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Abstract

This paper contains a proof-theoretic account of unification in transitive
reflexive modal logics, which means that the reasoning is syntactic and
uses as little semantics as possible. New proofs of theorems on unifica-
tion types are presented and these results are extended to negationless
fragments. In particular, a syntactic proof of Ghilardi’s result that S4
has finitary unification is provided. In this approach the relation between
classical valuations, projective unifiers and admissible rules is clarified.
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1 Introduction

When restricted to propositional logic, unification theory is concerned with the
problem whether a given formula can become derivable under a substitution. In
general, a unification problem asks for the unifier of a pair of terms, or collection
of pairs of terms, which in the context of a logic is a substitution under which two
formulas become equivalent in the logic. This, however, can be reformulated as
the problem of finding a substitution under which a formula becomes derivable.
Such substitutions are called the unifiers of a formula.

In classical propositional logic every consistent formula has a unifier, because
every satisfying valuation corresponds to a ground unifier that replaces the
atoms in the formula by > or ⊥. A substitution is a maximal unifier (mu) of
a formula if among the unifiers of the formula it is maximal in the following
ordering:

τ 6 σ ≡def ∃π(τ =L πσ),

and it is a most general unifier (mgu) if it is also unique modulo =, which is the
intersection of 6 and >. Here =L is the equivalence relation on substitutions
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associated with the logic: σ =L τ if and only if σ(p) ↔ τ(p) is derivable for all
atoms p. If τ 6 σ we say that τ is less general than σ.

Mgus generate all unifiers of a formula, which is the reason that they play
an important role in unification theory. In classical propositional logic every
unifiable formula has a mgu, but this no longer holds for intermediate and modal
logics, as was first observed by Ghilardi [8, 9]. For modal logics, which will be
the logics this paper is concerned with, the formula 2p ∨2¬p is an example of
a formula that has two unifiers such that neither one is less general than the
other, namely σ0(p) = > and σ1(p) = ⊥. Thus this formula has no mgu. But,
as Ghilardi showed in [9], for many transitive modal logics, something almost as
good holds: instead of unitary unification these logics have finitary unification,
which is defined as follows.

A complete set of unifiers for a formula is a set of unifiers such that every unifier
of the formula is less general than a unifier in the set. It is minimal if no two
unifiers in the set are comparable with respect to 6. A logic has unification type

◦ unitary if every unifiable formula has a mgu,

◦ finitary if every unifiable formula has a finite complete set of mus,

◦ infinitary if every unifiable formula has a (in)finite complete set of mus,

◦ nullary if none of the above.

The classes are meant to be disjunct. For example, in a logic of unification type
infinitary there exists at least one formula that has no finite complete set of
mus. As was mentioned above, classical logic has unitary unification type, and
several transitive modal logics, including the well-known logics K4, S4, and GL,
have finitary unification. For example, in the example above {σ0, σ1} is a finite
complete set of mus for 2p ∨2¬p in K4, S4, as well as GL.

In this paper we extend these results to the negationless fragment of S4. How-
ever, our aim is not so much to extend Ghilardi’s results to this fragment, an
extension that is not terribly interesting and might have been obtained from
existing work on S4 anyway, but rather to give a proof-theoretic analysis of
unification in transitive modal logics.

Let us first describe how Ghilardi proves that S4 and several other modal logics
have finitary unification. In [9] it is shown that if A satisfies a certain semantical
property (the extension property), it has a mgu. Then it is proved that for every
formula A there exists a finite set of formulas with the extension property,
forming the projective approximation ΠA of A, such that every unifier of A is
less general than one of the mgus of the formulas in ΠA. These two theorems
then establish the finitary unification of S4.

Ghilardi uses semantics in the form of Kripke models to prove these theorems (in
fact, his results stem from a categorical approach to unification in logic). Our
Theorems 1 and 3 and Lemma 8 can be viewed as proof-theoretic analogues of
these theorems. They provide a syntactic closure condition on formulas which
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is sufficient for having a mgu. And they show that in S4 and its negationless
fragment, there is for every formula A a finite set of formulas that satisfy the
closure condition and such that every unifier of A is less general than one of the
mgus of the formulas in that set. Observe that this indeed proves that these
logics have finitary unification (Corollary 2).

Besides providing a proof-theoretic treatment of unification, another aim is to
clarify the relation between unifiers and valuations. The mgus that play an
important role in unification in modal logic often are projective, where a unifier
σ of a formula A is called projective if A ` σ(p) ↔ p for all atoms p, that is,
if A implies that the substitution is the identity. The projective unifiers that
Ghilardi introduced in [9] are compositions of substitutions of the form

σI(p) ≡def

{
A ∧ p if p 6∈ I
A→ p if p ∈ I,

where I is a set of atoms. It is not difficult to see that σI is a projective unifier
of A in classical propositional logic whenever A is valid under the valuation

vI(p) ≡def

{
0 if p 6∈ I
1 if p ∈ I.

One could view Theorem 1 below as an analogue of this fact for modal logic.

