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Abstract

This note consists of a collection of observations on the notion of sim-
plicity in the setting of proofs. It discusses its properties under formal-
ization and its relation to the length of proofs, showing that in certain
settings simplicity and brevity exclude each other. It is argued that
when simplicity is interpreted as purity of method, different founda-
tional standpoints may affect which proofs are considered to be simple
and which are not.
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1 Introduction

Mathematics is the science par excellence that can be simple and complex
at the same time. Complex in its intricate arguments, yet simple in the
structure that proofs are required to have, or in the theories that underlie
these proofs. In contrast with the use of the word in daily life, in mathe-
matics, a simple argument does not necessarily mean that it is easy to find.
There exist simple yet ingenious proofs that took some years to be discov-
ered. Paradoxes are an example, where Frege was unaware of a paradox in
his formal system until Russell proved there to be one. Also, it often is the
case that the first proof found for a theorem is not the most simple one and
that only later simpler proofs than the original one are discovered.

What then are simple proofs? That question is not easy to answer, and I
will not attempt to do so here. Rather, this note addresses certain aspects
of that question. In particular, its possible meaning in the setting of formal
systems, and its relation to the notion of purity of method. It is furthermore
claimed that in certain settings some forms of simplicity exclude brevity or
shortness of argument in that there are theorems for which no proof can be
both short and simple.
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This note is loosely based on a talk that I presented at the conference Sim-
plicity. Ideals of Practice in Mathematics & the Arts that took place at City
University of New York, April 3-5, 2013. It is not meant to be a philosophical
account of simplicity in mathematics, but rather a collection of observations
from a working mathematician on the matter.

2 Formalization

Most of us will agree that Carl Friedrich Gauss’ famous argument that the
sum of the first n natural numbers is equal to n(n+ 1)/2 is simple:

Proof The following sum shows that 2
∑n

i=1 i = n(n + 1).

1 + 2 + . . . + n
n + n− 1 + . . . + 1 +

n + 1 + n + 1 + . . . + n + 1 = n(n + 1)

Therefore
∑n

i=1 i = n(n+ 1)/2. qed

And most of us will also agree that the proof by Andrew Wiles of Fermat’s
Last Theorem is complex (even without having seen it).

The two proofs illustrate many aspects of simplicity: the first is short and
the reasoning is elementary, the second one is long and complicated, too
complicated for most mathematicians to understand, actually. Gauss’ proof
also illustrates something else, namely that the simplicity of a proof may
depend on the background theory that in the practice of mathematics is
mostly kept implicit. It uses, for example, several facts about the operations
of addition and multiplication on the natural numbers that are not explicitly
mentioned.

The proof given above we call informal to contrast it with a proof in a
formal theory in which every step is made explicit. Now although a formal
proof in general does not look like an informal proof, still, given a theory,
one can speak of an informal proof being expressed formally in the theory.
This means that what one considers the proof idea in the informal proof,
its essence, is faithfully translated into the formal setting. For example, in
Gauss’ proof above, one could require of a faithful formalization that the
idea of summing up the first n numbers twice is part of the formalization.

One would expect that the simplicity of an informal proof is somehow re-
flected in faithful formalizations. On the other hand, the form of the foun-
dational theory very much influences the form of its proofs. Clearly, in a
formal theory that is minimal, proofs of even the simplest facts may be long
and cumbersome. And the richer and stronger the theory, the simpler the
proofs will be. In the extreme case a proven statement could be added to a
theory as an axiom and the statement thereby receives a trivial and certainly
simple proof in the new system thus obtained.
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This, however, does not seem to be a strong argument against the inde-
pendence of the notion of simplicity from formalization, as the theories in
which we wish to carry out the formalization should be foundational theo-
ries, meaning that on the one hand they consist of axioms and rules which
are evidently true and on the other hand are strong enough to formalize all
or almost all of mathematics. Therefore we will only consider foundational
theories as formal theories in which to formalize mathematical proofs. In
general, adding a theorem to a formal system will result in a theory not
satisfying the first requirement of a foundational theory, which is why the
extreme case described above does not have to be considered.

One could require of the foundational theory that the idea of Gauss’ proof
as given above is expressible in a natural way and then claim that that proof
is simple and will be so in every sufficiently strong foundational theory. But
although this sounds perfectly natural at first, it may not always be easy or
possible to determined which foundational theories satisfy these constraints.
To explain my point, let us consider two foundational theories: type theory
and set theory.

