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Abstract

This paper contains a brief overview of the area of admissible rules with
an emphasis on results about intermediate and modal propositional logics.
No proofs are given but many references to the literature are provided.

1 Introduction

In the inferential or proof-theoretic approach to logic one describes a theory via
a set of inference rules. This in contrast to most semantic approaches where a
logic is a set of theorems, characterized as those formulas that hold in certain
models, or algebras, or categories, or some other semantics. In the inferential
approach one wishes to describe how one formula follows from another and
thereby provide a procedure to generate all theorems of the theory. There are,
of course, numerous ways to do this, as illustrated by the abundance of proof
systems developed over the years. But even if one restricts oneself to one sort
of proof system, such as sequent calculi, or natural deduction systems, many
possibilities remain. We all know that a single theorem can have many different
proofs, and that a theory can have all kinds of axiomatizations. This paper is
about the variety of axiomatizations that a theory can have, and in particular
about the role of rules in this setting.

The phenomenon we wish to study can best be illustrated by the role of the cut
rule in sequent calculi. As is well-known, one can show that in the standard
cut-free calculus for classical logic the cut-rule is admissible. This means that
one can add it to the calculus and use it in derivations but in doing so one does
not obtain new theorems, just new proofs. Thus the resulting system represents
the same theory (the same set of theorems) as the original system. The merit of
having different calculi is that each system comes with its own benefits. Proof in
calculi with cut are in general shorter (in a precise sense) than cut-free proofs.
On the other hand, the latter satisfy the subformula property and are easy to
generate.
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The admissible rules of a theory are those rules that can be used in derivations
without obtaining theorems that cannot be obtained without them. Thus they
can facilitate reasoning or shorten proofs or have some other effect, but they
cannot prove what is not true in the original theory. The collection of all
admissible rules of a theory therefore is the set of all possible inference steps
one can use to prove the theorems of the theory.

Over the last thirty years the study of admissible rules has flourished. Starting
with Rybakov’s book [42] many results on the decidability and characterization
of admissible rules have appeared. Most of these results concern propositional
logics: intermediate, modal and substructural ones. This is the reason that we
restrict this overview to those logics and leave the discussion of admissible rules
in predicate logic for another occasion.

One of the beautiful aspects of the study of rules is its relation with unification
theory, as discovered by Ghilardi and developed by him and many others after
him. The connection to substitutions stems from the fact that a rule A/B is
admissible in a propositional logic, be it modal, intermediate or substructural,
if and only if whenever a substitution instance σA of A is derivable, so is σB.
The exact connection with unification theory will be explained below.

What follows in the next sections is a brief overview of the study of admissible
rules. I have not included any proofs but provide references where needed.
Because of lack of space I cannot discuss all results on rules and therefore a
slightly biased summary is what the reader can expect. But I hope I have done
justice to this area in logic that has grown large and wide over the last twenty
years and that combines philosophical relevance with deep mathematics.

2 Consequence

The study of admissible rules does not depend on a particular proof system but
only on the logic itself. We therefore chose to let logics be given by consequence
relations [56], rather than by a specific proof system such as natural deduction
or sequent calculi. In this section we define consequence relations and thereby
provide the framework for the discussion of rules in the rest of the paper.

To maintain a certain level of generality we do not yet specify a particular logic,
but just assume we have a language L that contains propositional variables
p, q, r, . . . , certain logical constants such as connectives and possibly modal or
other operators. Formulas in this language are defined as usual. When we
speak of formulas, we will always mean formulas in L. Sometimes sequents
instead of formulas are used to simplify notation. They are of the form Γ⇒ ∆,
where Γ and ∆ are finite sets of formulas, and interpreted as usual: I(Γ ⇒ ∆)
denotes

∧
Γ→

∨
∆ (in case implication, conjunction and disjunction are in the

language).