At the end of the paper we apply these results to admissible rules, which are the
rules under which a logic is closed. Jeřábek proved in [19] that the modal rules
V◦ (definition in Section 6) form a basis for the admissible rules of any extension
of S4 in which they are admissible. In Theorem 4 we show that this result can
be obtained via syntactic methods as well and extend it to the negationless
fragment of S4.

The restriction in this paper to reflexive logics is, we think, not essential for a
proof-theoretic treatment of unification, but it seems to simplify the reasoning
at some points, and we therefore leave the general case (fragments of K4) for
future work.

Finally, let us briefly discuss other work on unification and admissible rules in
modal logic. We restrict ourselves to the results that are relevant for this paper,
and will therefore not discuss intermediate logics or multimodal logics. Rybakov
was the first to prove the decidability of admissibility for various modal logics,
including S4. Chagrov constructed a decidable modal logic which admissibility
problem is undecidable [2], and Wolter and Zakharyaschev did the same for the
unification problem [28]. As mentioned above, Ghilardi introduced the notion of
projectivity for formulas and unifiers, proved that various modal and interme-
diate logics have finitary unification and showed that projective approximations
can be found effectively [9]. The latter also holds for the irreducible projective
approximations from [14] that we use in this paper. Ghilardi also provided an
elegant algorithm for deciding admissibility of several modal logics. Jeřábek in
[19] gave a basis for the admissible rules of various modal logics, including S4.
In [20] he showed that the admissibility problem of S4 and various other logics
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is coNEXP-complete. Iemhoff and Metcalfe in [14, 15] developed proof systems
for admissibility for K4, S4, and GL.

Dzik in several papers studied the lattice of transitive reflexive modal logics.
In [6] he showed that one can split the lattice in two parts in such a way that
one part, those logics that contain S4.2, contains all extensions of S4 that have
unitary unification, and that the other part contains all extensions of S4 that
have finitary unification. Dzik and Wojtylak showed in [7] that every logic
containing S4 has projective unification if and only if it contains S4.3, where a
logic has projective unification if every unifiable formula has a projective unifier.
In the same paper they also showed that among the extensions of S4.3 those
that are extensions of S4.1 are exactly those that are structurally complete.

The above provides but a short description of some of the literature on unifica-
tion in modal logic. For further references, see [1].

The inspiration for this paper is the proof-theoretic approach to unification in
intuitionistic logic as developed by Rozière in [26]. In [16] we have extended
these results to intermediate logics. I thank Emil Jeřábek, George Metcalfe,
and Paul Rozière for helpful remarks along the way, and an anonymous referee
for many comments that helped improve the paper.

2 The logics

The logics we consider are normal transitive modal logics that contain S4, as well
as the negationless fragments of such logics, which means those fragments that
do not contain ⊥ and ¬ but do contain all other connectives. The results in this
paper are proved for the full logics, but the extension to the negationless frag-
ments is straightforward: inspection of the proofs shows that only implication
and conjunction are explicitly used.

P = {p1, p2, . . . } is the set of propositional variables (also called atoms) and
p, q, r, s denote arbitrary elements of P. In the case that ⊥ is part of the lan-
guage, p, q, r, s range over P ∪ {⊥}. A,B,C denote formulas. F(p1, . . . , pn) is
the set of formulas in which only atoms in {p1, . . . , pn} occur. We use Γ,∆ to
denote finite sets of formulas. Sequents are expressions Γ ⇒ ∆, thus pairs of
finite sets of formulas. In the case that ⊥ and negation do not belong to the
language, we require that ∆ is not empty. S ranges over sequents. A sequent
is irreducible if it only contains atoms, boxed atoms (2p for an atom p), and
⊥. A formula is irredicuble if it is of the form I(S) for an irreducible sequent S.
S,G,H range over finite sets of sequents.

PG denotes the set of atoms that occur in G, and if ⊥ is present and occurs in
G, PG also contains ⊥. nG is the minimal n for which all atoms in G are among
p1, . . . , pn.

We need the following notation, where v stands for variable, b for box, i for
interior, a for assumption, and c for conclusion:

Γv ≡def {p | p ∈ Γ} Γb ≡def {2p | 2p ∈ Γ} Γi ≡def {p | 2p ∈ Γ)}
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(Γ⇒ ∆)a ≡def Γ (Γ⇒ ∆)c ≡def ∆

Skl ≡def (Sk)l k ∈ {a, c} l ∈ {a, c, v, b, i}.

For example, Sab is the set of boxed atoms in the antecedent of S. Sequents are
interpreted as formulas in the usual way: I(S) = (

∧
Sa →

∨
Sc). For notational

convenience we sometimes write S for I(S), for example in ` S, which thus
should be read as `

∧
Sa →

∨
Sc. Also expressions like “S is derivable” are

short for “I(S) is derivable”. The following sets play an important role in what
follows.

BG ≡def

⋃
{Sab | S ∈ G} ΣGS ≡def {p | G ` I(BS ⇒ p)}.

