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Abstract

Gödel logics correspond to linear models with constant domains. In this
paper other truth value logics, Scott logics, are defined, that correspond
to linear models with possibly non-constant domains. An extension of
intuitionistic logic by an existence predicate is discussed, and it is shown
that this provides a natural translation of Scott logics into Gödel logics
extended by this predicate.
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1 Introduction

Logics are often defined either via a proof system or via a class of models.
For example most well-known modal and intermediate logics are presented via
their class of frames or via their axiomatization over respectively K or IQC. A
different approach to defining logics occurs in the context of truth value sets,
i.e. subsets of the unit interval [0, 1]. One can, for a given truth value set V ,
interpret formulas by mapping them to elements of V . The logical symbols
receive a meaning via restrictions on these interpretations, e.g. by stipulating
that the interpretation of ∧ is the infimum of the interpretations of the respective
conjuncts. Given these interpretations, one can associate a logic with such a
truth value set V : the logic of all sentences that are mapped to 1 under any
interpretation on V .
Given these three possible ways of defining a logic (there are of course a lot
more, but here we will only consider these three), one might wish to know what
is the connection between them, and whether a given logic can be represented
in all three ways. Of course, this is not always possible, as e.g. the logic of finite
models shows: this logic is defined via its class of models, but is known not to
have a r.e. axiomatization. On the other hand, e.g. classical predicate logic CQC
can be defined as the logic of the truth value set {0, 1} (under the appropriate
interpretations of the language), as the logic axiomatized by e.g. the Gentzen
calculus LK, and as the logic of classical models.
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For some logics it is not so clear whether they can be represented in these
different ways. Interesting examples are the many valued logics given via truth
value sets. Here the correspondence between a truth value representation, an
axiomatization, and a representation via frames is not always available, and
even if so, often difficult to prove. In this paper, except for the last section, we
will concentrate on the first and last representation: the one in terms of truth
value sets and the one in terms of frames. The logics we consider are initially
defined via truth value sets and are proved to have a representation via frames,
i.e. are proved to be the logic of a frame, at least in case the frame is countable.
An interesting and famous example of this phenomenon is given by the Gödel
logics. Here a truth value set V always is a Gödel set: a closed set of [0, 1]
containing 0 and 1. The Gödel logic GV consists of those sentences that receive
value 1 under all interpretations I on V . An interpretation interprets terms and
predicate symbols on a given domain D, which in the case of an n-ary predicate
P means that I(P ) is a map from Dn to V , and extends to all formulas via one
of the standard interpretations of the logical symbols in many-valued logics, the
Gödel logic interpretation (not standard terminology):

I(P t̄) = I(P )( ¯I(t))
I(A ∧ B) = inf(I(A), I(B))
I(A ∨ B) = sup(I(A), I(B))

I(A → B) =
{

1 if I(A) ≤ I(B)
I(B) otherwise,

I(∃xAx) = sup{I(Aa) | a ∈ D}
I(∀xAx) = inf{I(Aa) | a ∈ D}.

As to the frame models for this logic, they are restricted to the ones with
constant domains. That is, in this context the (constant domain) logic of a
frame F , denoted by Lcd

F , consists of all formulas that hold in all Kripke models
based on F with constant domains. As has been proved by A. Beckmann and
N. Preining in [3], we have the following two representations of Gödel logics,
one via truth value sets and one via frames:

Theorem 1 (A. Beckmann and N. Preining [3]) For any countable linear frame
F there exists a Gödel set V such that

GV = Lcd
F , (1)

and vice versa: for every Gödel set V there exists a countable linear frame F
such that (1).

As to the third way of representing a logic, via axiom systems, the situation for
first-order Gödel logics is complicated. We will mention some of the results by
N. Preining on this topic in Section 6.

1.1 Scott logics

As the above shows, Gödel logics correspond to frames when the models are
restricted to the ones with constant domains. And indeed, the Gödel logics all
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contain the constant domain formula

∀x(A ∨ B(x)) ↔ (A ∨ ∀xB(x)).