Over the last years type theory, and in particular homotopy type theory, has
gained increasing attention as a foundational theory for mathematics, while
set theory has been considered by many to be the main foundational theory
for already a long time. Interestingly, fundamental concepts such as the
natural numbers are treated very differently in type theory and set theory.
Thus it is conceivable that certain intuitive proof ideas can in one theory be
captured by simple and natural formulations and in the other theory only
by complicated ones or cannot be captured in a faithful way at all. For such
statements the notion of simplicity still makes sense for the informal proof,
but it is not quite clear how to transfer it to their formalized versions, as it
seems to depend very much on whether one works in the type–theoretic of
the set–theoretic framework. Thus the above argues that while simplicity,
even though hard to define, seems to be a genuine property of informal
proofs that some satisfy and others do not, it may be hard to determine in
how far such a property is preserved under formalization and to establish
which foundational theory captures the informal arguments best.

3 Foundational theories

What about foundational theories themselves? Is there a way to distinguish
the simple from the complex as it comes to foundational theories? Do there
exist simple foundations for mathematics? Albert Einstein, in a famous
quote has said: I have deep faith that the principle of the universe will be
beautiful and simple1. By which, I think, he meant that the foundations

1Another quote on simplicity by Einstein that I love but that is somewhat beside the
point here: Everything should be made as simple as possible, but not simpler.
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of physics could be captured in simple laws. Mathematicians and philoso-
phers have shown similar believe in the simplicity of the fundamentals of
mathematics. By trying to reduce mathematics to logic, for example. Here
simplicity should, I think, be read as self-evident.

The existence of a self-evident foundational theory would, of course, not
exclude the possibility that some theorems have complicated proofs, but
it would show that ultimately, truths can be reduced to a set of simple
principles. Under the strict interpretation, meaning that the theory should
be complete and really elementary, Kurt Gödel has proved this to be im-
possible. But under the weaker interpretation, meaning that the theory,
although maybe not elementary or complete, is evident and large parts of
mathematics can be carried out in it, such theories do indeed exist.

Given such foundational theories, the question naturally arises, which is the
most fundamental, or self-evident, or simplest one. Three questions that
although not strictly equal are intimately linked. The discussion above about
set theory and type theory indicates that it may be hard to conclusively
state which theory is more fundamental or self-evident than the other. And
it may well be that it depends on the subject one wishes to capture in the
foundational theory which is the better choice in terms of simplicity and
self-evidence.

4 Purity of method

Closely related to simplicity is the notion of purity of method which refers
to the property of proofs of being pure, where, following Detlefsen (2008),
proofs are called pure if they concern themselves only with the concepts
contained in the theorems proved. Such pure proofs should, for exam-
ple, not contain reasoning about geometrics objects when the conclusion
of the proof is a statement about the natural numbers. The Prime Num-
ber Theorem roughly stating that the asymptotic behavior of the number of
primes not exceeding a given number n is n/logn, illustrates this phenomenon
nicely. The first proofs of this theorem were given by Jacques Hadamard
and Charles Jean de la Vallée Poussin independently (Hadamard, 1896; de
la Vallée Poussin, 1896). These proofs were not elementary in that they
referred to objects far more complex than numbers, using techniques from
complex analysis, while the elementary proofs later found independently by
Atle Selberg (1949) and Paul Erdös (1949) did not.2

But is it correct to consider the later proofs more elementary than the first
ones? In some cases it seems more or less clear that a proof method is not

2Interestingly, David Goldfeld (2004) cites Godfrey Harold Hardy from a lecture to the
Mathematical Society of Copenhagen in which he says about the theorem (Bohr, 1952):
A proof of such a theorem, not fundamentally dependent on the theory of functions, seems
to me extraordinarily unlikely.
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pure, as is the case for the use of mechanics in analysis. As pointed out
in (Arana and Detlefsen, 2011), the mathematician Joseph–Louis Lagrange
(1736–1813), who tried to liberate analysis from such impure notions thus
pursued what might be called a purification program. However, in other
cases it is not so clear what purity means, as it seems to depend on the way
in which a theorem is presented. If a theorem about natural numbers has
a proof that uses geometry of the plane, then by restating the theorem in
terms of line segments its proof may, after all, be considered to be pure. A
counter argument to this kind of reasoning could be that the theorem should
be stated in its purest form. But whether there exists such a form is not
easy to establish. Consider, for example, category theory or algebra versus
proof theory. Logical notions such as theories, unifiers, and interpolants
have very different definitions in these two settings, and it is therefore hard
to conceive that there is a unique purest form for these notions. The fact
that proof–theorists, like myself, sometimes reprove theorems for which the
original proof is categorical and category–theorists do the converse, seems to
support the idea that there is not one purest version of a theorem or proof.

In category theory one aims to put a notion into its proper categorical
context in order to start reasoning about it. In proof theory one does the
same, but then for a proof–theoretic rather than a categorical context. These
contexts are very different in nature. Broadly, one could say that in category
theory one provides a lot of structure and then considers a notion as part
of that large framework. Proof theory, on the other hand, is in general
more concerned with the generation of structure from below: one supplies
some minimal principles that should be satisfied and then reasons about the
notion on the basis of these principles. Any of the two approaches is superior
over the other with respect to some theorems in that these theorems have
shorter proofs in that foundational system than in the other. Therefore it
seems at present hard to decide which foundational view is likely to produce
more or purer proofs than the other, and it may well be that the outcome
depends on the theorem or subject at hand.