A substitution is a map that assigns to each propositional variable a formula. Ev-
ery subsitution can be uniquely extended to a map from formulas to formulas
that commutes with the logical constants (algebraically, that is a homomor-
phism). Ambiguously, both maps will be called substitutions from now on. σ
and τ range over substitutions, and σΓ denotes {σA | A ∈ Γ}.
Multi-conclusion consequence relations are relations ` on sets of formulas. We
write Γ ` ∆ if the pair (Γ,∆) belongs to the relation. We also write Γ/∆ for
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the pair (Γ,∆), and A,Γ ` ∆, B for {A} ∪ Γ ` {B} ∪∆.

A finitary structural multiple-conclusion consequence relation or m-logic is a
relation ` on finite sets of formulas that satisfies for all finite sets of formulas
Γ,Γ′,∆,∆′ and formulas A:

reflexivity A ` A,

weakening if Γ ` ∆, then Γ′,Γ ` ∆,∆′,

transitivity if Γ ` ∆, A and Γ′, A ` ∆′, then Γ′,Γ ` ∆,∆′,

structurality if Γ `L ∆, then σΓ `L σ∆.

A finitary structural consequence relation or logic is a relation satisfying the
single-conclusion variants of the four properties above, that is, where the right
side of ` consists of exactly one formula (identifying {A} with A). Although
our primary interest is the single-conclusion consequence relation, the multi-
conclusion analogue allows us to express certain properties more naturally, such
as the disjunction property discussed below. We omit the words “finitary” and
“structural” in what follows and just speak of “consequence relations”.

Any single-conclusion consequence relation ` has a natural multi-conclusion
analogue:

Γ `m ∆ ≡def ∃A ∈ ∆ Γ ` A.

The single-conclusion part of a multi-conclusion consequence relation ` is

Γ `s A ≡def Γ ` A.

A is a theorem if ∅ ` A, which we write as ` A. The set of all theorems of a
consequence relation ` is denoted by Th(`). ∆ is a multi-conclusion theorem if
` ∆, and the set of all multi-conclusion theorems is denoted by Thm(`).

3 Rules

The first part of this section contains the necessary definitions regarding rules,
and it is followed by general remarks on what has been defined.

A (multi-conclusion) rule is an ordered pair of finite sets of formulas, written

Γ/∆ or
Γ
∆. It is single-conclusion if |∆| ≤ 1. For R = Γ/∆, σR is short for

σΓ/σ∆, and similarly for sets of rules. If disjunction belongs to the language,
the single-conclusion version of a multi-conclusion rule R = Γ/∆ is the rule
A ∨

∧
Γ/A ∨

∨
∆. The addition of “A∨” is a technicality that will not be

explained, given the survey character of this text. Rules Γ/∆ such that Γ ` ∆
are the rules of the consequence relation ` and Ru(`) is the set of all such rules.
If Γ is empty, the rule is also called an axiom, and a proper rule otherwise.

Given a multi-conclusion consequence relation ` and a set of rules R, `R is the
smallest consequence relation extending ` for which Γ ` ∆ holds for all Γ/∆
in R. Similarly for single-conclusion rules and single-conclusion consequence
relations. In case of a single rule R we write `R for `{R}. We leave it to the
reader to verify that given any ` and R there indeed exists such a smallest
consequence relation and that it is unique.
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Given a consequence relation `, a set of rules R is a basis for a consequence
relation `′⊇` if `′ = `R. A rule R = Γ/∆ is derivable if Γ ` ∆. It is admissible,
written Γ |∼∆, if Thm(`) = Thm(`R), and Th(`) = Th(`R) in case ` and
R are single-conclusion. A set of rules is admissible if all of its members are.

A few remarks are in order. As can be seen from the definition, a rule is
admissible when one can add it to the consequence relation without obtaining
new theorems, just (possibly) new derivations. This shows that admissibility
solely depends on the theorems of a consequence relation. Admissibility |∼ itself
is a consequence relation, namely the largest consequence relation with the same
theorems as `. Therefore the admissible rules of ` are all possible inference steps
that could be added to ` to derive the theorems of ` and nothing more. Or to
put it less formally, admissible rules tell us exactly what arguments are allowed
to obtain the truths of a theory.

