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Abstract

An alternative Skolemization method, which removes strong quantifiers
from formulas, is presented that is sound and complete with respect to
intermediate predicate logics with the finite model property. For logics
without constant domains the method makes use of an existence predicate,
while for logics with constant domains no additional predicate is necessary.
In both cases an analogue of Hebrand’s theorem is obtained and it is
proved that the one-variable fragment of a logic with the finite model
property is decidable once the propositional fragment of the logic is. It
is also shown that universal constant domain logics with the finite model
property have interpolation once their propositional fragment has. For
logics without constant domains some of these results, but with far more
complicated proofs, have been obtained in (Iemhoff, 2010).
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1 Introduction

It is a remarkable fact that the Skolemization method, so successful in classical
logic, does not apply to several well-known intermediate logics, including intu-
itionistic predicate logic IQC, in that it fails to be sound and complete for these
logics. This failure is not a consequence of the lack of prenex normal forms out-
side the realm of classical logic, as one can extend the Skolemization method to
infix formulas in a natural way. But even for this extended method there exist
formulas, such as ∀x¬¬P (x)→ ¬¬∀xP (x), for P (x) being a predicate, that are
underivable in many intermediate logics while their Skolemization, in this case
∀x¬¬P (x) → ¬¬P (c), is. For some intermediate logics, however, there exist
alternative methods to remove strong quantifiers from formulas. In (Baaz and
Iemhoff, 2006b), for example, it is shown that using the existence predicate, a
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Skolemization method can be defined for existential quantifiers in intuitionistic
logic. This result is in (Baaz and Iemhoff, 2008) extended to universal quanti-
fiers, an extension not fully satisfying because it requires the presence of certain
predicates less natural than the existence predicate.

In this paper we develop a Skolemization method for intermediate logics with
the finite model property, with and without constant domains. For logics with
constant domains this method, parallel skolemization, produces for any formula
ϕ a formula ϕps without strong quantifiers such that the following holds.

`L ϕ ⇔ `L ϕps.

Note that we consider Skolemization here with respect to derivability rather than
satisfiability, as is usual in a nonclassical setting. In case the logic does not have
constant domains we use an approach similar to the one in (Baaz and Iemhoff,
2006b), by considering IQCE (IQC with an existence predicate) instead of IQC.
A sound and complete Skolemization method, called epskolemization, for logics
in IQCE with the finite model property is defined that implies a Skolemization
method for intermediate logics as well. Here the finite refers to the number of
nodes in a model, not to the domains at the nodes, which may well be infinite.

In (Iemhoff, 2010) it is shown that the eskolemization method from (Baaz and
Iemhoff, 2006b) is sound and complete for logics with the finite model property,
thus implying the last result mentioned in the previous paragraph. However,
the proof presented here is much simpler than the one in (Iemhoff, 2010), and
logics with constant domains are not explicitly treated in that paper (although
we think that similar results can be obtained from it as well). For these reasons
we think it worthwhile to present the alternative skolemization method here.

Skolemization is often considered in combination with Herbrand’s theorem, as
it is this combination that provides important applications in logic and com-
puter science. Here we provide, for the logics with (e)pskolemization, Herbrand
theorems that are the usual extension to infix formulas of the standard Hebrand
theorem. Finally, an application of the developed methods to interpolation is
presented. It is shown that for all intermediate logics with the finite model
property and constant domains that can be axiomatized by universal formu-
las, if their propositional fragment has interpolation, then so does the predicate
logic.

Skolemization and Herbrand theorems have been studied for other nonclassical
theories and logics as well. For references to these topics in the setting of
substructural logics, see (Baaz and Metcalfe, 2008, 2009; Cintula and Metcalfe,
2013). Recently there has appeared a paper that uses the method introduced
in this paper, but then in the setting of substructural logics (Cintula et al.,
2015). It is shown that under certain semantical conditions, resembling those
in (Iemhoff, 2010), first–order substrutural logics admit parallel skolemization.
Other related work on Skolemization concerns the complexity of the method
and the construction of deskolemization methods, see (Baaz and Leitsch, 1994;
Baaz et al., 2012) for details.

This paper is structured as follows. Section 2 contains the preliminaries, in
particular the definition of Kripke models for predicate logic. Section 4 intro-
duces a semantical property that is one of the two main ingredients in the proof,
in Section 5, that the skolemization method defined in Section 3 is sound and
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complete. The other ingredient is model extensions, which are introduced in
Section 5.1. Section 6 is about Herbrand’s theorem and Section 7 contains the
application to interpolation discussed above. In Section 8 the methods devel-
oped in the previous sections are extended to logics without constant domains.
Section 9 contains the conclusion.

We thank two excellent anonymous referees for detailed and constructive com-
ments on an earlier version of this paper.

