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Abstract

In [Temhoft] we gave a countable basis V for the admissible rules of
IPC. Here we show that there is no proper intermediate logic with the
disjunction property for which all rules in V are admissible. This shows
that, relative to the digjunction property, IPC is maximal with respect
to its set of admissible rules. This characterization of IPC is optimal
in the sense that no finite subset of V suffices. In fact, it is shown that
for any finite subset X of V, for one of the proper intermediate logics
D,, constructed by De Jongh and Gabbay (1974) all the rules in X are
admissible. Moreover, the logic D, in question is even characterized
by X: it is the maximal intermediate logic containing D, with the
disjunction property for which all rules in X are admissible. Finally,
the characterization of IPC is proved to be effective by showing that it
is effectively reducible to an effective characterization of IPC in terms

of the Kleene slash by De Jongh (1970).

1 Introduction

In contrast with classical propositional logic CPC, intermediate logics can
have nonderivable admissible rules. For instance, in [Rybakov 97] it is shown
that intuitionistic propositional logic IPC has countably many nonderivable
admissible rules. There are several very natural (as far as we know open)
questions concerning intermediate logics and their admissible rules which
trivialize once all the admissible rules of the logic under consideration are
derivable but which appear to be rather complicated otherwise:



Let us call a logic T with the disjunction property mazimal with respect
to a set of admissible rules R if all the rules in R are admissible for T
and there is no intermediate logic with the disjunction property which is
a proper extension of T' for which all rules in R are admissible. For now,
if R is the set of admissible rules of T" we just say that T is mazimal
Clearly, if T is maximal with respect to some set of admissible rules, it is
maximal. Maximal logics are characterized by their admissible rules plus the
disjunction property: if for a logic with the disjunction property containing
the maximal logic T, all the admissible rules of T" are admissible, it can only
be T itself. We use the terms ‘characterized by its admissible rules plus the
disjunction property’ and ‘maximal’ interchangeably.

It may appear to the reader that a better definition of maximality (in this
sense) would be one without a restriction to logics with the disjunction
property. However, this restriction is more an empirical than a natural one
(or is empirical natural ... ): the only interesting results we encountered on
maximality with respect to admissible rules, were in the sense of maximality
as defined above and not in the broader sense.

Note that if all rules in ‘R are derivable in 7" then T is maximal with respect
to R once it has no proper extensions with the disjunction property. For
in this case any extension of T derives all rules in R. Which intermediate
logics with nonderivable admissible rules are maximal and which are not? In
[lemhoft] we gave a countable basis V for the admissible rules of IPC (there
is no finite basis for the admissible rules of IPC, see [Rybakov 97]). Here
we show that the only intermediate logic with the disjunction property for
which all rules in this basis are admissible, is IPC. This shows that IPC is
maximal. This characterization of IPC is simple in the sense that by using
infinite conjunctions the basis can be expressed as one rule.

Of course, having this characterization of IPC we want to know if it is opti-
mal. By optimal we mean that there is no proper subset R of V such that
IPC is already maximal with respect to R. We will see that the characteriza-
tion is indeed optimal. We show that for any finite subset X of V there is a
proper intermediate logic for which X is admissible. The logic in question is
even maximal with respect to X. For this we use the countably many proper
intermediate logics Dg, Dy, Do, ... with the disjunction property which were
constructed in [Gabbay, De Jongh 74]. We show that there is a correspon-
dence between finite subsets of V and these logics. Any such D, is maximal
with respect to a finite subset X of V and for any finite subset X of V there
is a number n such that D, is maximal with respect to X. Furthermore, it
will turn out to be a trivial observation that any cofinal subset of the basis



is equivalent, in terms of the admissible rules which are derivable from it,
to the basis itself. Therefore, there is no proper subset of V with respect to
which IPC is maximal. Moreover, it shows that the Gabbay-de Jongh logics
are all maximal.

Still, there are a lot more open questions concerning maximality of logics
than solved ones. To name a few: Are there any logics which are not max-
imal with respect to their admissible rules? If so, can any such logic be
extended to an intermediate logic which is maximal with respect to its ad-
missible rules? Given a set of rules R which are derivable in CPC there is,
by definition, an intermediate logic for which all rules in R are admissible.
But is there a intermediate logic which is maximal with respect to R?