Naturally, this leads to questions such as: is it decidable whether a rule is
admissible, is there a nice description of the rules that are admissible, and so
on. Answers to these questions form the main part of the rest of this article.

Derivable rules are those admissible rules that are explicitly captured by the
consequence relation, the reason they are often called trivial. Derivability de-
pends on a design choice: one can have two consequence relations with the same
theorems where a certain rule is nonderivable in one of them and derivable in
the other. For example, if ` has a nonderivable admissible rule R, then ` and
`R have the same theorems, but R is not derivable in `, while it is so in `R.
As mentioned above, admissibility does not depend on a design choice, it is a
fundamental notion depending on the theorems of a consequence relation (the
logic) and on nothing else.

The following proposition provides the link between admissibility and unifica-
tion. It applies to consequence relations that are saturated, meaning that

` ∆⇒ ∃A ∈ ∆ ` A.

Every single-conclusion consequence relation ` is clearly saturated, and so is its
multi-conclusion variant `m. The notion is related to the disjunction property
in that in every logic for which there is a consequence relation ` such that ` ∆
if and only if `

∨
∆, being saturated is equivalent to having the disjunction

property.

Proposition 3.1 For every saturated consequence relation `,

Γ |∼∆ ⇔ ∀σ : (∀A ∈ Γ ` σA)⇒ ∃B ∈ ∆ ` σB.

Therefore every single-conclusion consequence relation satisfies

Γ |∼A ⇔ ∀σ : (∀B ∈ Γ ` σB)⇒ ` σA.

In the literature admissibility is often defined via the equivalence above.

Proposition 3.1 shows that via multi-conclusion consequence relations one can
express the disjunction property. It implies that an intermediate logic has the
disjunction property if and only if {p∨ q}/{p, q} is admissible, and similarly for
modal logic and the modal disjunction property {2p ∨2q}/{p, q}.
A single-conclusion consequence relation ` is structurally complete if all proper
extensions in the same language have new theorems, and hereditarily structurally

4



complete if all extensions in the same language are structurally complete. It is
not difficult to see that ` is structurally complete if and only if it coincides
with |∼ . For the latter means that every nonderivable rule R is not admissible,
which is equivalent to `R having new theorems for all nonderivable R, that is,
to being structurally complete. Thus structural completeness means that there
are no “hidden” principles of inference, no underivable admissible rules, all valid
arguments are already captured by the consequence relation itself.

Structural completeness first appeared in the work of Pogorzelski in 1971 [35].
The name “admissible” for rules goes back to a paper by Lorenzen from 1955
[30]. But the first appearance of the phenomenon of admissible rules, though
not under this name, is in a paper by Johansson on minimal logic from 1937 [29],
where it is observed that the rule B∨ (A∧¬A)/B is admissible but underivable
in minimal logic.

We wish to associate with well-known logics L a particular single-conclusion
consequence relation `L that we can refer to when considering the logic. As we
will be concerned with admissibility rather than derivability, it is not impor-
tant which particular consequence relation we choose, except that in the case
conjunction and implication are present in the language we choose `L such that
rules corresponding to provable implications are derivable, where Th(L) denotes
the set of theorems of L:

(
∧

Γ→ A) ∈ Th(L)⇒ Γ `L A.

Once `L has been fixed we take `mL for the multi-conclusion consequence relation
corresponding to L.

4 Admissibility

One of the reasons that admissibility is a notion that has long been overlooked
might well be that in classical propositional logic CPC all (single-conclusion)
admissible rules are derivable, that is, CPC is structurally complete. Indeed,
suppose that Γ |∼CPCA. By Proposition 3.1 this means that for all substitutions
σ that replace the propositional variables in Γ by > or ⊥, `CPC

∧
σΓ implies that

`CPC σA. Note that this is precisely the definition of an implication
∧

Γ → A
being valid in classical logic.