2 Preliminaries

The theories we consider are theories in intuitionistic predicate logic IQC or, in
Section 8, in its extension IQCE. The former are called intermediate theories. We
mostly use intermediate logics rather than theories as examples (the difference
being that the latter do not have to be closed under substitution), but as all
our results apply to theories as well logics, we present them in the most general
form throughout the paper.

Except in the last section, our language L consists of the usual connectives,
variables, constants, quantifiers, and predicate and function symbols, infinitely
many of every arity. Terms are defined as usual. An occurrence of a quantifier
in a formula is strong if it is a positive occurrence of a universal or a negative
occurrence of an existential quantifier. It is weak otherwise.

Given a theory L we write `L to denote derivability in L, and also ` when it is
clear from the context which theory is meant.

2.1 Universal theories

Universal formulas are formulas in prenex normal form that only contain uni-
versal quantifiers. A theory is universal when it is axiomatizable over IQC by
universal formulas. Note that theories defined by universal formulas as axiom
schemes do not fall under this definition, as the schemes may be instantiated
by formulas that are not universal. It is required that every single axiom of
the theory is itself universal. For example, the intermediate theory axiomatized
by (¬P (x̄) ∨ ¬¬P (x̄)), where P is a predicate, is universal, but the predicate
version of the propositional logic KC axiomatized by (¬ϕ(x̄) ∨ ¬¬ϕ(x̄)), where
ϕ may be any formula, is not.

2.2 Kripke models

Kripke models are defined as usual, except that we require them to have constant
domains and their frames to be trees. Following (Troelstra and van Dalen,
1988) we always assume that the elements of the domain of a (Kripke) model
are constants in L. In this way one does not have to use valuations but can
define truth |= in classical models and forcing  in Kripke models inductively
on sentences in L.

A Kripke model with constant domains or constant domain Kripke model K is
a tuple (W,4, D, I), where (W,4) is a rooted tree, D is a nonempty set (the
domain) and I is a collection {Ik | k ∈W} of interpretations such that for all k ∈
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W , (D, Ik) is a classical model, such that the following persistency requirements
are satisfied. For all terms t, all n-ary predicates P and all d̄ = d1, . . . , dn ∈ D:

k 4 l ⇒ Ik(t) = Il(t)
(D, Ik) |= P (d̄) and k 4 l ⇒ (D, Il) |= P (d̄).

(up)

Since the models are rooted, this implies that for any term t, Ik(t) = Il(t) holds
for all nodes k and l.

Forcing is defined as usual, where the forcing of atomic formulas is defined by

k  P (d̄) ≡def (D, Ik) |= P (d̄).

It is clear that because of (up) the upwards persistency requirement for Kripke
models is satisfied.

In ordinary Kripke models, the domains at the nodes may differ, but as such
models are not considered in this paper, they will not be defined here. For the
same reason, sometimes the words with constant domains are omitted and we
just speak of Kripke models.

2.3 Finite width and finite models

A class of models has width ≤ n if no model in the class contains an anti-chain
of size larger than n. It is of width n if it is of width ≤ n but not of width
≤ (n − 1). A model is of width n if the class consisting of that model is. A
theory L has width n if it is complete with respect to a class of models of width
n.

A theory is a constant domain width n theory if the theory is complete with
respect to a class of models of width n with constant domains. A theory has
finite width or the finite width property (fwp) if it has width n for some n ∈ N.
A theory has the constant domain finite width property (cdfwp) when for some
n ∈ N it is a constant domain width n theory. The smallest such n is denoted
by wL. If L has fwp but not cdfwp then wL is the smallest n for which it has
width n. A theory has the constant domain finite model property (cdfmp) when
it is sound and complete with respect to a class of finite models with constant
domains. Do note that the finite in this definition refers to the nodes of the
frame of the model, and not to the domains of the model, which may well be
infinite.

3 Skolemization

A Skolemization method (·)s, by which we mean an algorithm on formulas that
produces formulas that do not contain strong quantifiers, is sound when ` ϕ
implies ` ϕs and complete when the opposite holds. All Skolemization meth-
ods that we consider are sound. The standard Skolemization method replaces
occurrences Qxψ(x, ȳ) of quantifiers by ψ(f(ȳ), ȳ) for a fresh f , in case Q = ∀
and the occurrence is strong or Q = ∃ and the occurrence is weak, where ȳ
are the variables of the weak quantifiers in the scope of which Qxψ occurs.
The standard Skolemization method is not complete for intuitionistic logic, as
∀x¬¬P (x) → ¬¬∀xP (x) is not derivable in the logic, whereas its Skolemized
version, ∀x¬¬P (x)→ ¬¬P (c), is.
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For theories L of finite width we define the following parallel skolemization
method (pskolemization for short) that removes strong quantifiers from formulas
in the following way. The last part of this section discusses the intuition behind
this variant of Skolemization. Recall that ` denotes derivability in the theory
L.