Here we ask ourselves what happens when we do not require that the domains
be constant, but wish to keep the close relation between frames and truth value
sets. We introduce logics based on Gödel sets that correspond to linear frames
for which it is not assumed that the domains of the models be constant. For
these logics, the quantifiers are interpreted in a different way than in the case of
Gödel logics. Here a domain assignment is a pair (D, e) where D is a nonempty
set and e is a function e : D → V satisfying

∃a ∈ D e(a) = 1.

Given a domain assignment (D, e), a Scott logic interpretation I interprets terms
and predicate symbols on D, satisfies

inf
i

e(ai) ≤ e(I(f)(ā))

for all n-ary function symbols f in the language and all sequences ā = a1, . . . , an

in Dn, and extends to all formulas as follows:

I(P t̄) = I(P )( ¯I(t))
I(A ∧ B) = inf(I(A), I(B))
I(A ∨ B) = sup(I(A), I(B))

I(A → B) =
{

1 if I(A) ≤ I(B)
I(B) otherwise,

I(∃xAx) = sup{e(a) ∧ I(Aa) | a ∈ D}
I(∀xAx) = inf{e(a) → I(Aa) | a ∈ D}.

The Scott logic SV of V consists of those sentences A that receive the value 1
for any domain assignment and any Scott interpretation on V .
In this paper (Corollary 10) we prove the following correspondence.

For every countable Gödel set V there exists a countable linear frame F
such that LF = SV .

For every countable linear frame F there exists a Gödel set V such that
LF = SV .

Here LF denotes the logic of a frame F , i.e. the set of formulas that hold in all
Kripke models (also the ones with non-constant domains) based on F . Except
for the quantifier cases, the methods used in the proof of this correspondence are
quite similar to the ones used by Beckmann and Preining in [3]. The difference
lies in the introduction of the Scott interpretation, i.e. in a new interpretation
of the quantifiers, and its relation to the existence predicate, to be discussed
below.
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1.2 An existence predicate

The distinction between Scott logic interpretations and Gödel logic interpreta-
tions lies in the treatment of the quantifiers. Gödel logics can be viewed as a
special kind of Scott logics, namely the ones in which e is the constant function
mapping all elements to 1.
There is a kind of intuitive explanation of the interpretation of ∀ and ∃ in
this setting. In [1] it has been observed that there is some sort of friction be-
tween quantifiers and terms in intuitionistic logic, which shows itself particularly
clearly in the case of Skolemization. The Skolemization of an infix formula, i.e.
a formula not necessarily in prenex normal form, is the replacement of strong
quantifiers (occurrences of positive universal and negative existential quanti-
fiers) by fresh function symbols. Classically, a formula is equiconsistent to its
Skolemized version, intuitionistically it is not. One of the reasons for this is
that quantifiers might range over increasing domains, while terms have to be
interpreted at the root of a Kripke model. Therefore, a term cannot denote an
object that only comes into existence at a later stage in a model.
In [1] an alternative Skolemization method is introduced that has the desired
properties of standard Skolemization for a large class of formulas, including the
formulas in which all strong quantifiers are existential. To this end the language
of intuitionistic logic is extended by an existence predicate E, where Et has the
meaning that t exists. This conservative extension of intuitionistic predicate
logic, IQCE, was first studied by D. Scott in [9]. A Gentzen calculus for the
system was first introduced in [2], where it is also shown that the system has
cut-elimination. Terms may range over partial objects, variables and quantifiers
are assumed to range over existing objects. Whence in a natural deduction
formulation, the introduction rule for ∃ and the elimination rule for ∀ become:

A(t) Et

∃xA(x) ∀xA(x) Et

[A(t)]
...
C

C

In accordance with this the quantifiers are interpreted in Kripke models in the
following way (to stress the difference between this way of forcing and the normal
forcing !, we denote it by !e):

k !e ∃xA(x) iff ∃d ∈ Dk k !e Ed ∧ A(d)

k !e ∀xA(x) iff ∀k′ " k∀d ∈ Dk′ : k′ !e (Ed → A(d)).