Sets of sequents are interpreted as conjunctions and we sometimes use the non-
calligraphic version of a letter to denote the corresponding boxed formula:

I(G) ≡def

∧
S∈G

I(S) G ≡def 2I(G).

When we speak of the unifiability of G, we mean the unifiability of G. Note that
reflexivity implies that ` G→ I(G).

We assume that the logics are given by consequence relations. In the setting of
rules it is convenient to consider multi-conclusion finitary structural consequence
relations, which are relations ` between finite sets of formulas satisfying

reflexivity A ` A,
weakening if Γ ` ∆, then Γ′,Γ ` ∆,∆′,
transitivity if Γ ` ∆, A and Γ′, A ` ∆′, then Γ′,Γ ` ∆,∆′,
structurality if Γ ` ∆, then σΓ ` σ∆ for all substitutions σ.

A finitary single-conclusion consequence relation is a relation between finite sets
of formulas and formulas satisfying the single-conclusion variants of the four
properties above. Thus for single-conclusion consequence relations the conclu-
sion of a rule cannot be empty.

The theorems of (the logic given by) a consequence relation ` are those A for
which ∅ ` A, which we denote by ` A, holds. There are many consequence
relations that correspond to a single set of theorems. Here we do not require
much of the consequence relation, except that A `L 2A holds for all A, and if∧

Γ→ A holds in the logic, then Γ `LA holds for the consequence relation `L.
A (multi-conclusion) rule is an expression of the form Γ/∆. It is derivable in a
logic given by consequence relation `L if Γ `LA for some A ∈ ∆, and admissible,
written Γ |∼ L∆, if for all substitutions σ, if σΓ consists of theorems of L, then σ∆
contains a theorem of L. Note that a logic has the modal disjunction property
(`L 2A∨2B implies `LA or `LB) if and only if {2p∨2q}/{p, q} is admissible.
Given a set of rules R, `LR is the smallest finitary structural multi-conclusion
consequence relation that extends `L in which all rules in R are derivable. For
more on consequence relations in this setting, see [18].
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3 Proof sketch

Given a formula A and a subset I of the atoms in A, consider the valuation vI
and substitution σAI given in the introduction:

vI(p) ≡def

{
1 if p ∈ I
0 if p 6∈ I σAI (p) ≡def

{
A→ p if p ∈ I
A ∧ p if p 6∈ I.

It is not difficult to see that if S consists of atoms, then for A = I(S), if
vI(A) = 1, then `L σAI (A). Also, A `L σAI (B) ↔ B for all B. Therefore, in
case vI satisfies A, σAI is a most general unifier of A in L. For if `L τA, then as
τA `L τσAI (B)↔ τB, also `L τσAI (B)↔ τB. That is, τ 6 σAI .

Because the logics contain (the negationless fragment of) S4, the above argu-
ments extends in the following way to irreducible sequents S: if vI(S

av ∪Sai ⇒
Scv) = 1, then σ

I(S)
I is a most general unifier of I(S).

One of the key observations in the results below, Corollary 1, states that a set
G of irreducible sequents closed under the rules V◦ is projective. The projective
unifier of the formula G, where G = 2I(G), is a composition of substitutions
of the form σGI , for some I. The main part of the proof of Corollary 1 is to
show that such a composition is a unifier for the formula, because the argument
above implies that if so, it is a most general one.

The proof that a certain composition σ = σn . . . σ1 of substitutions of the form
σGI is a unifier for G is based on the following simple observation. Writing σi for
σn . . . σi, to prove `L σG, one has to show that `L σ1S

a
1 ⇒ σ1S

c
1 for all S1 ∈ G.

For this it suffices to show that for some i2 ≥ 1 and for all S2 ∈ G:

`L σ1S
ab
1 ⇒ I(σi2S2). (1)

This would namely imply that `L σ1S
ab
1 ⇒ σi2I(G) and thus that `L σ1S

ab
1 ⇒

σi2G. And as the σj are such that `L G → σi2−1 . . . σ1G, an application of σi2
gives `L σi2G⇒ σ1G. Thus `L σ1S

ab
1 ⇒ σ1G, which implies `L σ1S

ab
1 ⇒ σ1S1,

as S1 ∈ G. And thus `L σ1S
a
1 ⇒ σ1S

c
1.