With the characterization of IPC we do not claim a completely new result
since a similar result, a characterization of IPC in terms of the Kleene slash,
was already obtained by De Jongh in 1970 (see Section 5). However, not
only is the reduction of the one characterization to the other not trivial,
but the connection with the admissible rules is new and interesting. We
show that these characterizations are effectively reducible to each other.
Hence the effectiveness of the characterization in terms of the Kleene slash
[De Jongh 70] implies the effectiveness of the characterization in terms of
the admissible rules.

I thank Dick de Jongh for introducing me to the subject, and for posing to
me the question whether the basis characterizes IPC. T thank both him, Lex
Hendriks and Albert Visser for useful comments.

2 Preliminaries

Unless stated otherwise, formulas are meant to be formulas in a (fixed)
language for intuitionistic propositional logic. The letters A, B,C, D, E, F
will always range over formulas and p, g, r,s,t over propositional variables.
We write F for derivability in IPC.

An L-substitution o is a map which assigns to every propositional variable a
formula in the language L. For a propositional formula A, we write o(A) for
the result of applying o to A, i.e. for the result of substituting o(p) for any
propositional variable pin A. When L is our fixed language of propositional
logic mentioned above, we say ‘substitution” instead of ‘L-substitution’.

An intermediate logic is a consistent theory in the language of propositional
logic, containing IPC, which is closed under substitution. For intermediate
logics T we will write k¢ for derivations in 7. If we only know that T is a



theory we write T I instead.

2.1 Admissible rules

A rule is an expression of the form

Ay .. Ay
5 .
We sometimes write Aq,...,A,/B for this expression. We say that an
expression
Al LA]L
B

is a substitution instance of such a rule when there is a substitution ¢ such
that o(A;) = AL and o(B) = B'.

Let T' be some theory in a language L . We say that a rule A/B is an
admissible rule of T, and write A 7B, if

for all L-substitutions o: if T'F 6(A) then T F o(B).

2.1.1 Bases

For a set of rules R and a set of formulas A, we say that B is derivable
i T by the set of rules R from assumptions A when there is a sequence
of formulas (By,...,B,), where B, = B, such that for every i < n either
B; € A or there are B;,,...,B;, with ¢; <1 such that either

|—T(BZ'1/\.../\BZ'm)—>B

or
B ...B;

B;

m

is a substitution instance of some rule in R.

We call a set of rules R a basis (in T') [Rybakov 97] for some other set of
rules R’ O R if for every rule

Ay A,
B
in R', B is derivable in T' by the rules R from the assumptions Ay,..., A,.

We say that a set R of admissible rules of T is a basis for the admissible
rules of T when R is a basis for the set of admissible rules of T.



In the setting of theories with the disjunction property
DP ifTHFAVBthenTHAorTHB

the notion of a subbasis seems more natural. A set R of admissible rules
of T is a subbasis for the admissible rules of T if the following collection of
rules is a basis for the admissible rules of T';

AVp

BVop

where the rule A/B is in R and p does not occur in A or B.

2.2 Kripke models.

A frame is a set with a partial order <. We say that z is below y or y is
above x when © < y. A node y is called an immediate successorof z if z < y
and, besides y, no node z which is above z is below z. A mazimal node is a
node which has no nodes above it except itself.

With a model we always mean a Kripke model [Troelstra, Van Dalen 88].
We say that A is valid in a Kripke model K (K | A) if it is valid at all
nodes in the model. We use I for the forcing relation of a Kripke model. We
write K, for the model whose domain consists of all nodes y > = and whose
partial order and forcing relation are the restrictions of the corresponding
relations of K to this domain. We write K,z IF A if we want to stress that

z Ik A holds in the model K.

For Kripke models Ki,..., K, we let (>, K;)" denote the Kripke model
which is the result of attaching one new node at which no propositional
variables are forced, below all nodes in K1y,..., K, [Smoryfski 73]. A rooted
Kripke model is a Kripke model which contains one node which is below all
other nodes in the model. We say that two rooted Kripke models are variants
of each other when they have the same domain and partial order, and their
forcing relations either do not differ or they only differ at the roots.

A theory T has the extension property up to n if for every family of rooted
models Ky,..., K, of T, there is a variant of (3, K;)" which is a model of
T as well. A theory T has the extension property if it has the extension
property up to n, for all n.

A modified Jaskowski frame [Smoryniski 73] is one of the frames Jy, Jo, ...
defined via:



Jq consists of one node
Jn41 is the result of attaching one node below (n + 1) copies of J,,.

(In [Smoryniski 73] J; is denoted with JF.) A Jaskowski model is a model
based on a modified Jaskowski frame.