Observe the connection between the interpretation of the quantifiers in Scott
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logic and in IQCE (Ie(A) denotes {w | w !e A}):

Scott logic I(∃xAx) = sup{e(a) ∧ I(Aa) | a ∈ D}
Existence logic Ie(∃xAx) ≡

⋃
a∈D{w | a ∈ Dw, w !e Ea ∧ Aa}

Scott logic I(∀xAx) = inf{e(a) → I(Aa) | a ∈ D}
Existence logic Ie(∀xAx) ≡

⋂
a∈D{w | ∀v " w(a ∈ Dv ⇒ v !e Ea → Aa)}.

Now the meaning behind the treatment of quantifiers in Scott logics becomes
more clear: the e(a) can be considered as a measure of termination, or approxi-
mation: e(a) < e(b), means that the value we give to the existence of b is higher
than the one for a, or that we have a better approximation of b than of a. For
the evaluation of a quantified statement QxA(x), we wish to take into account
the values of I(Aa) only for those a that we know well enough compared to Aa,
that is, those a for which I(Aa) < e(a). And indeed, if there is an a such that
I(Aa) < e(a), then

I(∃xAx) = sup
(
sup{I(Aa) | a ∈ D, I(Aa) < e(a)},

sup{e(a) | a ∈ D, e(a) ≤ I(Aa)}
)

I(∀xAx) = inf{I(Aa) | a ∈ D, I(Aa) < e(a)}.

On the other hand, if no such a such that I(Aa) < e(a) exists, then we give
QxA(x) the benefit of the doubt. For the universal quantifier this means
I(∀xA(x)) = 1, and for the existential quantifier this means I(∃xAx) = sup{e(a) |
a ∈ D}.
We will not discuss IQCE here in more detail, but we will encounter the existence
predicate later in Section 4, where we present a faithful interpretation, first
suggested by an anonymous referee, of Scott logics SV into so-called existence
Gödel logics Ge

V . This interpretation, that uses the existence predicate, enables
us to give another proof of the main result on the correspondence between Scott
logics and linear frames.
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2 Preliminaries

L denotes a language of first-order predicate logic, without equality. For a set D,
LD denotes the language L extended by the elements of D, which are considered
as constants of the language. An L-term is a term in L and an LD-term is a term
in LD. Similarly for L-sentences and LD-sentences. A closed term is a term in
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which no free variables occur. Given a set D, t, s range over closed LD-terms,
and a, b range over elements in D. A, B, . . . range over formulas in LD unless
explicitly stated that they are formulas in L. For a sequence ā = a1, . . . , an,
ā ∈ D means that all ai belong to D. The ai are called the elements of ā. āb̄
denotes the concatenation of ā and b̄. When we write a formula A like A(t̄, ā)
this means that every LD-term in A is an element of t̄ or ā, and all elements in
D that occur in A are elements of ā. When we write A like A(t̄), this means that
all LD-terms in A are elements of t̄. If we write A like A(ā), this means that
all constants in A that belong to D are elements of ā. Thus A(ā) may contain
other terms than the ones in D but they are just not indicated. Notation A(x̄)
means that all free variables in A are elements of x̄.

2.1 Kripke models

A classical LDw -structure is a pair (Dw, Iw) such that Dw is a set and Iw is a
map from LDw such that

for every n-ary predicate P in L, Iw(P ) is an n-ary predicate on Dw,

for every n-ary function f in LDw , Iw(f) is an n-ary function on Dw

(constants are considered as 0-ary functions),

Iw(a) = a for every constant a ∈ Dw.