Repeating this argument shows that to prove (1) it suffices to show that for
some i3 ≥ i2 and for all S3 ∈ G:

`L σ1S
ab
1 , σi2S

ab
2 ⇒ I(σi3S3). (2)

Continuing this argument, one sees that in order to prove `L σG it suffices
to show that for all possible sequences S1, . . . , Sm of sequents from G and all
numbers 1 ≤ i2 ≤ i3 ≤ · · · ≤ im there is an j ≥ im such that for all S ∈ G:

`L σ1S
ab
1 , σi2S

ab
2 , . . . , σimS

ab
im ⇒ I(σjS). (3)

Reasoning as above in the simpler case, one sees that if for S = {S1, . . . , Si}, I
would be such that σj = σGI and vI satisfies I(Sav ∪ Sai ⇒ Scv ∪ (Sci ∩ ΣGS)),
then (3) holds. This explains the notion of strong satisfiability introduced below,
which requires that vI satifsies I(Sav∪Sai ⇒ Scv∪(Sci∩ΣGS)) for all S ∈ S ⊆ G.
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The proof of Corollary 1 therefore consists of two parts: Lemma 8 stating that
closure under the rules V◦ implies strong satisfiability and Theorem 1 stating
that strong satisfiability implies projectivity. The rest of the paper shows how
to apply Corollary 1 to prove that certain (fragments of) logics have finitary
unification type and V◦ as a basis for admissibility.

4 Substitutions and valuations

The discussion above serves as a background for the definitions given below.
In this and the next section we consider an arbitrary finite set G of irreducible
sequents, and corresponding boxed formula G = 2I(G). Without loss of gen-
erality we assume the set of atoms that occur in G to be PG = {p1, . . . , pnG}.
Most definitions are relative to G but for simplicity we do not always indicate
this in our notation. Observe that G derives 2G and I(G) by transitivity and
reflexivity.

We fix an arbitrary enumeration J1, . . . , J2nG of all subsets of PG and I ranges
over arbitrary subsets of PG . Valuation of the form vI have been defined at the
beginning of Section 3. We extend these to valuations for sequents S relative to
a set of sequents S ⊆ G: S is strongly satisfiable with respect to S if

ṽI(S | S) ≡def vI
(
Sav ∪ Sai ⇒ Scv ∪ (Sci ∩ ΣGS)

)
= 1.

The empty sequent is interpreted as ⊥ and thus has no satisfying valuation.
The valuations are extended to sets of sequents in the usual way: ṽI(S ′ | S) = 1
if and only if ṽI(S | S) = 1 for all S ∈ S ′. We write ṽI(S) for ṽI(S | S). G is
strongly satisfiable if for all S ⊆ G there is an I such that ṽI(S) = 1.

σ and τ range over substitutions that assign propositional formulas in the lan-
guage of L to atoms, and ι is the identity substitution. As usual, τΓ = {τA |
A ∈ Γ} and τS = (τSa ⇒ τSc). The substitutions that we consider have finite
domains, where dom(σ) denotes the domain of σ. We use the following notation:

σ ↔ τ ≡def

∧
p∈dom(σ)∪dom(τ)

(
σ(p)↔ τ(p)

)
.

Observe that σ ↔ τ is a propositional formula, and that

` σ ↔ τ implies ` σA↔ τA.

Given a set of atoms I, the substitutions σI , σ and σG are defined as

σI(p) ≡def

{
G→ p if p ∈ I
G ∧ p if p 6∈ I.

σ ≡def σJg . . . σJ1 σG ≡def σ
|G|+1,

where g is short for 2nG . Thus σG is the composition of g(|G|+ 1) substitutions.
The i-th substitution in σG (reading from right to left) is denoted by σi and for
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i < j, σj . . . σi is denoted by σj,i. We denote σg(|G|+1),i = σg(|G|+1) . . . σi by σi.

For example, σ2 = σg+2 = · · · = σg|G|+2 = σJ2 , σ1 = σG, and σg+1 = σ|G|. We
denote by Ii the set Jj such that σi = σJj . Thus i = kg + j for some k. For
valuations we define:

vi ≡def vIi .

The rest of this section contains technical lemmas that we will need later on.

Lemma 1 For all m and i < j: ` G→ 2
(
ι↔ σi ↔ σj,i

)
and ` σjG→ σiG.

Proof Observe that ` G → 2G holds because the logic is transitive. The first
equivalence in the first statement immediately follows from this. The second
equivalence follows from this and the fact that ` 2(B ↔ C) → (A[B/p] ↔
A[C/p]) for any atom p.

The first statement implies that ` G → σj−1,iG, which implies ` σjG → σiG.
2

Lemma 2 For all S ∈ G for which (Scv ∩ I) or (Sav ∪ Sai)\I is not empty,
` σIS.

Proof We treat the case that Sai\I is not empty, say it contains the atom p.
Thus 2p belongs to Sa and since the logic is reflexive, Sa implies p. p is under
σI replaced by G ∧ p. Thus σIS

a implies G, and Lemma 1 and the fact that
S ∈ G prove that it implies Sc, and σIS

c as well, which gives the result. 2

For numbers i1, . . . , ij , sequents S1, . . . , Sj , and formula A we define

F (i1, . . . , ij , S1, . . . , Sj , A) ≡def I(σi1S
ab
1 , σi2S

ab
2 , . . . , σijS

ab
j ⇒ A). (4)

We write F (i1, . . . , ij , S1, . . . , Sj , S) for F (i1, . . . , ij , S1, . . . , Sj , I(S)) when con-
venient. Recall that g is short for 2nG .