A basic model is a model for which the following holds:

e the only nodes that force propositional variables are maximal nodes,

e every maximal node forces exactly one propositional variable and no
two maximal nodes force the same propositional variable.

For example, if 1,...,n are the maximal nodes of a frame F, then the
model given by the valuation (z IF p; iff z = ¢) is a basic model on F. A
basic Jaskowski model is a basic model based on a modified Jaskowski frame.
It is easy to see that the following fact about basic models holds.

Fact 2.3 Let I' be a frame in which no two nodes have exactly the same
maximal nodes above them. Consider the basic model on F. There are
formulas A, such that y IF A, iff z < y. Namely, if 1,...,n are the maximal
nodes above z and ¢ |- p;, then the formula A, = ==(py V...V p,) has the
desired properties.

3 The characterization of IPC.

In [Iemhoff] we gave a subbasis for the admissible rules of IPC. To keep the
definition of the rules of this subbasis readable, we will use the following
abbreviation,

(A)(B1,... ., By) =ay (A — B1)V ...V (A — By,).

Furthermore, we adhere to some reading conventions as to omit parentheses
when possible. The negation binds stronger than A and Vv, which in turn
bind stronger than —.

Definition 1 Let V be the collection of rules {V,, | n = 1,2,...}, where we
define rules V,, as

Vi (Nima(pi = @i) = vV s) [ (Niza (i = @6))(r58,p15 -5 )-

Theorem 3.1 [lemhoff] The set of rules V is a subbasis for the admissible
rules of IPC.



The rest of the paper is devoted to the proof that these admissible rules
together with the disjunction property characterize IPC. That is, we will
show that for any intermediate logic which is not equal to IPC either the
disjunction property does not hold or one of the rules Vi, V5, ... is not ad-
missible. It is convenient to have the disjunction property built-in into the
admissible rules. Therefore, we define the following.

Definition 2 A theory 1" has the property P, if for all substitutions o,

it Fro(A_y(pi — ¢;) — 7V s) then
Fr o(N\imy(pi — ¢;) — 1) or b o( Ny (pi — ¢;) — ) or
Fro(A_y(pi — @) — p1) or ... or br (A (pi — ¢) — pa)

We will show that an intermediate logic is equal to IPC iff it has the property
P,, for all n > 0. The characterization mentioned above is an immediate
corollary of this.

Note that having the property Fy is equivalent to having the disjunction
property. Moreover, having P, for all n > 0 is the same as having the
disjunction property and the rules V,, for n > 1 admissible.

We need a Fact by Smoryniski:
Fact 3.2 [Smoryniski 73] IPC is complete with respect to Jaskowski models.

Lemma 3.3 If an intermediate logic has the extension property it is the

logic IPC.

Proof The lemma follows from the following two claims.

Claim If T is an intermediate logic with the extension property, then every
basic Jaskowski model is a model of T'.

Proof of the Claim Let T be an intermediate logic with the extension prop-
erty, and let /' be a basic Jaskowski model (Section 2.2). We show that
K, is a model of T' by induction to the depth of the node z. The maximal
nodes of K clearly are models of T since every classical model is a model
of T'. Suppose z is another node in K and let x1,...,z, be the immediate
successors of x, i.e. the nodes y such that z < y and such that there is
no node z < z < y. By induction the models K, ,..., K, are models
of T. Observe that K, is the model (3>~ K,,) (Section 2.2). Because every
propositional variable is valid at just one node in K there is no other variant
of (37 K;,) then the model itself. Since T has the extension property this
implies that K, is a model of T'. This proves the Claim.



Claim If T is an intermediate logic such that every basic Jaskowski model
is a model of T, then T = IPC.

Proof of the Claim We show that T C IPC by proving that if F/jpc A then
Vr A. If t/ipc A then there is a Jaskowski model K on which A is not valid
(Fact 3.2). Let K’ be a basic model based on the frame of K. By assumption
K’ is a model of T

Now we define a substitution o via o(p) = V¢ ., Az, where the formulas
A, are given by Fact 2.3. To see that o(A) is not valid at K’, observe
that for every node x and for every formula B we have that K,z |F B iff
K' 2 IF o(B). Therefore, /7 6(A). Hence t/7 A. QED

In the following lemma we need the notion of a saturated set. A T-saturated
set x is a set of formulas such that A € x or B € x whenever 2z F7 AV B.
In particular, a T-saturated set is closed under deduction in 7.

