \in \mathbb{R}_{\geq 0}$, then $\eta+d \approx \eta^{\prime}+d^{\prime}$ for some $d^{\prime} \in \mathbb{R}_{\geq 0}$
Get: for $\eta_{0} \approx \eta_{0}^{\prime}$ and a relevant path

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{3}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{1}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

choose $d_{i}^{\prime} \in \mathbb{R}_{\geq 0}$ accordingly so that

$$
\left\langle\ell_{0}, \eta_{0}^{\prime}\right\rangle \xrightarrow{d_{0}^{\prime}}\left\langle\ell_{0}, \eta_{0}^{\prime}+d_{0}^{\prime}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}^{\prime}\right\rangle \xrightarrow{d_{1}^{\prime}}\left\langle\ell_{1}, \eta_{1}^{\prime}+d_{1}^{\prime}\right\rangle \xrightarrow{\alpha_{1}}\left\langle\ell_{2}, \eta_{2}^{\prime}\right\rangle \xrightarrow{d_{o}^{\prime}} \cdots
$$

is a relevant path (by the proof of the claim).
Then: $\quad\langle\ell, \eta\rangle \models \varphi \Longleftrightarrow\left\langle\ell, \eta^{\prime}\right\rangle \models \varphi$

Model-checking TCTL: proof

Region transition system $\mathbb{R}(\mathbb{A}, k)$
states: $\langle\ell,[\eta]\rangle$ for a location ℓ and region $[\eta]:=\left\{\eta^{\prime} \mid \eta \approx \eta^{\prime}\right\}$
initial states: $\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle$ for a initial location ℓ and η_{0} constantly 0 propositional variables: $A P \cup C C$
label of $\langle\ell,[\eta]\rangle$ is the label of $\langle\ell, \eta\rangle$ in $T S(\mathbb{A})$
actions: Act $\dot{\cup}\{\tau\}$
transitions:

$$
\begin{aligned}
& \langle\ell,[\eta]\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime},\left[\eta^{\prime}\right]\right\rangle \text { if }\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \text { in } T S(\mathbb{A}) \text { and } \alpha \in A c t \\
& \langle\ell,[\eta]\rangle \rightarrow\left\langle,\left[\eta^{\prime}\right]\right\rangle \text { if } \eta^{\prime} \text { is the successor of } \eta \\
& \text { both } \approx \eta_{\infty}:=\text { constantly } k, \text { or, } \eta \nsim \eta^{\prime} \approx \eta+d \text { for some } \\
& d \in \mathbb{R} \geq 0 \text { such that for all } d^{\prime}<d: \eta+d^{\prime} \in[\eta] \cup\left[\eta^{\prime}\right] .
\end{aligned}
$$

Size $k^{O(c)}$.

Model-checking TCTL: proof

Idea for each subformula ψ of φ compute

$$
\operatorname{Ext}(\psi):=\{\langle\ell,[\eta]\rangle \mid\langle\ell, \eta\rangle \models \psi \text { and is reachable }\}
$$

Case $\psi=\exists\left(\psi_{0} U_{[a, b)} \psi_{1}\right)$.
Assume we already computed $\operatorname{Ext}\left(\psi_{0}\right)$ and $\operatorname{Ext}\left(\psi_{1}\right)$.
Problem How to decide $\langle\ell, \eta\rangle \models \psi$? Wlog $\eta\left(x_{\text {real }}\right)=0$.

Model-checking TCTL: proof

Idea for each subformula ψ of φ compute

$$
\operatorname{Ext}(\psi):=\{\langle\ell,[\eta]\rangle \mid\langle\ell, \eta\rangle \models \psi \text { and is reachable }\}
$$