Given a formula ϕ and a subformula Qxψ(x, ȳ), where ȳ are the variables of the
weak quantifiers in the scope of which Qxψ occurs, we define

ps(Qxψ(x, ȳ))ϕ ≡def


∨wL

i=1 ψ(fi(ȳ), ȳ) if Q = ∃∧wL

i=1 ψ(fi(ȳ), ȳ) if Q = ∀,

where the fi are assumed to not occur in ϕ. We write ϕ� ϕ′ if ϕ′ is the result of
replacing the leftmost strong quantifier occurrence Qxψ in ϕ by ps(Qxψ(x, ȳ))ϕ.
Using the multiset ordering by Dershowitz and Manna (1979) it is not hard to
see that up to the renaming of function symbols, for every ϕ there are unique
ϕ = ϕ1, . . . , ϕn = ϕ′ such that ϕi � ϕi+1 and ϕ′ does not contain strong
quantifiers. This ϕ′ is the pskolemization of ϕ and is denoted by ϕps.

We use the convention that in strong quantifier occurrences Qxψ(x, ȳ) the ȳ
always denote the variables of the weak quantifiers in the scope of which Qxψ
occurs.

A theory has pskolemization if for all formulas ϕ and ϕ′, where ϕ′ is the result
of replacing a strong quantifier occurrence Qxψ in ϕ by ps(Qxψ(x, ȳ))ϕ:

` ϕ ⇔ ` ϕ′.

In particular, if a theory has pskolemization then for all formulas ϕ:

` ϕ ⇔ ` ϕps.

It is instructive to compare pskolemization to standard Skolemization by consid-
ering the simple example ∃x∀yϕ(x, y) where ϕ is quantifier-free. The Skolemiza-
tion of this formula is ∃xϕ(x, fx) while the pskolemization for a logic of width
n is ∃x

∧n
i=1 ϕ(x, fix). The idea is that every branch of a Kripke model of the

logic has its own skolem function. For the standard method, a simple proof of
the completeness of Skolemization for such formulas is semantical: a counter
model to ∃x∀yϕ(x, y) produces a counter model to ∃xϕ(x, fx) by interpreting
fx as the y such that ϕ(x, y) does not hold in the original model. In the case of
pskolemization, a Kripke counter model to ∃x∀yϕ(x, y) with branches b1, . . . , bn
produces a counter model to ∃x

∧n
i=1 ϕ(x, fix) by interpreting fi as the y such

that ϕ(x, y) does not hold along bi. Here we use that the models we consider
in the setting of pskolemization have constant domains. The next two sections
contain the technical details behind this informal argument.

4 Quantifier witnesses

In the previous section a simple semantical proof of the completeness of Skolem-
ization was sketched. An analogue of this proof idea for Kripke models will be
used to prove the completeness of pskolemization in the next section, where it
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is first shown that for any Kripke model K, a model K ′ is defined such that for
every strong quantifier occurrence Qxψ(x, ȳ) in ϕ:

K, k  Qxψ(x, ā) if and only if K ′, k  ps(Qxψ(x, ā))ϕ.

For this to work, the existence, in K, of certain nodes and elements of the
domain has to be guaranteed. These are the quantifier witnesses defined as
follows.

Given a formula Qxψ(x, ȳ), a Kripke model K with constant domains, root
rK and at least one element dK in its domain D, has quantifier witnesses for
Qxψ(x, ȳ) if the following holds:

• if Q = ∃, then for any ā ⊆ D and any branch b along which ∃xψ(x, ā) is
forced, there exists a lowest node k = nd(b,∃xψ(x, ā)) for which there is a
d = wt(b,∃xψ(x, ā)) ∈ D such that k  ψ(d, ā); and if ∃xψ(x, ā) is nowhere
forced along b, we put nd(b,∃xψ(x, ā)) = rK and wt(b,∃xψ(x, ā)) = dK ;

• if Q = ∀, then for any ā ⊆ D and any branch b along which ∀xψ(x, ā) is not
forced, there exists a highest node k = nd(b,∀xψ(x, ā)) for which there is a
d = wt(b,∀xψ(x, ā)) ∈ D such that k 6 ψ(d, ā); and if ∀xψ(x, ā) is forced
everywhere along b, we put nd(b,∀xψ(x, ā)) = rK and wt(b,∀xψ(x, ā)) =
dK ;

• the witnesses are chosen such that if nd(b,Qxψ(x, ā)) lies on another
branch c, then nd(c,Qxψ(x, ā)) = nd(b,Qxψ(x, ā)) and wt(c,Qxψ(x, ā)) =
wt(b,Qxψ(x, ā)).

K has quantifier witnesses if it has quantifier witnesses for every quantified
formula Qxψ(x, ȳ).

The idea behind this definition is that for a model with quantifier witnesses for
Qxψ(x, ȳ), along every branch b, there exists an element d = wt(b,Qxψ(x, ā))
such that along b, Qxψ(x, ȳ) is forced exactly where ψ(d, ȳ) is forced. Figure 1
contains examples of models that have and do not have quantifier witnesses for
a certain formula.