Lemma 3 For all S = {S1, . . . , Sj} ⊆ G and 1 ≤ i1, . . . , ij < h ≤ g(|G|+ 1), if
ṽh(S) = 1, then ` F (i1, . . . , ij , S1, . . . , Sj , I(σhS) ∧ I(σhS)) for all S ∈ S.

Proof Suppose ṽh(S) = 1 and consider S ∈ S. If (Scv ∩ Ih) or (Sav ∪ Sai)\Ih
is not empty, the previous lemma implies that σhS and thus σhS is derivable,
which implies what has to be shown. The case remains that 2p ∈ Sc for some
p ∈ ΣGS ∩ Ih. Since G ` I(BS ⇒ p), BS = {Sab1 , . . . , Sabj }, and p is under σh
replaced by G→ p, it follows that ` I(σi1S

ab
1 , . . . , σijS

ab
j ⇒ σhp) by Lemma 1.

Hence ` I(τ1S
ab
1 , . . . , τjS

ab
j ⇒ σhS). Writing τk for σh,ik , one readily sees that

also ` I(τ1S
ab
1 , . . . , τjS

ab
j ⇒ σhp). Thus ` I(σi1S

ab
1 , . . . , σijS

ab
j ⇒ 2σhp) and

` I(τ1S
ab
1 , . . . , τjS

ab
j ⇒ 2σhp) as well. As 2p ∈ Sc, ` I(τ1S

ab
1 , . . . , τjS

ab
j ⇒

2σhS). An application of σh+1 gives ` F (i1, . . . , ij , S1, . . . , Sj , σhS). 2
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5 Unifiers

In this section we show that strong satisfiability implies projectivity. The proof
of this fact is syntactic and does not use models. The definitions below are
relative to G, but we do not indicate this in our notation. Substitutions σ
and σi have been defined in the previous section. For the intuition behind the
notions defined below we refer the reader to Section 3.

A sequence of m numbers followed by m sequents i1, . . . , im, S1, . . . , Sm is ap-
propriate if m ≤ |G|,

1 = i1 ≤ g < i2 ≤ 2g ≤ · · · < im ≤ mg,

and the sequents are distinct and belong to G. It is G-sufficient if for all num-
bers j such that mg < j ≤ (m + 1)g and ṽj({S1, . . . , Sm}) = 1, the formula
F (i1, . . . , im, S1, . . . , Sm, σjG) is derivable, where F is defined in (4).

Lemma 4 If G is strongly satisfiable, then for any number k ≥ 0 and every
appropriate sequence i1, . . . , im, S1, . . . , Sm there exists a natural number h such
that kg < h ≤ (k + 1)g and ṽh({S1, . . . , Sm}) = 1.

Proof As G is strongly satisfiable, there is a 1 ≤ j ≤ g such that ṽj({S1, . . . , Sm})
equals 1. Since vj = vkg+j , the lemma follows. 2

Lemma 5 If G is strongly satisfiable then for all m ≤ |G|: if all appropriate
sequences of length 2m are G-sufficient, then so are all appropriate sequences
of length 2m− 2.

Proof Consider an appropriate i1, . . . , im−1, S1, . . . , Sm−1 and let j be such that
(m− 1)g < j ≤ mg and ṽj({S1, . . . , Sm−1}) = 1. It suffices to show that for all
S ∈ G:

` F (i1, . . . , im−1, S1, . . . , Sm−1, σjS). (5)

If S ∈ {S1, . . . , Sm−1}, then (5) follows from Lemma 3. If, on the other
hand, S 6∈ {S1, . . . , Sm−1}, then i1, . . . , im−1, j, S1, . . . , Sm−1, S is an appro-
priate sequence of length 2m. By Lemma 4 there exists a number h such that
mg < h ≤ (m+ 1)g and ṽh({S1, . . . , Sm−1, S}) = 1. Therefore by G-sufficiency

` F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, σhG).

Since ` σhG→ σjG and S ∈ G, this implies that

` F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, σjS).

Hence ` F (i1, . . . , im−1, S1, . . . , Sm−1, σjS), which is what we had to show. 2

Lemma 6 If S ∈ G and 1, S is G-sufficient, then ` σS.
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Proof By Lemma 4 there exists an 1 ≤ i ≤ g such that ṽi({S}) = 1. Therefore
`
∧
σ1S

a → σiG. Since ` σiG → σ1G by Lemma 1, this gives `
∧
σ1S

a →
σ1G. As S ∈ G, ` σ1S follows, that is, ` σGS. 2

Lemma 7 Every appropriate sequence of length 2|G| is G-sufficient.

Proof Let |G| = m and consider an appropriate sequence i1, . . . , im, S1, . . . , Sm
and let j be such that mg < j ≤ (m + 1)g and ṽj({S1, . . . , Sm}) = 1. Because
m = |G| and the Si are distinct, {S1, . . . , Sm} = G. Therefore by Lemma 3,
` F (i1, . . . , im, S1, . . . , Sm, σjS) for all S ∈ G. This implies that the sequence is
G-sufficient. 2

Theorem 1 If G is strongly satisfiable, then ` σGG.