Once tertium non datur does not hold the picture changes drastically. Probably
the most famous admissible rule that is not always derivable is the Harrop Rule:

¬p→ q ∨ r
(¬p→ q) ∨ (¬p→ r)

HR

Prucnal discovered the universal character of this rule, a result later strength-
ened by Minari and Wroński in [31]:

Theorem 4.1 [38] HR is admissible in any intermediate logic.

That HR is not always derivable follows from its underivability in intuitionistic
logic. To prove that it is admissible one can use what has become known as
Prucnal’s trick [37]. It is an instance of a more general phenomenon that we
will explain first.
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Given a formula A and a valuation v of the propositional variables in the classical
sense (mapping them to 0 or 1), we define the corresponding substitution σv as

σA
v (p) ≡def

{
A ∧ p if v(p) = 0
A→ p if v(p) = 1.

It is not difficult to see that for all subformulas B of A:

`CPC σA
v (B)↔

{
A ∧B if v(B) = 0
A→ B if v(B) = 1.

As `CPC A→ A, this gives `CPC σA
v (A) for all v that satisfy A.

To prove Theorem 4.1, assume `L ¬A → B ∨ C holds in L. Thus `L ¬σA →
σB ∨ σC for any substitution σ. If `L ¬¬A, then `L ¬A→ D holds for any D.
Therefore assume this is not so, which by Glivenko’s Theorem provides us with a
valuation v such that v(¬A) = 1. Let σ denote σ¬Av . The discussion above shows
that `CPC ¬σA, and again by Glivenko’s Theorem `L ¬σA. Hence `L σB ∨σC.
Clearly, `CPC ¬A→ (σD ↔ D) for all D, and thus `L (¬A→ B) ∨ (¬A→ C),
which is what we had to show.

Substitutions as the above play an important role in the study of admissibility
as we will see in the context of unification. This is not the place for a technical
discussion on the precise use of them, but we have included the brief argument
above to give the reader a taste of their usefulness.

5 Decidability

Rybakov may well be called the father of admissible rules. His [42] contains
numerous results on admissibility, most importantly the decidability of the ad-
missibility relation of IPC, K4, GL, S4 and several other intermediate and modal
logics. Thus answering Harvey Friedman’s 1975 question about the decidability
of admissibility in intuitionistic logic positively. The method Rybakov employs
is semantical. Essentially, the admissibility of a rule is reduced to its validity
in a certain characterizing model. Then it is shown that from a valuation that
refutes the rule a definable valuation refuting the rule can be obtained, which
then provides a substitution proving that a rule is not admissible. Decidabil-
ity of admissibility then follows once one can show the finiteness of the objects
involved.

This method is fruitful in that it can be adapted to many other logics, as has
been done in [2, 33, 43, 44], where the decidability of admissibility in various
temporal logics and minimal logic has been studied. A slight drawback of the
method is that the algorithms that the method proves to exist are not easy
to obtain from those proofs. In several cases there are, however, other ways
to construct algorithms, as shown by Ghilardi in [11]. In [19, 20] Metcalfe
and the author developed proof systems for admissibility for several well-known
intermediate and modal logics, from which decision algorithms can be obtained
as well.

How complex admissibility is in case it is decidable has been studied by Jeřábek
who proved it to be coNEXP-complete in many natural modal and intermediate
logics such as K4, S4, GL and IPC [23]. Thus checking admissibility in these logics
is strictly more complex than checking derivability.
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Of course, if derivability in a logic is undecidable, so is admissibility. The
converse is not true: there are decidable logics for which admissibility is unde-
cidable, as first shown in [3], and later also in [54].

6 Bases

Knowing that admissibility in a logic is decidable, a next challenge is to give
a description or axiomatization of its admissible rules, that is, a nice basis
(Section 3). The word nice is used to stress that we are, of course, not interested,
in the trivial basis consisting of all admissible rules, but rather in bases that
tell us something about admissibility. Over the last twenty years many results
that characterize admissible rules via a basis have been obtained, mainly for
intermediate, modal and substructural logics and their fragments. The rules we
discuss can best be expressed via sequents and we therefore in this section use
a sequent-style formulation of the results.