Lemma 4.1 Any finite Kripke model with constant domains has quantifier
witnesses.

Proof Suppose the finite Kripke model is of width n and let b1, . . . , bn be its
branches, rK its root and dK an element in the domain. Consider a formula
∃xψ(x, ȳ) and elements ā of the domain. Abbreviate ∃xψ(x, ā) by ϕ. We define
witnesses for this formula along the branches one-by-one. So consider bi and
suppose that for j < i, the witnesses have already been defined. If ϕ is forced
nowhere along bi, then put nd(bi, ϕ) = rK and wt(bi, ϕ) = dK . These witnesses
clearly have the required properties.

If ϕ is forced along bi, we distinguish two cases. First consider the case that the
lowest node along b where ϕ is forced is of the form nd(bj , ϕ), for some j < i.
Then put nd(bi, ϕ) = nd(bj , ϕ) and wt(bi, ϕ) = wt(bj , ϕ). In the remaining case,
choose the lowest node where ϕ holds along b. Such a node k exists because
the model is finite. Choose an element d ∈ D such that k  ψ(d, ā) and put
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k0  P0

k1  P0 ∧ P1

k2  P0 ∧ P1 ∧ P2

...

k1  P1

k1  P1 ∧ P2

k2  P1 ∧ P2 ∧ P3

...

Figure 1: Two Kripke models with a constant domain, N, in which ∀xP (x) is
forced nowhere. The model at the right has a quantifier witness for ∀xP (x)
(namely k0 and 0) while the model at the left does not.

nd(bi, ϕ) = k and nd(bj , ϕ) = d. It is not hard to see that these satisfy the
quantifier witness requirements.

The proof for universal formulas is similar, using that the model is conversely
well-founded. 2

5 Completeness

In this section we prove the completeness of pskolemization. As mentioned
above, we give a semantical proof of this fact, and the following construction to
extend Kripke models for a certain language to models for a richer language, is
its main ingredient.

5.1 Model extensions

Consider a theory L of width n in language L. Given a model K = (W,4, D, I)
of width n for L that has quantifier witnesses for Qxψ(x, ȳ), we show how to
extend it to a model K ′ = (W,4, D, I ′) for L′ = L ∪ {f1, . . . , fn}, where the
fi are the skolem functions occurring in ps(Qxψ(x, ȳ))ϕ. Let b1, . . . , bn be the
branches of K. For every k, I ′k equals Ik on terms in L ∪D, and for ā ∈ D:

I ′k(fi)(ā) = wt(bi, Qxψ(x, ā)).

Remark 5.2 We leave it to the reader to verify that forcing in K is equal to
forcing in K ′ for all formulas that do not contain the function symbols f1, . . . , fn.

Lemma 5.3 For every strong quantifier occurrence Qxψ(x, ȳ) in ϕ:

K, k  Qxψ(x, ā) if and only if K ′, k  ps(Qxψ(x, ā))ϕ. (1)

Proof First observe that the definition of quantifier witnesses implies that for
every branch bi through k:

K, k  Qxψ(x, ā) if and only if K ′, k  ψ(wt(bi, χ), ā). (2)
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To prove (3) we treat the existential and universal quantifier separately.

∃: The direction from left to right follows from (2). For the opposite direction,
suppose K ′, k  ψ(fj(ā), ā) for some j, that is, K ′, k  ψ(wt(bj , χ), ā). By
Remark 5.2, K, k  Qxψ(x, ā) follows.

∀: If K, k 6 Qxψ(x, ā), then K, k 6 ψ(wt(bi, χ), ā) for all branches bi through
k. Hence K ′, k 6 ψ(fi(ā), ā). Thus K ′, k 6 ps(χ)ϕ. For the other direction,
suppose K ′, k 6 ψ(fj(ā), ā) for some j. This implies that K, k 6 ∀xψ(x, ā), that
is, K, k 6 Qxψ(x, ā). 2

Lemma 5.4 If ϕ� ϕ′, then for every model K with quantifier witnesses:

K, k  ϕ if and only if K ′, k  ϕ′. (3)

Proof With formula induction, using Lemma 5.3. 2

Theorem 5.5 Every theory that is sound and complete with respect to a class
of Kripke models of width n with quantifier witnesses and constant domains,
has pskolemization. In particular, for all formulas ϕ:

` ϕ ⇔ ` ϕps.

Proof The direction from left to right is easy. The other direction follows by
contraposition from repeated application of Lemma 5.4. 2

Corollary 5.6 Every intermediate theory with cdfmp has pskolemization.

A logic is tabular when it is the logic of a single finite Kripke frame. A logic is a
constant domain tabular logic if for some finite frame it consists of all formulas
that hold in all models with constant domain on that frame.

Corollary 5.7 Every constant domain tabular logic has pskolemization.