Proof By Lemma 7 every appropriate sequence of length 2|G| is G-sufficient.
By repeated application of Lemma 5 it follows that 1, S is G-sufficient for every
S ∈ G. This implies ` σGS by Lemma 6. Hence ` σGG. 2

6 Rules and satisfiability

In the following we use Γ,2A ≡ A⇒ ∆ as an abbreviation for the sequence of
two sequents (Γ,2A,A⇒ ∆), (Γ⇒ A,2A,∆), and 2{A1, . . . , An} ≡ {A1, . . . , An}
for 2A1 ≡ A1, . . . ,2An ≡ An. Furthermore, resolution proofs are sequent
derivations in which every sequent contains only atoms, and every inference is
a cut.

Jeřábek in [19] showed that the following rule is a basis for the admissible rules
of S4, and obtained similar results for other modal logics.

{2Γ ≡ Γ⇒ 2∆}
{2Γ⇒ p | p ∈ ∆} V◦

We provide another proof of this fact and extend it to the negationless fragment
of S4. We prove it by showing that closure under V◦ is a sufficient condition
for strong satisfiability. A set of irreducible sequents G is closed under V◦ if for
all instances of V◦ with irreducible hypothesis 2Γ ≡ Γ⇒ ∆ that only contains
atoms that belong to PG , if G derives every (formula corresponding to a) sequent
in 2Γ ≡ Γ⇒ ∆, then there is a p ∈ ∆ such that G derives 2Γ⇒ p.

Lemma 8 If G is a consistent set of irreducible sequents closed under V◦, then
G is strongly satisfiable.

Proof Arguing by contraposition, suppose that for some S ⊆ G, ṽI(S) = 0 for
all I. Thus there exists a resolution proof from the set of sequents

{Sav ∪ Sai ⇒ Scv ∪ (Sci ∩ ΣGS) | S ∈ S}
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that ends in the empty sequent. For clarity we denote, in this proof, the sequents
in the resolution proof by C and call them clauses. We can assume that no atom
in a clause belongs both to the antecedent and the succedent. We are going to
associate with every clause C in the refutation a sequent SC derivable from G
such that

SavC ∪ SaiC ⊆ Ca ScvC ∪ (SciC ∩ ΣGS) ⊆ Cv.
The antecedent of such a sequent can contain atoms, boxed atoms, and formulas
of the form p ≡ 2p, and the succedent consists of atoms and boxed atoms only.
For the initial clauses C, SC is the sequent to which C corresponds. For a cut on
clauses C1 and C2 with corresponding sequents S1 and S2 there are the following
four possibilities. Let C be the clause resulting from the cut. First, if p ∈ Scv1
and p ∈ Sav2 , then SC is the result of applying a cut to the sequents S1 and
S2 with cutformula p. Second, if p ∈ Sci1 and p ∈ Sai2 , then SC is the result of
applying a cut to the sequents S1 and S2 with cutformula 2p. Third, if 2p ∈ Sc1
and p ∈ Sa2 , then because of reflexivity, G derives S′1 = (Sa1 ⇒ p, Sc1\{2p}), and
SC is the result of a cut on S′1 and S2 with cutformula p. In the remaining
fourth case, p ∈ Sc1 and 2p ∈ Sa2 , we put

SC = Sa2\{2p} ∪ Sa1 ∪ {2p ≡ p} ⇒ Sc1\{p} ∪ Sc2.

Note that SC is derivable from G if S1 and S2 are. Also note that for all 2p ≡ p
that occur in SC , 2p ∈ BG .

Now S∅ is of the form 2Γ ≡ Γ⇒ 2∆, for which ∆∩ΣGS is empty. If ∆ is empty,
then G derives all sequents in 2Γ ≡ Γ ⇒ , which would make G inconsistent.
Therefore ∆ is not empty. As G is closed under V◦ there exists a p ∈ ∆ such
that G derives (2Γ⇒ p). Hence p ∈ ∆ ∩ ΣGS , contradicting ∆ ∩ ΣGS = ∅. 2

Combining the previous lemma with Theorem 1 gives a necessary condition for
projectivity.

Corollary 1 If G is a consistent set of irreducible sequents closed under V◦,
then G is projective.

Theorem 2 If V◦ is admissible in L and G is a consistent set of irreducible
sequents, then G is closed under V◦ if and only if G is projective if and only if
σG is a unifier of G if and only if G is strongly satisfiable.