Rybakov in [42] showed that in various modal and intermediate logics, including
IPC and K4, there does not exist a finite basis for the admissible rules. This, of
course, does not exclude that these logics have an infinite basis that still can be
described in a compact way. As we will see, this often is the case.

There are three collections of rules that play a central role in admissibility. In
intermediate logic these are the multi- and the single-conclusion Visser Rules,
in which Γ is required to consist of implications only:

Γ⇒ ∆
{Γ⇒ A | A ∈ Γa ∪∆} V

Γa consists of the antecedents of the implications that belong to Γ, which means
Γa ≡def {A | (A → B) ∈ Γ for some B}. In modal logic these are the multi-
conclusion Modal Visser Rules:

2Γ⇒ 2∆
{�Γ⇒ A | A ∈ ∆} V

• 2Γ ≡ Γ⇒ 2∆
{�Γ⇒ A | A ∈ ∆} V

◦

Here �Γ is short for {A ∧ 2A | A ∈ Γ} and 2Γ ≡ Γ for {2A ↔ A | A ∈ Γ}.
The single-conclusion versions of V, V

•
and V

◦
are denoted respectively by V,

V• and V◦.

Roziére [40] was the first to provide a concrete basis for the admissible rules
for a logic for which the problem is not trivial, by proving in 1992 that V
is a basis for the admissible rules of IPC. This result was not published and
was independently but later obtained by the author, who strengthened it to
Theorem 6.1. The Visser Rules also appeared in the work of Visser [49, 50] who
proved that the admissible rules of IPC and Heyting Arithmetic are equal, and
Skura [45], who used them in the context of refutation systems.

Observe that the Visser Rules are in general not derivable. That they are
admissible can be shown in various ways. For IPC, for example, the following
proof-theoretic argument could be given. Consider the sequent calculus G3i [48]
and observe that a cut-free proof of Γ⇒

∨
∆ in case Γ consists of implications

only, must necessarily end in an inference which has Γ ⇒ A as a premiss for
some A ∈ Γa ∪ ∆. Similar reasoning can be used to prove the admissibility
of the Modal Visser Rules. Admissibility of these rules can also be proved
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semantically by constructing on the basis of counter models to the conclusion of
the rule a counter model to its premisses. To prove that the rules not only are
admissible but form a basis is much harder, the main ingredients of the proof
will be discussed in the section on unification. A full proof is outside the scope
of this paper.

Theorem 6.1 [16, 17] In every intermediate logic in which V is admissible it
forms a basis for the single-conclusion admissible rules.

This theorem has implications for several intermediate logics for which it is easy
to see or well-known that the Visser rules are admissible. It implies that V is a
basis for the multi-conclusion admissible rules in IPC, and that V is a basis for
the admissible rules in the logics of frames with exactly n maximal nodes. In
particular, V is a basis in KC. It also follows that in logics with linear frames all
admissible rules are derivable, as the Visser Rules are easily seen to be derivable
in such logics. In particular this holds for the finite Gödel logics and LC.

Examples of intermediate logics in which not all Visser Rules are admissible
are the Gabbay–de Jongh logics [13] and Medvedev logic, which is structurally
complete [17, 39, 53]. Admissibility in the Gabbay–de Jongh logics neatly cor-
responds to the levels of the hierarchy of Visser Rules: in the n-th such logic
the Visser Rules in which the size of Γ is at most n + 1 form a basis. Just as
the union of these logics is IPC, so is the union of their bases a basis for the
admissible rules of IPC. Another example of an intermediate logic with a basis
for admissibility different from the Visser rules is the logic of frames of depth
at most 2, as shown by Goudsmit [14]. Goudsmit also provides a nice relation
between admissibility and refutation systems in [15].

Using similar techniques as in the intermediate case, Jeřábek proved the follow-
ing modal analogue of Theorem 6.1 about multi-conlcusion rules.