Case $\psi=\exists\left(\psi_{0} U_{[a, b)} \psi_{1}\right)$.
Assume we already computed $\operatorname{Ext}\left(\psi_{0}\right)$ and $\operatorname{Ext}\left(\psi_{1}\right)$.
Problem How to decide $\langle\ell, \eta\rangle \models \psi$? Wlog $\eta\left(x_{\text {real }}\right)=0$.
Claim $\langle\ell, \eta\rangle$ reachable with $\eta\left(x_{\text {real }}\right)=0$. Then $\langle\ell, \eta\rangle \models \psi$ iff there is a path

$$
\langle\ell,[\eta]\rangle=\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle\left\langle\ell_{1},\left[\eta_{1}\right]\right\rangle \cdots\left\langle\ell_{n},\left[\eta_{n}\right]\right\rangle
$$

for some $n \in \mathbb{N}$ such that

$$
\begin{aligned}
& \left\langle\ell_{i},\left[\eta_{i}\right]\right\rangle \in \operatorname{Ext}\left(\psi_{0}\right) \cup \operatorname{Ext}\left(\psi_{1}\right) \text { for all } i<n \\
& \left\langle\ell_{n},\left[\eta_{n}\right]\right\rangle \in \operatorname{Ext}\left(\psi_{1}\right) \\
& a \leq \eta_{n}\left(x_{\text {real }}\right)<b
\end{aligned}
$$

Then standard reachability algorithmics imply the theorem.

Model-checking TCTL: proof

\Rightarrow Assume $\langle\ell, \eta\rangle \models \psi$, i.e., there is a relevant path π in $T S(\mathbb{A})$

$$
\langle\ell, \eta\rangle=\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{3}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{3}} \cdots
$$

such that $-\left\langle\ell^{t}, \eta^{t}\right\rangle$ at some time $\eta^{t}\left(x_{\text {real }}\right)=t \in[a, b)$ in π satisfies ψ_{1}

- all $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ before $\left\langle\ell^{t}, \eta^{t}\right\rangle$ satisfy $\psi_{0} \vee \psi_{1}$.

Model-checking TCTL: proof

\Rightarrow Assume $\langle\ell, \eta\rangle \models \psi$, i.e., there is a relevant path π in $T S(\mathbb{A})$

$$
\langle\ell, \eta\rangle=\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{3}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{3}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{3}} \cdots
$$

such that $\quad-\left\langle\ell^{t}, \eta^{t}\right\rangle$ at some time $\eta^{t}\left(x_{\text {real }}\right)=t \in[a, b)$ in π satisfies ψ_{1}

- all $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ before $\left\langle\ell^{t}, \eta^{t}\right\rangle$ satisfy $\psi_{0} \vee \psi_{1}$.

Choose $i \in \mathbb{N}$ and $d \in\left[0, d_{i}\right]$ such that

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}} \cdots \xrightarrow{\alpha_{i}}\left\langle\ell_{i}, \eta_{i}\right\rangle \xrightarrow{d}\left\langle\ell^{t}, \eta^{t}\right\rangle
$$

This gives a finite path in $\mathbb{R}(\mathbb{A}, k)$:

$$
\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle \xrightarrow{\tau^{*}} \cdots \xrightarrow{\alpha_{i}}\left\langle\ell_{i},\left[\eta_{i}\right]\right\rangle \xrightarrow{\tau^{*}}\left\langle\ell^{t},\left[\eta^{t}\right]\right\rangle
$$

where $\xrightarrow{\tau *}$ abbreviates finitely many $\xrightarrow{\tau}$.

Model-checking TCTL: proof

\Rightarrow Assume $\langle\ell, \eta\rangle \models \psi$, i.e., there is a relevant path π in $T S(\mathbb{A})$

$$
\langle\ell, \eta\rangle=\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}}\left\langle\ell_{0}, \eta_{0}+d_{0}\right\rangle \xrightarrow{\alpha_{0}}\left\langle\ell_{1}, \eta_{1}\right\rangle \xrightarrow{d_{7}}\left\langle\ell_{1}, \eta_{1}+d_{1}\right\rangle \xrightarrow{\alpha_{7}}\left\langle\ell_{2}, \eta_{2}\right\rangle \xrightarrow{d_{2}} \cdots
$$

such that $-\left\langle\ell^{t}, \eta^{t}\right\rangle$ at some time $\eta^{t}\left(x_{\text {real }}\right)=t \in[a, b)$ in π satisfies ψ_{1} - all $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ before $\left\langle\ell^{t}, \eta^{t}\right\rangle$ satisfy $\psi_{0} \vee \psi_{1}$.