Proof We prove the first equivalence. The direction from left to right is Corol-
lary 1. For the other direction, let σ be a projective unifier of G and suppose
that G derives (2Γ ≡ Γ⇒ 2∆), meaning the conjunction of all the sequents of
the sequence (2Γ ≡ Γ⇒ 2∆). Thus σ(2Γ ≡ Γ⇒ 2∆) is derivable in L. Hence
so is σ(2Γ⇒ p) for some p in ∆. Therefore G derives (2Γ⇒ p). 2

7 Unification types

In this section we use the previous results to show that in S4 and its negationless
fragment, as well as in all their extensions, admissibility of V◦ implies finitary
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unification. For S4 and its extensions this was first shown by Jeřábek in [19]
by semantic means. The use of projective formmulas in this setting goes back
to Ghilardi [9]. In our approach, that is also based on this key idea, we use a
method developed in [14, 15] that first reduces a formula to a set of irreducble
sequents and then to sets of irreducible sequents closed under V◦. From the
previous paragraph we know that thus the formulas corresponding to the last
sets are projective. This then will prove the finitary unification of the logics, as
we will see below.

Recall that an irreducible formula is a formula of the form I(S), where S is
irreducible, and that F(p1, . . . , pn) is the set of formulas in which only atoms in
{p1, . . . , pn} occur.

Lemma 9 For every n and every set of formulas Γ ⊆ F(p1, . . . , pn), there exists
a finite set of irreducible formulas Π such that for every ∆ ⊆ F(p1, . . . , pn):

1. 2Γ |∼∆ if and only if 2Π |∼∆,

2. 2Γ `V◦∆ if and only if 2Π `V◦∆,

3. Γ `
∧
σΠ for some σ that is the identity on F(p1, . . . , pn).

Proof It is easier to consider Γ and Π as sets of the form {I(S) | S ∈ H} for
some set of sequents H. We start for Γ with H = {(⇒ A) | A ∈ Γ}. We follow
the method of proof of a similar lemma in [4]. The length of a formula is the
number of symbols occurring in it. Let ml(H) be the multiset of the lengths of
the formulas in the sequents in H. We prove the lemma by induction on ml(H),
using the multiset ordering. At every step we construct a new set of sequents
H′ such that (1) and (2) hold and ml(H′) < ml(H), untill H′ is irreducible.
This will prove the lemma by taking {I(S) | S ∈ H′} for Π.

If ml(H) ≤ 1, H consists of irreducible sequents, and we can take H for H′.
Therefore suppose ml(H) > 1 and consider a formula A in a sequent S ∈ H
that has length greater than 1. Thus A is not an atom or a boxed atom. If
A = (B ∧C) and A ∈ Sa, we replace S by (Sa\{A}, B,C ⇒ Sc), and if A ∈ Sc
we replace S by (Sa ⇒ Sc\{A}, B) and (Sa ⇒ Sc\{A}, C). Similarly if A
is a disjunction or an implication. For H′ being the result of applying this
replacement, (1) and (2) clearly hold.

Suppose A = 2B. If A ∈ Sc we choose a fresh atom p different from p1, . . . , pn
and replace S by S1 = (Sa ⇒ Sc\{A},2p) and S2 = (p ⇒ B). If A ∈ Sa,
S is replaced by S1 = (Sa\{A},2p ⇒ Sc) and S2 = (B ⇒ p). In both cases
call the result H′ and note we have 2I(S1) ∧ 2I(S2) ` 2I(S) and therefore
2I(H′) ` 2I(H). Note that there is a substitution σ that is the identity on
p1, . . . , pn such that I(H) ` I(σH′). Namely, all such substitutions for which
σ(p) = B. This implies (3).

The direction from left to right of (1) and (2) holds as 2I(H′) ` 2I(H). For
the other direction of (1), consider a unifier τ of 2I(H). This can be extended
to a unifier τ ′ of 2S1 and 2S2 by putting τ ′(p) = B. Thus ` τ ′C for some
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C ∈ ∆. As τ equals τ ′ on ∆, ` τC follows, proving that 2I(H) |∼∆. To
prove the direction from right to left of (2), assume that 2I(H′) `V◦∆. For
the substitution σ defined in the previous paragraph 2I(σH′) `V◦∆ holds by
structurality and the fact that σ is the identity on ∆. As I(H) ` I(σH′) and
the logic is reflexive, 2I(H) `V◦∆ follows. 2

The following lemma has essentially been proved in [14].

Lemma 10 For every set of irreducible formulas Π there exist sets of irreducible
formulas Π1, . . . ,Πm such that the

∧
Πi are projective and for all i:∧

Πi `
∧

Π `V
◦
{Π1, . . . ,Πm}.

Proof As in the previous proof, it is easier to consider Π and Πi as sets of the
form {I(S) | S ∈ H} for some set of sequents H, starting with H = {(⇒ A) |
A ∈ Π} for Π. Define the following (rewrite) relation on finite sets of finite sets
of irreducible sequents in LH, where X and Y range over such sets:

X ∪ {G ∪ {2Γ ≡ Γ⇒ 2∆}} 7→ X ∪ {G ∪ {2Γ ≡ Γ⇒ 2∆,2Γ⇒ p} | p ∈ ∆}.