For any closed LDw -term t, Iw(t) denotes the interpretation of t under Iw in
Dw, which is defined as usual. Iw(t1, . . . , tn) is short for Iw(t1), . . . , Iw(tn).
For LDw -sentences A, let (Dw, Iw) |= A denote that A holds in the structure
(Dw, Iw), which is defined as usual for classical structures.
A frame is a pair (W, #) where W is a nonempty set and # is a partial order
on W . A Kripke model on a frame F = (W, #) is a triple K = (F, D, I), where
D = {Dw | w ∈ W} is a collection of nonempty sets satisfying

⋂

w

Dw += ∅ (w # v ⇒ Dw ⊆ Dv),

and I is a collection {Iw | w ∈ W}, such that the (Dw, Iw) are classical LDw -
structures that satisfy the persistency requirement: for all w ∈ W , for all pred-
icates P (x̄) in L and for all closed LDw -terms t̄,

w # v ⇒
(
(Dw, Iw) |= P (t̄) ⇒ (Dv, Iv) |= P (t̄)

)
,

w # v ⇒ Iw(t̄) = Iv(t̄).

Note the point that was made in Section 1.2: closed L-terms are interpreted
as elements that belong to every domain Dw in the model. Moreover, the
persistency requirement implies that this interpretation is the same at every
node. We sometimes call D a domain assignment to F . w ↑ denotes {v ∈ W |
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w # v}. A model is said to have constant domains when all nodes have the
same domain: Dw = Dv, for all w and v. For a frame F = (W, #) we define

Cones(F ) ≡def {U ⊆ W | ∀x ∈ U∀y ∈ W (x # y ⇒ y ∈ U)}.

Given a frame F = (W, #) and a Kripke model K = (F, D, I), the forcing
relation ! is defined as follows. For our purposes it suffices to define the forc-
ing relation K, w ! A at node w inductively only for sentences in LDw . For
predicates P (x̄) in L and closed LDw -terms t, we put

K, w ! P (t̄) ≡def (Dw, Iw) |= P (t̄),

and extend K, w ! A to all sentences in LDw in the usual way. Note that
K, w ! A is defined only for LDw -sentences A, which suffices for our purposes.
It follows that K, w ! A is defined for all L-sentences A. When K is clear from
the context we write w ! A instead of K, w ! A. A L-sentence A is valid in K,
denoted K ! A, if for all w ∈ W , K, w ! A. A L-sentence A is valid on a frame
F , denoted F ! A, when A is valid in all Kripke models on F . The logic of F
consists of all L-sentences that hold in all Kripke models on F , and is denoted
by LF . The set of all L-sentences that hold in all Kripke models based on F
with constant domains is denoted by Lcd

F .

2.2 Truth value logics

A Gödel set is a closed set V ⊆ [0, 1] that contains 0 and 1. A domain assignment
to V consist of a pair (D, e) such that D is a nonempty set and e is a function
from D to V satisfying

∃a ∈ D e(a) = 1.

An interpretation on (V, D, e) is a map I such that for every n-ary predicate
symbol P in L, I(P ) : Dn → V , for every n-ary function h in L, I(h) : Dn → D,
and I(a) = a for all a ∈ D, and such that for all n-ary function symbols f in L,
for all sequences ā = a1, . . . , an ∈ D

inf
i

e(ai) ≤ e(I(f)(ā)).

I can be extended to interpret all terms in LD in the usual way. I can be made
into a map from sentences in LD to V in different ways. We saw two possibilities
in the introduction. In this paper all truth value logics interpret the connectives
in the same way:

I(P t̄) = I(P )( ¯I(t))
I(A ∧ B) = inf(I(A), I(B))
I(A ∨ B) = sup(I(A), I(B))

I(A → B) =
{

1 if I(A) ≤ I(B)
I(B) otherwise,

(The P ranges over predicates in L, the t̄ over closed LD-terms.) The interpre-
tation of the quantifiers differs from case to case, as we saw in the case of the
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Gödel and Scott logics in the introduction. A Scott logic interpretation I on
(V, D, e) is an interpretation for which the quantifiers are interpreted as

I(∃xAx) = sup{e(a) ∧ I(Aa) | a ∈ D}
I(∀xAx) = inf{e(a) → I(Aa) | a ∈ D}.

Note that we can define I for ∃ and ∀ without referring to ∧ and →, by replacing
them by their respective definitions.
A Gödel logic interpretation I on (V, D, e) is an interpretation for which the
quantifiers are interpreted as

I(∃xAx) = sup{I(Aa) | a ∈ D}
I(∀xAx) = inf{I(Aa) | a ∈ D}.