Choose $i \in \mathbb{N}$ and $d \in\left[0, d_{i}\right]$ such that

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle \xrightarrow{d_{0}} \cdots \xrightarrow{\alpha_{i}}\left\langle\ell_{i}, \eta_{i}\right\rangle \xrightarrow{d}\left\langle\ell^{t}, \eta^{t}\right\rangle
$$

This gives a finite path in $\mathbb{R}(\mathbb{A}, k)$:

$$
\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle \xrightarrow{\tau^{*}} \cdots \xrightarrow{\alpha_{i}}\left\langle\ell_{i},\left[\eta_{i}\right]\right\rangle \xrightarrow{\tau^{*}}\left\langle\ell^{t},\left[\eta^{t}\right]\right\rangle
$$

where $\xrightarrow{\tau *}$ abbreviates finitely many $\xrightarrow{\tau}$. Then
$-\left\langle\ell^{t},\left[\eta^{t}\right]\right\rangle \in \operatorname{Ext}\left(\psi_{1}\right)$

- for every other appearing $\langle\ell,[\eta]\rangle$ there is $\eta^{\prime} \approx \eta$ such that $\left\langle\ell, \eta^{\prime}\right\rangle$ is before $\left\langle\ell^{t}, \eta^{t}\right\rangle$ in π hence $\langle\ell,[\eta]\rangle \in \operatorname{Ext}\left(\psi_{0}\right) \cup \operatorname{Ext}\left(\psi_{1}\right)$

Model-checking TCTL: proof

\Leftarrow Given an as-described path in $\mathbb{R}(\mathbb{A}, k)$

$$
\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle\left\langle\ell_{1},\left[\eta_{1}\right]\right\rangle \cdots\left\langle\ell_{n},\left[\eta_{n}\right]\right\rangle
$$

Replace $\xrightarrow{\tau}$ by suitable \xrightarrow{d} and get for suitable $\eta_{i}^{\prime} \approx \eta_{i}$ a path in $T S(\mathbb{A})$

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle\left\langle\ell_{1}, \eta_{1}^{\prime}\right\rangle \cdots\left\langle\ell_{n}, \eta_{n}^{\prime}\right\rangle
$$

Make $\xrightarrow{d} / \xrightarrow{\alpha}$ alternating by contracting consecutive \xrightarrow{d} and adding $\xrightarrow{0}$ between consecutive $\xrightarrow{\alpha}$. Continue to a relevant path π (timelock-free).

Model-checking TCTL: proof

\Leftarrow Given an as-described path in $\mathbb{R}(\mathbb{A}, k)$

$$
\left\langle\ell_{0},\left[\eta_{0}\right]\right\rangle\left\langle\ell_{1},\left[\eta_{1}\right]\right\rangle \cdots\left\langle\ell_{n},\left[\eta_{n}\right]\right\rangle
$$

Replace $\xrightarrow{\tau}$ by suitable \xrightarrow{d} and get for suitable $\eta_{i}^{\prime} \approx \eta_{i}$ a path in $T S(\mathbb{A})$

$$
\left\langle\ell_{0}, \eta_{0}\right\rangle\left\langle\ell_{1}, \eta_{1}^{\prime}\right\rangle \cdots\left\langle\ell_{n}, \eta_{n}^{\prime}\right\rangle
$$

Make $\xrightarrow{d} / \xrightarrow{\alpha}$ alternating by contracting consecutive \xrightarrow{d} and adding $\xrightarrow{0}$ between consecutive $\xrightarrow{\alpha}$. Continue to a relevant path π (timelock-free).

Then

- $\left\langle\ell_{n}, \eta_{n}^{\prime}\right\rangle$ is at time $\eta_{n}^{\prime}\left(x_{\text {real }}\right) \in[a, b)$ in π and satisfies ψ_{1}.
- for every $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle$ before $\left\langle\ell_{n}, \eta_{n}^{\prime}\right\rangle$ there is $i \leq n$ st $\ell^{\prime}=\ell_{i}$ and $\eta^{\prime} \approx \eta_{i}$, hence $\left\langle\ell^{\prime}, \eta^{\prime}\right\rangle \models \psi_{0} \vee \psi_{1}$.

Thus $\langle\ell, \eta\rangle \models \exists\left(\psi_{0} U_{[a, b)} \psi_{1}\right)$.