Theorem 6.2 [22] In every transitive irreflexive modal logic in which V
•

is ad-

missible it forms a basis. The same holds for V
◦

in transitive reflexive modal
logics. If the logic is neither reflexive nor irreflexive and V

•
and V

◦
are admis-

sible, they form a basis.

It follows that V
•

is a basis for the admissible rules in GL, and the same holds
for V

◦
in S4, and for V

•
and V

◦
in K4. In [24] other interesting bases for the

admissible rules of these logics and IPC are provided. In contrast to the Visser
Rules, these bases are independent. Interestingly, not in all logics admissible
rules have independent bases [41]. For modal logics below K4 much less is known
about admissibility. Some partial answers can be found in [28, 51, 52].

As one would expect, admissibility is very sensitive to the language one uses.
It has long been known that the implicational fragment of IPC is hereditarily
structurally complete [37] (the first occurrence of Prucnal’s trick). The same
holds for the implication–conjunction and some other fragments of IPC [32, 47].
In [32] Mints showed that any admissible underivable rule of IPC must contain
both implication and disjunction.

Interestingly, the implication–negation fragment of IPC is not structurally com-
plete, as was first observed by Wroński. In [5] Cintula and Metcalfe show that
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the following Wroński Rules are a basis for the multi-conclusion admissible rules
of this fragment (they also provide a basis for the single-conclusion rules).

A1 → (A2 → (. . .→ (An → ⊥) . . . )

{¬¬Ai → Ai | 1 ≤ i ≤ n}
W

As often, to see that these rules are admissible is not hard, but to prove that
they actually are a basis requires considerable effort. Cintula and Metcalfe
make use of a technique by now well-known in the study of rules, and which
will be explained in the section on unification. An nontrivial example of a logic
for which the implication–negation fragment is structurally complete is relevant
logic [46].

For substructural logics much less is known about bases of admissible rules, as
many of the techniques used for modal and intermediate logics fail in this setting.
Exceptions are results on structural completeness and  Lukasiewicz logic. In [26]
Jeřábek proves that admissibility in the latter is decidable in PSPACE, and an
explicit basis is given in [27]. In [34] substructural logics without weakening
are considered and many are proved to be hereditarily structurally complete.
Due to lack of space and the fact that the author is not an expert in this area
concrete results are not included, but see [4, 34].

7 Canonicity

Research on admissibility in modal and intermediate logics can roughly be di-
vided in three groups, based on the techniques that are used. There is the
approach developed by Rybakov that makes use of characterizing models, the
approach initiated by Ghilardi that uses projectivity and finite frames, and the
approach by Jeřábek that uses canonical rules. The first approach is discussed
in Section 5, the second approach will be discussed in the next section, and the
third approach will be discussed in this section.

Zakharyaschev, in a series of papers, showed that intermediate and normal
transitive modal logics can be axiomatized by canonical formulas, which are
formulas based on finite frames [57, 58, 59, 60]. Jeřábek showed that one can
prove a similar result for rules [25]. Namely, that every rule is equivalent (over
IPC in the case of intermediate and over K4 in the case of modal logic) to a set
of canonical rules, which are rules based on finite frames.

Canonical formulas can be a useful tool to establish that certain logics have
certain properties, such as decidability and the finite model property. In [25]
Jeřábek uses canonical rules to obtain several quite strong results on admissi-
bility in intermediate and modal logics. He provides a semantical necessary and
sufficient condition for a canonical rule to be admissible, and from this obtains
many known results on decidability and bases for admissibility.

Jeřábek also proves that certain logics (IPC, K4, GL, S4 among them) have the
rule dichotomy property. This is the property that every rule is equivalent to a
set of rules that are either admissible in the logic or assumption-free. This means
in particular that any intermediate logic L has a basis for its admissible rules
that consists of rules that are admissible in IPC. Thus the basis consists of rules
that are derivable (over IPC) from V. Observe that this improves Theorem 6.1,
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which only applies to logics in which the Visser rules are admissible. Similar
observations can be made about modal logics.