As the function e does not play a role in the case of Gödel logics, a domain
assignment in that case just consists of a nonempty set D. Note that Gödel
logic interpretations on (V, D) can be considered as Scott logic interpretations
on (V, D, e) where e ≡ 1. Given an interpretation, we say that a LD-sentence
A is valid in (V, D, e, I), denoted by (V, D, e, I) |= A, if I(A) = 1. The Scott
logic (Gödel logic) of a Gödel set V is the class of L-sentences A such that for
all domain assignments (D, e) and all Scott logic (Gödel logic) interpretations
I on (V, D, e), (V, D, e, I) |= A. The Scott logic (Gödel logic) of V is denoted
by SV (GV ).

2.3 An existence predicate

Let Le denote the language L extended by a unary predicate E. Given this
extended language Le we define analogues of Gödel logics and frame logics
for this language. These are not just the Gödel logics and frame logics for
the language Le, in which the predicate E would not play a special role, but
are slight variations because in this setting interpretations satisfy some extra
requirements related to the existence predicate. To stress these requirements
we put existence in the name.
The Gödel existence logic Ge

V is defined for the language Le. A Gödel existence
logic interpretation I on (V, D), where D is a domain assignment to V , is a
Gödel logic interpretation on (V, D) with satisfies the extra requirements that

∃a ∈ D I(Ea) = 1,

and for all functions h in L, for all ā = a1, . . . , an ∈ D,

I(
∧

i≤n

Eai) ≤ I(Eh(ā)).

The Gödel existence logic Ge
V of a Gödel set V consists of all Le-sentences A such

that for all domain assignments D and all Gödel existence logic interpretations
I on (V, D), (V, D, I) |= A.
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As we did for Gödel logics, we also define Kripke existence models for Le, which
are not just Kripke models for the extended language, but Kripke models with
two extra properties that correspond to the extra properties on Gödel existence
logic interpretations above. We call a Kripke model K for Le a Kripke existence
model when K ! Ea for some a contained in all domains, and such that for all
functions h in L, for all nodes w and all ā = a1, . . . , an ∈ Dw,

K, w !
∧

i≤n

Eai ⇒ K, w ! Eh(ā).

The existence (constant domain) logic of a frame F , denoted by Le
F (Lcde

F ),
consists of all Le-sentences A such that K ! A for all Kripke existence models
K on F (with constant domains).

3 A correspondence

In this section we prove, Theorem 2, one of the two main ingredients of the
proof, in Section 5, that to every Scott logic based on a countable Gödel set
there corresponds a logic of a countable frame, and vice versa to every logic of a
countable frame there corresponds a Scott logic, of a possibly uncountable Gödel
set. The other main ingredient is a result by A. Beckmann and N. Preining in
[3], stated in Section 5.
Theorem 2 states that isomorphisms between cones of frames and Gödel sets
imply the equivalence of the corresponding logics. There are two ways to prove
Theorem 2. One uses an interpretation of Scott logics into Gödel existence
logics. This is the short proof, it is discussed in Section 4. The other proof is
long but gives constructions that given a Kripke model provide its corresponding
Scott logic interpretation and vice versa. In this and the next section we present
these two proofs. In Section 5 it is shown how Theorem 2 implies the main
theorem of the paper, i.e. the correspondence between frames and Scott logics
(Corollary 10). The reader only interested in the short proof of Theorem 2 and
the proof how it implies the main theorem could therefore skip this section and
proceed with the next section on interpretations and Section 5.
We proceed with the long proof of Theorem 2. In [3] a similar observation
(Lemma 13 and Proposition 18) is made, reading Lcd

F for LF and GV for SV in
the theorem below. In that case, as mentioned by the authors, the observation
is straightforward. Here the situation is different, as the quantifier cases are
more involved and the fact that the domains might not be constant makes it all
more complicated.