Slightly ambiguous, we also use 7→ for the transitive closure of this relation. A
set of sequents G is in 7→-normal form if there is no H ⊃ G such that G 7→ H.
As the number of atoms in H is finite and all sequents involved are irreducible
and contain no atoms than those in H, there are H1, . . . ,Hn such that {H} 7→
{H1, . . . ,Hn} and the Hi are in 7→-normal form. Observe that the latter means
that theHi are closed under V◦, and thus that I(Hi) is projective by Corollary 1.

Let Πi = {I(S) | S ∈ Hi}. Thus
∧

Πi is projective. It is easy to see that they
satisfy the other properties in the lemma as well. 2

Combining the previous two lemmas gives the following theorem.

Theorem 3 For every n and every set of formulas Γ ⊆ F(p1, . . . , pn), there
exist sets of irreducible formulas Π1, . . . ,Πm such that all

∧
Πi are projective

and for every ∆ ⊆ F(p1, . . . , pn):

1. 2Γ `V◦∆ if and only if 2Πi `V
◦
∆ for all i.

2. Γ `V◦{
∧
σΠ1, . . . ,

∧
σΠm} for some σ that is the identity on F(p1, . . . , pn).

Proof Given Γ, construct Π and σ as in Lemma 9 and then sets of irreducible
formulas Π1, . . . ,Πm as in Lemma 10. Using that the logics are reflexive and
that A ` 2A for all A, it is easy to see that (1) holds. For (2), observe that by
Lemma 10 and structurality we have σΠ `V◦{

∧
σΠ1, . . . ,

∧
σΠm}. As Γ `

∧
σΠ,

(2) follows. 2

Corollary 2 If V◦ is admissible in L, then every formula has a finite complete
set of unifiers in L.
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Proof Given a formula A, let Π1, . . . ,Πn be as in Theorem 3, where Γ = {A},
and let σ′i be the projective unifier of

∧
Πi. Let σi be equal to σ′i on the atoms

in A and the identity everywhere else. We verify that {σ1, . . . , σn} is a complete
set of unifiers for A. Therefore suppose that `L τA. Then for σ as in (2) of
Theorem 3, τΓ `V◦{τσΠ1, . . . , τσΠm}. Thus `

∧
τσΠi for at least one i ≤ n by

the admissibility of V◦. Hence τσ 6 σ′i. Thus τ 6 σi. 2

The previous corollary implies the following corollary, which for full S4 has been
proved by Ghilardi in [9].

Corollary 3 S4 and its negationless fragment have finitary unification.

8 Admissible rules

This last section of the paper contains some applications of the previous results
to admissible rules. A set of rules R is a basis for the admissible rules of a logic
L if

Γ |∼ L∆ ⇔ Γ `LR∆.

Thus intuitively, R is a basis if all admissible rules can derived from those in R.

In intermediate logics all consistent formulas are unifiable, but this is no longer
the case in modal logic. This leads to the notion of passive admissible rules,
which are admissible rules for which the hypothesis (

∧
Γ) has no unifier. ⊥/A

is a typical example of such a rule, and (Γ ≡ 2Γ ⇒)/A is another example in
reflexive logics.

A logic is structurally complete if all single-conclusion admissible rules are deriv-
able, and almost structurally complete if all nonpassive single-conclusion admis-
sible rules are derivable [7]. A logic is hereditarily (almost) structurally complete
if all its extensions, including the logic itself, are (almost) structurally complete.

Jeřábek has proved the following theorem for full S4 [19]. Using the techniques
in this paper it can also be proved in the following way, also for the negationless
fragment.

Theorem 4 In any extension of S4 or its negationless fragment, the rules V◦

form a basis for the admissible rules once they are admissible.

Proof Assume that V◦ is admissible and consider Γ |∼ L∆. Then by Theorem 3
there are Π1, . . . ,Πn such that

∧
Πi is projective and Πi |∼∆ for all i, and

2Γ `V◦∆ if and only if 2Πi `V
◦
∆ for all i. The projectivity of the Π implies

that for all i there is an Ai ∈ ∆ such that
∧

Πi ` Ai, and therefore
∧

2Πi ` Ai.
Hence 2Πi ` ∆, and thereby 2Γ `V◦∆. This proves that V◦ is a basis for
admissibility. 2

Corollary 4 V◦ is a basis for the admissible rules of S4 as well as for its nega-
tionless fragment.
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Dzik and Wojtylak prove in [7] that any extension of S4 has projective unification
if and only if it contains S4.3, where S4.3 is the logic S4 extended by the principle
2(2A → 2B) ∨ 2(2B → 2A). This implies that S4.3 is hereditarily almost
structurally complete. Here we provide another proof of the last result and
extend it to fragments.

Theorem 5 S4.3 and its negationless fragment are hereditarily almost struc-
turally complete.

Proof Let L be an extension of S4 or its negationless fragment. The fact that
S4.3 is complete with respect to transitive reflexive Kripke frames in which every
two nodes are compatible (xRy or yRx holds) is easily seen to imply that all
non passive instances of V◦ are derivable in L. Theorem 4 now shows that all
non passive admissible rules are derivable. 2
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