All in all, it shows that the approach via canonicity is as powerful in the con-
text of rules as it is in the context of formulas. And it leads to results about
admissibility for which at the moment no other proof is known.

8 Unification theory

Proving that a certain set of rules is a basis for the admissible rules of a certain
logic can be very hard. One of the reasons is the role played by substitutions,
as witnessed by Proposition 3.1. The far reaching connection with unification
theory was discovered by Ghilardi in a series of papers that form a cornerstone
in the field [9, 10, 11, 12]. We restrict ourselves to intermediate and modal
propositional logics, which were the first logics for which this method was de-
veloped.

Central is the notion of a projective unifier of a formula A, which is a substitution
σ that is a unifier of A, which means that ` σA, and such that for every atom
p:

A ` p↔ σp.

This implies that, given A, σ is the identity on all formulas B: A ` B ↔ σB.
A formula for which such a projective unifier exists is a projective formula.

In IPC, for example, the substitutions σA
v from Section 4 are a projective unifier

of A if they are a unifier of A. Clearly, if v(p) = 1, then `IPC σp
vp, thus proving

that p is projective in IPC. For ¬p, any v with v(p) = 0 gives `IPC ¬σ¬pv p.
Hence ¬p is projective too. An example of a formula that is not projective is
p∨¬p. That it is not projective can be seen using a semantical characterization
of projectivity by Ghilardi [9, 10] that falls outside the scope of this paper.
Similar reasoning as for IPC can be used in modal logics to show, for example,
that p∧2p and ¬p∧2¬p are projective formulas in K4 while 2p∨2¬p is not.

The importance of projective formulas in the context of admissible rules stems
from the fact that for such formulas admissibility and derivability coincide.

Fact 8.1 If A is projective, then for all formulas B:

A |∼B ⇔ A ` B.

Projective formulas can also be used to approximate nonprojective formulas in
the following sense. A projective approximation ΠA of a formula A is a finite
set of projective formulas such that∨

ΠA ` A |∼ΠA.

This implies that
∨

ΠA ∼||∼A. Therefore
∨

ΠA can be viewed as a normal form
for A with respect to |∼ .

In IPC, for example, {p,¬p} is a projective approximation of p ∨ ¬p. Above we
saw that p and ¬p are projective. And

∨
{p,¬p} `IPC p ∨ ¬p |∼{p,¬p} holds

because IPC has the disjunction property.

Projective approximations can be used to prove that a certain set of rules is a
basis for the admissible rules of a logic in the following way.
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Proposition 8.2 Let R be a set of admissible rules such that every formula A
has a projective approximation ΠA such that∨

ΠA `L A `RL ΠA. (1)

Then R is a basis for the admissible rules of L.

Because of Lemma 8.2 one has but to find a way of constructing projective
approximations using a certain set of rules in order to obtain a basis for the
admissible rules of a logic. In practice this goal can be hard to reach. But at
least for intermediate and transitive modal logics this method has been highly
successful in providing ways to prove Theorems 6.1 and 6.2.

As to the constructivity of this method: [11, 19, 20] contain algorithms to
obtain the projective approximation of a formula in several well-known logics
and in [18, 21] constructive proofs of the projectivity of the formulas in the
approximation are given, by providing explicit proofs of the formulas under
their projective unifier.

Not only can projective approximations be used in the study of admissible rules,
they also can be used to establish the unification type of a logic. In practice,
these notions are often studied in parallel, which is the reason why we briefly
discuss unification types here. First, we need some terminology.

Substitutions can be ordered according to their generality: τ 6 σ if and only if
τ is an instance of σ:

τ 6 σ ⇔ ∃τ ′∀p : ` τ(p)↔ τ ′σ(p).

In this case τ is less general than σ. A substitution σ is a maximal unifier of
A if among the unifiers of A it is maximal in the order 6. It is a most general
unifier (mgu) of A if all unifiers of A are less general than it.