The logic of constant domains CD is the intermediate predicate logic axiomatized
over IQC by the scheme

D ∀x(ϕ(x) ∨ ψ)→ (∀xϕ(x) ∨ ψ),

where x does not occur free in ψ. CD characterizes the class of Kripke models
with constant domains. Given a propositional logic L, let CD + L denote the
smallest intermediate predicate logic containing CD and all formulas in L as
axiom schemes.

Shimura (1993) has proven that for any tabular propositional intermediate logic
L, the logic CD + L is strongly Kripke complete and has cdfmp. This follows
from the fact (Lemma 3.5 in that paper) that for such logics the canonical model
with constant domains has a finite frame. Well-known examples of tabular
propositional logics are GSc and Sm, with respective frames:
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•

••

•

•

Shimura’s result and Corollary 5.7 imply the following.

Corollary 5.8 For any tabular propositional intermediate logic L, the predicate
logic CD + L has pskolemization. In particular, CD + GSc and CD + Sm have
pskolemization.

6 Herbrand’s theorem

Herbrand’s theorem states that for every quantifier free formula ϕ(x̄):

`CQC ∃x̄ϕ(x̄) ⇔ `CQC

n∨
i=1

ϕ(s̄i) for some sequences of terms s̄1, . . . , s̄n.

In combination with the Skolemization method it provides a powerful tool in the
study of classical logic. As for Skolemization, there exists a natural extension
of the theorem that applies to infix formulas without strong quantifiers. This is
the variant we will use, which is defined as follows.

Given a formula ϕ, a formula ϕ′ is an Herbrand expansion of ϕ if it is the result
of replacing, from inside out, every positive occurrence of a formula ∃xψ(x) by a
disjunction

∨m
i=1 ψ(si) for some terms s1, . . . , sm, and every negative occurrence

of a formula ∀xψ(x) by a conjunction
∧n

i=1 ψ(ti) for some terms t1, . . . , tn. The
dual Herbrand expansion of ϕ is defined similarly, by switching “∃xψ(x)” and
“∀xψ(x)”. For example,

∧m
i=1 P (ti)→

∨n
j=1Q(sj) is an Herbrand expansion of

∀xP (x)→ ∃zQ(x) and dual Herbrand expansion of ∃xP (x)→ ∀zQ(x).

Observe that in an Hebrand expansion all the weak quantifiers of a formula are
removed. Thus the Hebrand expansion of a formula without strong quantifiers
does not contain any quantifiers. It is not hard to see that any Herbrand ex-
pansion of a formula implies the formula, while the formula implies all its dual
Herbrand expansions. In universal theories the following holds as well.

Lemma 6.1 In any universal intermediate theory L, for any formula ϕ without
strong quantifiers: if ϕ is provable in L, then so is at least one Hebrand expansion
of ϕ.

Proof Suppose that ϕ is derivable in L. Then for some finite conjunction ψ
of axioms from L, ψ → ϕ is derivable in IQC. ψ → ϕ does not contain strong
quantifiers. This implies that some Hebrand expansion ψ′ → ϕ′ of ψ → ϕ
is derivable in IPC, where ϕ′ is an Herbrand expansion of ϕ and ψ′ is a dual
Herbrand expansion of ψ (folklore, but for a proof see (Baaz and Iemhoff, 2008)).
Thus `IPC ψ → ψ′. Hence `L ϕ′, which is what we had to show. 2

For theories with cdfmp Lemma 6.1 leads to a correspondence between deriv-
ability in predicate theories and their propositional fragment, as given in the
following theorem. The correspondence could be viewed as an analogue of the
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situation in classical universal theories, where one uses standard Skolemization
and the Herbrand Theorem instead of parallel Skolemization and Lemma 6.1.

Theorem 6.2 In every universal intermediate theory with cdfmp, for all for-
mulas ϕ:

ϕ is provable ⇔ at least one Hebrand expansion of ϕps is provable.

Theorem 6.3 The one-variable fragment of every universal intermediate the-
ory with cdfmp and a decidable propositional fragment is decidable.

Proof As formulas in the one-variable fragment of any intermediate theory con-
tain at most one variable, the pskolemization of such formulas contain no Skolem
functions, only Skolem constants. Thus so do the Herbrand expansions of such
pskolemizations. Derivability of such Herbrand expansions is therefore decided
in the propositional fragment of the theory, which is decidable by assumption.
This proves that the derivability of formulas in the one-variable fragment is
decidable. 2

7 Interpolation

Recall that a logic L has interpolation if whenever `L ϕ → ψ, there exists a
formula ι in the common language of ϕ and ψ such that ϕ → ι and ι → ψ
hold in L. In the case of propositional logic, the common language consists of
the atoms that occur in both ϕ and ψ and all connectives, and in the case of
predicate logic it consists all predicates, functions and constants that occur in
both ϕ and ψ and all variables, connectives and quantifiers.

Theorem 7.1 For any universal intermediate logic with pskolemization, if the
propositional fragment has interpolation, then so does the full logic.