3.1 First proof of Theorem 2

Theorem 2 When F is a linear frame and V is a Gödel set such that it holds
that

(
Cones(F ), ⊆,

⋂
,
⋃ ) ∼= (V, ≤, inf, sup), then LF = SV .
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Proof Let f : (Cones(F ), ⊆,
⋂

,
⋃

) → (V, ≤, inf, sup) be an isomorphism, let
g = f−1. We show that
(a): to any Kripke model (F, D, I) on F there corresponds a domain assignment
(DF , eF ) and Scott interpretation IF such that for all L-sentences A

(F, D, I) ! A ⇔ (V, DF , eF , IF ) |= A. (2)

And we show that
(b): for any domain assignment (D, e) on V and for any Scott interpretation I on
(V, D, e) there is a Kripke model (F, DV , IV ) on F such that for all L-sentences
A

(F, DV , IV ) ! A ⇔ (V, D, e, I) |= A. (3)

(a) and (b) together prove the theorem.
We start with the proof of (a). Let (F, D, I) be a Kripke model. We will define a
domain assignment (DF , eF ) to V and a Scott logic interpretation IF as follows.
Since no confusion is possible, we write e for eF . We define e as follows:

Ca ≡def {w ∈ W | a ∈ Dw} e(a) ≡def f(Ca).

Put DF =
⋃

D. To define the interpretation IF on (V, DF , e) we let IF mimic
the Iw in the following way. For predicates P in L and ā ∈ D, define

IF (P )(ā) ≡def f({w ∈ W | ā ∈ Dw, K, w ! P ā}).

To define IF (h) : Dn → D for n-ary function symbols h in L, pick for every
ā ∈ D a node wā such that ā ∈ Dwā . Note that the fact that K is linear implies
that such a node always exists. Then define

IF (h)(ā) ≡def Iwā(h)(ā).

Note that IF (h) is well-defined by the persistency requirements on I, see Sec-
tion 2.1. Then we extend IF to other sentences as required for Scott logic
interpretations. To prove (a) it suffices to show that (DF , e) is a domain as-
signment to V , IV is a Scott logic interpretation on (V, DF , e) and that (2)
holds.
First we show that (DF , e) indeed is a domain assignment to V . That DF is
nonempty follows from the fact that the Dw are nonempty. By assumption on
the Kripke models

⋂
w Dw is nonempty. Let a be in the intersection. Then

e(a) = f(W ) = 1. This proves that (DF , e) indeed is a domain assignment to
V .
Next we show that IF is a Scott logic interpretation on (V, DF , e), for which it
remains to show that IF (P ) is a function from Dn to V , that IF (a) = a for all
a ∈ D, and that for n-ary function symbols h, and sequences ā = a1, . . . , an in
DF , infi e(ai) ≤ e(IF (h)(ā)), that is,

inf
i

f({w ∈ W | ai ∈ Dw}) ≤ f({w ∈ W | IF (h)(ā) ∈ Dw}). (4)

10



The first two conditions are clear, for the latter, note that if ai ∈ Dw for all i,
then IF (h)(ā) ∈ Dw, which implies (4).
Finally, to show (a) we have to show that (2), for which it suffices to show that
for all L-formulas A(x̄) for all ā ∈ DF :

f
(
{w ∈ W | ā ∈ Dw, w ! Aā}

)
= inf(inf

i
e(ai), IF (Aā)). (5)

To prove (5) we use formula induction. For ā ∈ D define

Cā ≡def

⋂

b∈ā

Cb.

For the atomic case, consider a predicate symbol P (x̄) in L and let ā ∈ DF .
The definition of IF gives

f
(
{w ∈ W | ā ∈ Dw, w ! P ā}

)
= IF (P ā).