Lemma 3.4 If an intermediate logic has the property P, for every n > 0,
then it has the extension property.

Proof Let T be an intermediate logic with the disjunction property, for
which, for all n, V,, is admissible. Consider models Ky,..., K, of T" with
roots x1,...,x, respectively. From now on we confuse a node with the set
of formulas it forces.

Claim There exists a T-saturated set # C 7 N ...N z, such that for all

T-saturated sets x C y there is some 7 < n such that x; C ¥.
Proof of the Claim Consider

A={(F—=F)|Fdaxin...0z,and Fez1N...Nx,}.

Clearly, A C @y N...Na,. Observe that the set 29 = {A | A Fr A} is
T-saturated because for all m, the property F,, holds. Now we construct a
sequence of sets g = z9 C z1,... as follows. Let Cy, C4,... enumerate all
formulas, with infinite repetition. Define the property *(-) on sets via

«(y) iff  for all m, for all Ay,... A, if y b Ay V...V A, then

Ai€exyn...Nz, forsomer=1,...,m.

Note that #(zp) holds. If x(z; U {C;}) does not hold then put z11 = z.
If (2 U {C;}) holds do the following: if C; is no disjunction, put z41 =
zU{C; 1 if Cp = DV E, let z41 be z,U{D}if #(z,U{D}) holds and z, U{F}
otherwise. It is easy to see that at least one of *(z; U{D}) and *(z U{F})



has to hold. Therefore, x(z;) holds for all ¢. Let 2 = |, z;. Clearly, = is
T-saturated and x C 21N ...Nx,.

Finally, we have to see that for all T-saturated sets # C y thereis somet < n
for which z; C y. Arguing by contradiction assume y D z and z; € y for all
¢ < n. From the construction of z it is easy to see that y € 21 N ...Nx,.
Thus there are formulas FF € y, E ¢ z1N...Nx, and A; € x;, A; &€ y, for
all < n. Hence (F — A; V...V A,)€A. Thus A4, V...V A, €y, quod
non. This proves the Claim.

Now we define a variant of (}_ K;)" by putting at the root b of (> K;)', for
propositional variables p, b I p iff p € x.

Claim For all formulas B: bIF B iff B € «.

Proof of the Claim We prove this by formula-induction. The case of the
propositional variables and the connectives A and V is trivial. Consider a
formula B = (C' — D). If (C — D) € x then it is easy to see that indeed
b Ik (C — D). We prove that z I B implies B € z by contraposition.
Therefore, assume (C' — D) ¢ z. It is not difficult to see that this implies
the existence of a T-saturated set y O x such that C' € y and D ¢ y. From
the construction of z it follows that = y or ; C y for some ¢ = 1,...,n.
In the first case the induction hypothesis gives b I+ C' and b | D, thus
blf (C — D). In the other case it follows that for some ¢, z; If (C' — D).
Thus again we can conclude that bl (C'— D). This proves the claim.

By the last claim the defined extension is a model of T'. This proves that T
has the extension property. QED

These two lemmas lead to the following characterization of IPC:

Theorem 3.5 For any intermediate logic T it holds that T" = IPC iff T has
the property P, for every n > 0 .

Corollary 3.6 For any intermediate logic T it holds that T' = IPCiff T has
the disjunction property and all the rules V,, are admissible. Thus IPC is
maximal with respect to V and hence maximal.

4 Optimality of the characterization

We show that no finite subset of the P, already characterizes IPC. This
proves our characterization to be optimal. Note that it is not interesting
to consider infinite subsets of Fy, Py, Py, ..., since, for any logic, having the
property P,,4+1 implies having the property P,,.



We use logics D,, (n > 1) given by Gabbay and de Jongh (1974). The logic
D,, axiomatized by

n+l n+1
A=\ pi) =\ p) =\ v
i=0 j#i j#i i=0

We quote

Theorem 4.1 ([Gabbay, De Jongh 74]) The intermediate logic Dy is a proper
extension of IPC with the disjunction property. D, is complete with respect
to the class of finite trees in which every point has at most (n+1) immediate
SUCCESSOTs.

Knowing this, it is easy to prove the following lemma.

Lemma 4.2 The logic D, has the property P,41 and it does not have the
property P, 1o.