Proof Assume ` ϕ→ ψ. This implies ` (ϕ→ ψ)ps since the logic has pskolem-
ization. Let ϕs, ψs be such that (ϕs → ψs) = (ϕ → ψ)ps. Some Herbrand
expansion ϕh → ψh of ϕs → ψs is derivable by Lemma 6.1 and the proof of the
lemma shows that we can assume that ϕh is a dual Herbrand expansion of ϕs

and that ψh is an Herbrand expansion of ψs.

As the propositional fragment has interpolation, there is a formula ι in the
common language of ϕh and ψh such that ϕh → ι and ι → ψh hold in L.
Therefore ϕs → ι and ι→ ψs hold in L as well.

From the definition of Skolemization it follows that every skolem function can
occur either in ϕs or in ψs but not in both. Next we construct a finite sequence
of formulas ι = ι1, . . . , ιn such that ιn contains no skolem symbols and ϕs → ιi
and ιi → ψs hold for all i. Given ιi, consider the leftmost term of the form f(t̄)
in it, where f is a skolem function. Let xi+1 be a variable not occurring in ιi
and define

ιi+1 ≡def

{
∃xi+1ιi[xi+1/f(t̄)] if f occurs in ϕs

∀xi+1ιi[xi+1/f(t̄)] if f occurs in ψs.
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We show that for all i ≥ 1, ϕs → ιi holds and leave the proof for ιi → ψs to
the reader. The case for i = 1 is clear. Therefore suppose ϕs → ιi holds and
consider the leftmost term in ιi of the form f(t̄), where f is a skolem function.
Thus ιi = ιi(f(t̄)) and clearly derives ∃xi+1ιi[xi+1/f(t̄)], which implies that
ϕs → ιi+1 holds.

If n is equal to the number of skolem functions in ϕs and ψs together, then ιn
cannot contain any skolem functions. As ϕ→ ιn and ιn → ψ are derivable in L
by Theorem 5.5, ιn is the desired interpolant for ϕ→ ψ. 2

Corollary 7.2 Every universal intermediate logic with cdfmp and a proposi-
tional fragment that has interpolation, has interpolation.

As an illustration of the idea used in Theorem 7.1, consider a universal in-
termediate logic L with pskolemization and a propositional fragment that has
interpolation, and let

ϕ→ ψ = ∃x(Px ∧Qx) ∨ ∃y(Py ∧Q′y)→ ∃z(Pz ∨Rz),

where P,Q,R are unary predicates. Clearly, ϕ → ψ is provable in L, and thus
so is its pskolemization:

(ϕ→ ψ)ps = ϕs → ψs =

2∨
i=1

(Pci ∧Qci)→ ∃z(Pz ∨Rz).

A possible provable Herbrand expansion of (ϕ→ ψ)ps is

ϕh → ψh =

2∨
i=1

(Pci ∧Qci)→
2∨

j=1

(Pcj ∨Rcj).

An interpolant for ϕh → ψh is ι = (Pc1 ∨ Pc2). Then, following the proof of
Theorem 7.1, ι1 = ι, ι2 = ∃x(Px∨Pc2) and ι3 = ∃y∃x(Px∨Py), which indeed
is an interpolant for ϕ→ ψ.

Because CD itself is not a universal formula, Corollary 7.2 may be of limited
value. One way to widen the field of application is to weaken the requirement
on constant domains, which is the subject of the remaining part of this pa-
per. As we will see, it will come at a cost, namely the addition of a specific
predicate, the existence predicate, to the language of theories. Therefore we
do not (yet) succeed in obtaining applications to interpolation of our results,
as we do not obtain an analogue of Corollary 7.2 for theories with nonconstant
domains. Still, we think the generalization of parallel Skolemization to theories
with nonconstant domains is of independent interest, and it may lead to other
applications in the future.

8 The existence predicate

The restriction, in the results above, to constant domains is a severe one since
many interesting intermediate theories do not have constant domains. In this
section we extend the results of the previous sections to such theories. The main
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tool is the increase in expressive power of the language of intuitionistic logic
through the addition of an existence predicate. In this way many logics that are
not constant domain logics in the original sense, become sound and complete
with respect to a certain class of models with constant domains. Therefore the
Skolemization method developed above can be applied to such logics as well.