Arana and Detlefsen (2011) discuss the epistemological significance of a
conception of purity that they call topical. They argue convincingly that
this significance lies in providing stable means of reducing certain ignorance
in investigations. I would like to add that the distinction between proof–
theorists and category–theorists elaborated on above may be exploited here
as well. It namely shows that in practice it may be hard to settle whether
there has been sufficient reduction of ignorance, since an argument may
reduce the ignorance of a logician of the first kind more than of a logician of
the second kind, or vice versa. Still, given a specific view on mathematics, be
it proof–theoretical or categorical or otherwise, I think the notion of purity
is meaningful against such a background and the theory developed in (Arana
and Detlefsen, 2011) insightful and plausible.
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5 Brevity

Jean Dieudonné (1969)3 wrote: . . . and that it is good discipline for the
mind to seek not only economy of means in working procedures but also to
adapt hypotheses as closely to conclusions as possible. When interpreting
closeness as not containing notions that are not directly related to those in
the theorem, then the question arises whether what Dieudonné aims for can
always be achieved, that is, whether proofs can be both short and simple. In
this section, a proof is considered to be simple if it is close to the theorem it
proves, and thus does not contain notions with no or only a distant relation
to the ones in the theorem.

There are examples in the literature that suggest that at least in certain
settings proofs cannot be both short and simple in the sense just defined.
For example, in the setting of predicate logic a somewhat restrictive but
reasonable interpretation of closeness could be that of being cut–free, where
proofs are presented in a sequent calculus. The sequent calculus is a proof
system (or rather a family of proof systems) that manipulates sequents, ex-
pressions consisting of and corresponding to formulas, in an elegant, concise
manner, which renders it convenient for reasoning about meta–mathematics.
Without defining what cut–free means, what is important for this exposi-
tion is that in cut–free proofs all formulas are, in some sense of the word,
subformulas of those in the conclusion of the proof, which is why being cut–
free may be considered a reasonable interpretation of closeness. Since it has
been shown that there exist tautologies that have short proofs but no short
proofs that are cut–free, under this interpretation there are theorems for
which there do not exist proofs that are both short and simple.

This phenomenon, that proofs cannot be both short and close to the theorem
they prove, also occurs elsewhere. In propositional logic it is possible to
express for every n the n-th Pigeonhole Principle stating that when n + 1
pigeons are placed in n holes at least one hole must contain more than one
pigeon. These principles have simple proofs in the sense of being close to the
principle they prove, but these proofs are long, of size exponential in n. Sam
Buss (1987) developed an ingenious method to express and use counting in
propositional logic and obtained short proofs of the Pigeonhole Principles
that are of size polynomial in n. These proofs, however, are complicated
and could be considered less close to the Pigeonhole Principle and thus less
simple. Therefore the example of the Pigeonhole Principle suggests that
also under this reading of simplicity shortness and simplicity may in certain
settings exclude each other.

This tension between length and simplicity is well-known to everybody who
has ever tried to write down an interesting proof in a formal system or in
a programming language. The more the individual steps in the proof are

3page 11
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reduced to evident logical inferences, the longer the proof gets. On the other
hand, the more high–level concepts are allowed in the reasoning, the shorter
the proof may become. But that such notions as shortness and simplicity
have formal counterparts that actually display behavior that the informal
notions seem to suggest, illustrates in a striking manner that, at least in this
case, formalization can capture certain aspects of shortness and simplicity
faithfully.

6 Proofs, short and simple

In conclusion, drawing from my own experience I have argued in the above
that it may be hard to establish whether simplicity is preserved under for-
malization, and whether a foundational theory is simpler or more fundamen-
tal than another. I have discussed aspects of the concept of purity in the
setting of proofs and provided examples illustrating that for certain inter-
pretations of simplicity, shortness and simplicity exclude each other in that
there are true statements that cannot have proofs that satisfy both proper-
ties, as least in certain settings. These observations are meant as fruit for
thought rather than as a full account of the notion of simplicity of proofs.
The notion is a natural albeit complicated one, which is why the title of
this section is meant slightly ironically, as in the study of simplicity in the
context of proofs hardly anything is ever short and simple.

References

Bohr, H. Address of Professor Harold Bohr. In Proc. Internat. Congr. Math. (Cam-
bridge, 1950) vol 1, Amer. Math. Soc., Providence, R.I.: 127–134 (1952)

Buss, S. Polynomial size proofs of the propositional pigeonhole principle. Journal
of Symbolic Logic 52: 916–927 (1987)
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