Proof To see that D,, has the property P,y1, suppose D,, derives (A —
DV E), where A = /\?;11(32' — (), and suppose that D, does not derive
(A)(B1,...,Buy1, D, ). By the disjunction property and the completeness
of D, this implies that there are models K;, such that K; = A and, for
i<n+1, K; £ B;and K, 42 £ D and K, 43 [~ E. Furthermore, the frame
of every K; is a finite tree in which every node does not have more than
(n + 1) immediate successors. Consider (((X1F] K;) + Kpya)' + Knys)'
Clearly, the frame of this model is again a finite tree in which every node
does not have more than (n 4 1) immediate successors. In this model A is
valid while (D Vv F) is not, contradicting the assumption that D, derives
(A — DV E)

To see that D, does not have the property P,2 consider the axiomatization
of D,. It is easy to see, using the completeness of D,, that D,, does not derive

n+1
(A= Vri) =N ewo—= N pi)eos(parr — \/ pi))-
=0 j#i j#i j#0 j#ni1

QED

Corollary 4.3 No finite subset of Py, Ps,... characterizes IPC.

10



In fact, D, is characterized by P,41 in the same way as IPC is characterized
by all the Py, Py,..., see Corollary 4.7. The proof of this proposition is
analogous to the one of Theorem 3.5: the next lemma is the analogue of
Lemma 3.3 and the following one is the analogue of Lemma 3.4.

Lemma 4.4 If an intermediate logic has the extension property up to (n+1)
it is contained in D,,.

Proof It easily follows from Theorem 4.1 that D, is complete with respect
to the class of the finite trees in which every point has at most (n 4 1)
immediate successors, and in which no two nodes have exactly the same
maximal nodes above them. To be precise, the last property reads:

VaVydz(z £y — -3 <)N (e 2hy 4 2)V(y< 2z he 4 2))).

Suppose D, I/ A and let M be a model based on such a frame F in which
A is not valid. Let M’ be a basic model on F' (Section 2.2). By the same
reasoning as before it follows that M’ is a model of T'. Define the substitution
o via o(p) = \/M,xH'p A, where the formulas A, are given by Fact 2.3.
Clearly,

M,z IF B iff M’ z IF o(B).

Thus /7 o(A). Hence /1 A. QED

Lemma 4.5 If an intermediate logic has the property P, it has the exten-
sion property up to n.

Proof Let T be an intermediate logic that has the property P,. The proof
that T has the extension property up to n is completely similar to the proof
of Lemma 3.4, except for one point, which we will explain. The rest of the
proof we leave to the reader.

In the first Claim of Lemma 3.4 we define a set A and observe that, in the
notation of this lemma, the set 2o = {A | A br A} is T-saturated because
for all m, P,, holds. In this case, having only P,, this is the only place in
the proof where we have to be careful. Assume zo F7 AV B. Hence there

are F,... . B, ¢x1N...0x, and Fy,...,F, €x1N...Na, such that
Fr \(Ei — F;) — AV B.
=1

11



Fori < mn,let G; = \V{E; |j <m,E; € 2;} and let ' = A", F;. Observe
that G; € z; and that (G; — F) € A. Clearly,

Fr /\(Gz’—>F)—>A\/B.

=1
And thus, since T has P,, we can conclude

n

Fr (N (G = F)(Gh,... .Gy A, B).

=1
Since A_1(G; — F) € z1N...Na, while G; € 21 N...Nx,, we have either

Fr /\(G¢—>F)—>Aor Fr /\(Gi—>F)—>B_

And because zg b7 A_;(G; — F) either a9 k7 A or 29 Fr B. And this
proves that z¢ is T-saturated. QED

Proposition 4.6 Any intermediate logic T which has P,4; is contained in
D,.

Corollary 4.7 For any intermediate logic T D D, it holds that T = D,, iff
T has P,4q1. Thus D, is maximal with respect to V,,;1 and hence maximal.

Since the union of the D, is equivalent to IPC, Theorem 3.5 follows from
the previous proposition. However, we preferred to give a separate proof of
the theorem in advance.

5 Effectiveness

De Jongh (1970) proved the following characterization of IPC in terms of the
Kleene slash | [Kleene 62]: IPC is the only intermediate logic 7" satisfying

if Alr Aand Fr (A — BV ), then by (A — B)or Fr (A —C).

We remind the reader that the Kleene slash is defined as (using the abbre-
viation I' Ik A = (I'|rA and ' Fr A))

12



Llrp = I k7 pfor p a propositional variable or L
F|TA/\B = F|TAandF|TB

F|TA\/B = I'trAorT'ltp B

'\t A— B = Tlrr Aimplies T' |7 B.