We consider an extension, IQCE, of IQC, the language of which is L extended by
a unary predicate, E, the existence predicate. This logic, introduced by Scott
(1979), allows one to distinguish between existing and not (yet) existing terms.
There are several variants of the logic, depending on the requirements on the
quantifiers. In our approach, quantifiers range over existing objects only. This
means, for example, that one is allowed to infer ∃xϕ(x) only if a term t exists
such that both Et and ϕ(t) hold. In (Baaz and Iemhoff, 2006a), a Gentzen
calculus for IQCE is provided that is a variant of the Gentzen calculus G3i in
(Troelstra and Schwichtenberg, 1996). The difference between the two calculi
lies only in the quantifier rules, which in the case of IQCE are (assuming that y
does not occur free in Γ and ψ):

Γ ⇒ E(t) Γ ⇒ ϕ(t)

Γ ⇒ ∃xϕ(x)

Γ, E(y), ϕ(y) ⇒ ψ

Γ,∃xϕ(x) ⇒ ψ

Γ, ∀xϕ(x), ϕ(t) ⇒ ψ Γ,∀xϕ(x) ⇒ E(t)

Γ,∀xϕ(x) ⇒ ψ

Γ, E(y) ⇒ ϕ(y)

Γ ⇒ ∀xϕ(x)

For theories T over IQC and sentences ϕ not containing the existence predicate,
it holds that

T `IQC ϕ ⇔ Te `IQCE ϕ, (4)

where Te is the theory over IQCE corresponding to T. Roughly, Te is a version
of T in which all terms are assumed to exist. For details, see (Iemhoff, 2010).
Skolemization methods and Herbrand theorems for theories over IQCE are via
(4) inherited by theories over IQC. In the remainder of this section we provide
such methods.

A semantics for IQCE is given by Kripke existence models, which are regular
Kripke models with constant domains in which the existence predicate is inter-
preted as a unary predicate, nonempty at the root, and forcing is defined as
usual, except for the quantifiers, in which case it is defined as

K, k  ∃xϕ(x) ≡def K, k  Ed ∧ ϕ(d) for some d ∈ D
K, k  ∀xϕ(x) ≡def K, k  Ed→ ϕ(d) for all d ∈ D.

IQCE is sound and strongly complete with respect to this semantics (Baaz and
Iemhoff, 2006b). In particular, ϕ is derivable in IQCE if and only if ϕ holds in
all Kripke existence models.

8.1 Skolemization

In Baaz and Iemhoff (2006b, 2009) we showed that for IQCE there exists a sound
and complete skolemization method (·)e for existential quantifiers. Here we can
combine this method with the method of pskolemization as follows. Given a
formula ϕ and a subformula Qxψ(x, ȳ), where ȳ are the variables of the weak
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quantifiers in the scope of which Qxψ occurs, we define (writing Et for E(t)):

eps(Qxψ(x, ȳ))ϕ ≡def


∨wL

i=1Efi(ȳ) ∧ ψ(fi(ȳ), ȳ) if Q = ∃∧wL

i=1Efi(ȳ)→ ψ(fi(ȳ), ȳ) if Q = ∀,

where the fi are assumed to not occur in ϕ As previously, we write ϕ� ϕ′ if
ϕ′ is the result of replacing the leftmost strong quantifier occurrence Qxψ in ϕ
by eps(Qxψ(x, ȳ))ϕ. It is clear that, up to the renaming of function symbols,
for every ϕ there are unique ϕ = ϕ1, . . . , ϕn = ϕ′ such that ϕi � ϕi+1 and ϕ′

does not contain strong quantifiers. This ϕ′ is the epskolemization ϕeps (“e” for
existence) of ϕ.

A theory has epskolemization if for all formulas ϕ and ϕ′, where ϕ′ is the result
of replacing a strong quantifier occurrence Qxψ in ϕ by eps(Qxψ(x, ȳ))ϕ:

` ϕ ⇔ ` ϕ′.

In particular, if a theory has epskolemization, then for all formulas ϕ:

` ϕ ⇔ ` ϕeps.

8.2 Quantifier witnesses

The notion of quantifier witnesses is adapted to Kripke existence models as
follows. Given a formula Qxψ(x, ȳ), a Kripke existence model with root rK and
at least one element dK in its domain D that exists at all nodes, has quantifier
witnesses for Qxψ(x, ȳ) if the following holds:

• if Q = ∃, then for any ā ⊆ D and any branch b along which ∃xψ(x, ā)
is forced, there exists a lowest node k = nd(b,∃xψ(x, ā)) for which there
is a d = wt(b,∃xψ(x, ā)) ∈ D such that k  Ed ∧ ψ(d, ā); and if Eā or
∃xψ(x, ā) is nowhere forced along b, we put nd(b,∃xψ(x, ā)) = rK and
wt(b,∃xψ(x, ā)) = dK ;

• if Q = ∀, then for any ā ⊆ D and any branch b along which ∀xψ(x, ā)
is not forced, there exists a highest node k = nd(b,∀xψ(x, ā)) for which
there is a d = wt(b,∀xψ(x, ā)) ∈ D such that k  Ed and k 6 ψ(d, ā); and
if ∀xψ(x, ā) is forced everywhere along b, we put nd(b,∀xψ(x, ā)) = rK
and wt(b,∀xψ(x, ā)) = dK ;

• the witnesses are chosen such that if nd(b,Qxψ(x, ā)) lies on another
branch c, then nd(c,Qxψ(x, ā)) = nd(b,Qxψ(x, ā)) and wt(c,Qxψ(x, ā)) =
wt(b,Qxψ(x, ā)).