Projective unifiers are most general unifiers because if σ is a projective unifier of
A, and τA is derivable, then τp↔ τσp. Hence τ 6 σ, proving that any unifier
of A is less general than σ. The converse is not true: not every most general
unifier is projective, but the only most general unifiers we will be concerned
with are. A set of maximal unifiers of A is complete if every unifier of A is less
general than a unifier in the set and if no two unifiers in the set are comparable.

The unification type of a logic describes the level of generality unifiers have in
this logic. A logic L has unification type unitary if every unifiable formula has a
mgu, and finitary if every unifiable formula has a finite complete set of maximal
unifiers. There are other possible types, but we will discuss them here.

In Section 4 we saw that in CPC, if v is a valuation that satisfies A, then σA
v

is a unifier of A. Above we explained that σA
v is projective, and therefore it is

a most general unifier of A. Thus proving that the unification type of classical
logic is unitary. This no longer is the case for IPC: every unifier σ of p∨¬p has
to be a unifier of p or ¬p by the disjunction property. Thus `IPC σ(p) ↔ > or
`IPC σ(p)↔ ⊥. Therefore a most general unifier of p ∨ ¬p should be equivalent
to > and more general than ⊥ or vice versa, which cannot be. Using the modal
disjunction property, a similar argument for 2p ∨2¬p shows that many modal
logics do not have unitary unification either.

Ghilardi introduced projective approximations to prove that the unification type
of IPC and many transitive modal logics, K4, GL and S4 among them, is finitary.
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Namely, he observed that if every formula A has a projective approximation
ΠA, then L has finitary or unitary unification, and then proved the existence
of projective approximations in several intermediate and modal logics. The
projective unifiers he uses are compositions of the substitutions σA

v that we
encountered before.

Summarizing, a logic that satisfies the assumptions of Lemma 8.2, not only has
R as a basis for its admissible rules but also has finitary unification type. This
is a connection between unification and admissible rules that exists for many
modal and intermediate logics and has lead to some of the deepest results in
the area.

9 What to do

In the field of admissible rules there are many challenges, both technical and
philosophical. Let me start with the first. The proof method using projective
approximations that has been described in the last section does not seem to
apply (easily or at all) to substructural logics and modal logics that are not
transitive. And therein lies one of the major hurdles to be taken, hopefully, in
the coming years: to find ways to treat admissibility in these logics for which
known methods fail.

A topic that deserves more attention is admissibility in predicate logic. Pogorzel-
ski and Prucnal have studied structural completeness in the context of classical
predicate logic [36], and Dzik provided structurally complete intermediate pred-
icate logics [7, 8]. Visser has proved that the propositional admissible rules
of Heyting Arithmetic and IPC are equal [50], and that in Heyting Arithmetic
the admissibility relation for predicate rules is Π2-complete [49]. This does not
exclude the possibility that the admissible rules have a decent description in
some way or another, but it shows how complex the notion of admissibility in
predicate logic is.

Then there is the philosophical issue regarding the reason for a rule to be ad-
missble. For example, in intuitionistic logic the disjunction property is perfectly
explainable from the constructive point of view. That it really holds still re-
quires a proof, but the meaning of disjunction in intuitionistic logic foretold us
that it would hold. For admissible rules one would like such an intuitive expla-
nation as well, but it is conspicuously lacking. In the case of intuitionistic logic
the type theoretic interpretation might lead the way, but how to understand
admissibility in modal logic seems even less clear.

Another matter, both philosophical and technical in nature, concerns the frame-
work of admissibility. In the literature one often presents it in the context of
consequence relations, as is done in this paper. But there is a slight feeling of
uneasiness in that this framework is not quite as flexible as one would like it to
be. In practice, rules do not always consist of pairs of (sets of) formulas only
but have side conditions as well (such as “x is not free in . . . ”). Consequence
relations as presented here do not allow for that, which is why one might wish
to look for alternatives.

These are some of the numerous questions regarding admissibility for which no
solution is known. In this field answers are in general hard to obtain, but I
think that the future has some beautiful results in store for us.
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