Moreover, De Jongh proved in the same paper that this characterization is an
effective one: given any intermediate logic T # IPC we can obtain formulae
A, B,C such that A |7 A,Fr (A — BV () but Y7 (A — B),Vr (A — C)
in an effective way. We show that the characterization in terms of the
admissibles rules treated in this paper, is effective as well, by giving an
effective reduction from the characterization in terms of the Kleene slash to
the one in terms of the admissible rules.

Let us call, for now, a triple of formulas A, B, C a J-ezample or an I-example

of T #IPC if
Alr A, br (A= BV ), ¥r(A— B), ¥r(A—C)
respectively A = A(D; — F;) and
Fr (A — BV ), #r (A= B), Yr (A—C), ¥r (A— D).
The following proposition is trivial except for the effectiveness.

Proposition 5.1 For any intermediate logic T" # IPC there is an effective
way of creating an /-example from a J-example, and vice versa.

Proof During the proof -, | stand for k7, | respectively. The second part
of the proposition is easy: any [-example A = A(D; — E;), B,C of T' # IPC
is a J-example because I/ (A — D;) for all 7, implies A | A.

For the other part, suppose A, F,G is an J-example of T # IPC. We are
going to construct, in an inductive way, formulas Ay, A,,... which are all
equivalent to A in T'. Every A; is a conjunction of propositional variables,
disjunctions and implications such that for the implications (B — C') either
A; | (B — C)or A; i/ B, and for the disjunctions B, A; | B. Note that A
is such a formula. Let Ay = A. During the construction we will often use,
without mentioning, the fact that if ¥ | F and F £ < E’ then E'| F.

If A; is a conjunction in which one of the conjuncts is a disjunction (note
that this captures the case that A; is a disjunction), let (B V C') be the first
such reading from left to right. Thus A; = DA (BV C)A E for some D, E.
By assumption A4; | (BV C'). Hence A; IF B or A; IF C. In the first case put
Aiy1 = DABALE,in the second case A;11 = DACAE. Now consider the case

13



that A; is a conjunction of implications and propositional variables. If every
conjunct either is a propositional variable or an implication (B — (') such
that A; ¥ B, put A;41 = A;. If not, let (B — (') be the first implication,
reading from left to right, such that A; - B. Thus A; = DA(B — C)AE
for some D, F. By assumption 4; | (B — C'). We inductively define A;4;.

* If B = p, put Ajy1 = DAC A E. Note that A,y | C since 4; | C
which again follows from A; | (B — (') and A; I+ B.

x If B = By A By observe that A; = B implies - A; < D A (B; —
CYNE < DNCAE. Hence DA (B; — C)ANEF Bj. If for some j = 1,2,
DA(B; — C)ANE | (B; — C),let Aiyq = DA(Bj — C)AE. It cannot be that
forno j, DA(B; — C)AE | (B; — (). Forifso, then DA(B; — C)AE IF B;.
Hence DA (B — C)ANE IF B, and so DA (B — C)ANE | C. Whence
DANCAE]|C and thus DA (B; — C)ANE | (B; — C'), a contradiction.

*If B = By V By observe that F A; = DA(By — C)A(By = C)ANE
and that A; | (B; — C). Put Aipy = DA (B — C)A (B — C)A L.

* Finally B = (B1 — By). If A; If By or A; | By then A; IF B and
therefore A; | C. Put A,y = DAC A E. If A; IF By and not A; | By then
FA, < DAByA(By — C)AE and clearly A; | By and A; | (Bz — C). Put
Ait1 =D AN By AN(By — C) A E. This ends the construction of the A;.

It is easy to check that the A; have the desired properties. Moreover, the
construction shows that eventually A; = A;41. Hence A; is a conjunction of
propositional variables and implications A/_; p; A A/, (B; — C;) such that
At/ B;. Let A" = N\ {(B; — ;) and let o be the substitution which is the
identity on all variables except p1,...,p,, on which it is T. Hence o(4;) is
equivalent to o(A’). Since A; is equivalent with A in T,

Clearly, we have
F(0(4) = o(I) V o(G)),

In general, nonderivability is not preserved under substitution but this par-
ticular choice of ¢ leads to

7 (o(A) = o(F)), ¥ (a(A) = (@), ¥ (a(A) = o (Bi)).
Hence o(A’),o(F),o(G)is an I-example of T' # IPC. QED
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