K has quantifier witnesses if it has quantifier witnesses for every quantifier
Qxψ(x, ȳ).

It is not difficult to see that the analogues of Lemmas 5.3 and 5.4 hold. Us-
ing these analogues we can prove the following variants of Theorem 5.5 and
Corollary 5.6.
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Theorem 8.3 Every theory in IQCE that is sound and complete with respect
to a class of Kripke existence models of finite width with quantifier witnesses,
has epskolemization. In particular, for all formulas ϕ:

` ϕ ⇔ ` ϕeps.

Corollary 8.4 Every theory in IQCE with fmp has epskolemization.

The above result is implied by the result (Corollary 1) in (Iemhoff, 2010) that
for logics with fmp the eskolemization method introduced in (Baaz and Iemhoff,
2006b) is sound and complete. Roughly, eskolemization is epskolemization with-
out the disjunctions and conjunctions. Thus the mentioned result in (Iemhoff,
2010) is stronger than the one in Corollary 8.4. However, the proof of it in that
paper is far more complicated than the simple one presented here. We there-
fore think that even given the stronger result, epskolemization is of independent
interest.

8.5 Herbrand’s theorem

The notion of an Hebrand expansion also has to be adapted in the presence of
an existence predicate. In extensions of IQCE, given a formula ϕ, a formula ϕ′

is a Herbrand expansion of ϕ if it is the result of replacing every positive occur-
rence of a formula ∃xψ(x) by a disjunction

∨m
i=1(Esi ∧ ψ(si)) for some terms

s1, . . . , sm, and every negative occurrence of a formula ∀xψ(x) by a conjunction∧n
i=1(Eti → ψ(ti)) for some terms t1, . . . , tn. The dual Herbrand expansion of

ϕ is defined similarly, by switching the expressions “∃xψ(x)” and “∀xψ(x)”.

In (Baaz and Iemhoff, 2008; Iemhoff, 2010) it is shown that in IQCE, derivabil-
ity of ϕ implies derivability of at least one Herbrand expansion of ϕ. As in
Lemma 6.1 this can be used to show the following.

Lemma 8.6 In any universal theory L in IQCE: if ϕ is provable in L, then so
is at least one Hebrand expansion of ϕ.

Theorem 8.7 In every universal theory in IQCE with fmp, for all formulas ϕ:

ϕ is provable ⇔ at least one Hebrand expansion of ϕeps is provable.

Using that for every universal theory T in IQC with fmp the theory Te in IQCE
is also universal and has fmp (this can be concluded from the construction of
Te as given in (Iemhoff, 2010)) we obtain the following.

Corollary 8.8 In any universal theory T in IQC with fmp, for all sentences ϕ
not containing the existence predicate:

T `IQC ϕ ⇔ Te `IQCE ϕ ⇔
at least one Hebrand expansion of ϕeps is provable in Te.

The same remarks concerning the results in (Baaz and Iemhoff, 2006b) that
follow Corollary 8.4 apply to Corollary 8.8.

The proof of the following theorem is analogous to that of its counterpart The-
orem 6.3 for constant domain logics.

Theorem 8.9 The one-variable fragment of every universal intermediate the-
ory in IQC with fmp and a decidable propositional fragment is decidable.
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9 Conclusion

It has been shown that for certain intermediate logics and intermediate theories
alternative skolemization methods and Herbrand theorems can be developed
that, like the standard method, provide a connection between derivability in a
theory and its propositional fragment. Crucial for this to hold is that the theory
is complete with respect to a class of models that have quantifier witnesses, a
technical notion that is satisfied, for example, by logics with the finite model
property. First, theories have been treated for which the models in the class in
addition have constant domains. For these theories the alternative Skolemiza-
tion method is but a simple variant of the standard method in which per strong
quantifier instead of one skolem term finitely many skolem terms are used. In
case the theory does not have constant domains, the extension IQCE of IQC is
used to obtain a similar method. Here the existence predicate of IQCE is applied
in the same way as in (Baaz and Iemhoff, 2006b), where it was used to obtain a
skolemization method for existential quantifiers in IQC. In the constant domain
as well as the not constant domain case a corresponding Herbrand theorem
can be obtained easily. For the latter case, similar results but with far more
complicated proofs have been obtained in (Iemhoff, 2010).

For universal constant domain logics with the finite model property a conse-
quence of the above is that whenever the propositional fragment of the logic has
interpolation, so does the full logic. Whether we can obtain a similar result for
logics that do not have constant domains we do not know. Another corollary of
the above is the decidability of the one-variable fragment of all logics with the
finite model property and a decidable propositional fragment.

In general, the obtained results show that useful alternatives to Skolemization
can be obtained for nonclassical theories by allowing quantified subformulas to
be replaced by more complex formulas than in the standard method. Whether
these methods can be of use in the study of nonclassical theories, the future will
tell.
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