Since also {w ∈ W | ā ∈ Dw, w ! P ā} ⊆ {w ∈ W | ā ∈ Dw}, this implies (5)
for A = P .
For the connectives we only treat implication, the other cases are similar. Sup-
pose Ax̄ȳ = Bx̄ → Cȳ, and consider b̄c̄ ∈ DF . (In order not to drown in
brackets we write Ax̄ȳ for A(x̄, ȳ).) We have to show that

f({w ∈ W | b̄c̄ ∈ Dw, w ! Ab̄c̄}) = inf
(
inf

i
e(bi), inf

j
e(cj), IF (Ab̄c̄)

)
. (6)

Let Xb, Xc be such that f(Xb) = IF (Bb̄), and f(Xc) = IF (Cc̄). We distinguish
two cases: IF (Bb̄) ⊆ IF (Cc̄) and IF (Bb̄) ⊃ IF (Cc̄), i.e. Xb ⊆ Xc and Xc ⊂ Xb.
Note that the induction hypothesis gives

{w ∈ W | b̄ ∈ Dw, w ! Bb̄}) = Cb̄ ∩Xb {w ∈ W | c̄ ∈ Dw, w ! Cc̄}) = Cc̄ ∩Xc.

In the first case, Xb ⊆ Xc, this therefore implies that

{w ∈ W | b̄ ∈ Dw, w ! Bb̄} ∩ Cc̄ ⊆ {w ∈ W | c̄ ∈ Dw, w ! Cc̄} ∩ Cb̄.

Hence
{w ∈ W | b̄c̄ ∈ Dw, w ! Ab̄c̄} = Cb̄c̄.

Thus
f({w ∈ W | b̄c̄ ∈ Dw, w ! Ab̄c̄}) = inf

(
inf
i

e(bi), inf
j

e(cj)
)
.

As in this case IF (Ab̄c̄) = 1, this proves (6).
In the second case, Xc ⊂ Xb, it follows that

Xc ∩ Cb̄c̄ ⊆ Xb ∩ Cb̄c̄. (7)

In case we have = in the above inclusion we use the linearity of the frame,
which implies that for any two cones X and Y on F either X ⊆ Y or Y ⊂ X . If
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Xb ⊂ Cb̄c̄ then Xc ∩ Cb̄c̄ ⊆ Xc ⊂ Xb ⊆ Xb ∩ Cb̄c̄, which contradicts the =. Thus
Cb̄c̄ ⊆ Xb. Using this, Xc ⊂ Cb̄c̄ would imply Xc ∩ Cb̄c̄ ⊆ Xc ⊂ Cb̄c̄ ⊆ Xb ∩ Cb̄c̄,
which also contradicts the =. Therefore, we have both Cb̄c̄ ⊆ Xb and Cb̄c̄ ⊆ Xc.
Hence by the induction hypothesis

{w | b̄c̄ ∈ Dw, w ! B̄̄b} = Xb ∩ Cb̄c̄ = Cb̄c̄ = Xc ∩ Cb̄c̄ = {w | b̄c̄ ∈ Dw, w ! Cc̄}.

Therefore,
{w | b̄c̄ ∈ Dw, w ! Ab̄c̄} = Cb̄c̄ = Cb̄c̄ ∩ Xc.

This implies (6), because we were considering the case Xc ⊂ Xb, which means
IF (Cc̄) ⊂ IF (Bb̄), and thus IF (Ab̄c̄) = IF (Cc̄).
On the other hand, if the inclusion in (7) is ⊂ we reason as follows. Pick a
v ∈ Xb ∩ Cb̄c̄, v +∈ Xc ∩ Cb̄c̄. Thus b̄c̄ ∈ Dv and v ! Bb̄ and +! Cc̄. Hence if for
some w, b̄c̄ ∈ Dw and w ! Ab̄c̄, then w " v and w ! Cc̄. Hence

{w ∈ W | b̄c̄ ∈ Dw, w ! Ab̄c̄} = {w ∈ W | b̄c̄ ∈ Dw, w ! Cc̄}.

Thus by the induction hypothesis on IF (Cc̄),

f({w ∈ W | b̄c̄ ∈ Dw, w ! Ab̄c̄}) = inf
(
inf
i

e(bi), inf
j

e(cj), IF (Cc̄)
)
.

As we were considering the case Xc ⊂ Xb, which means IF (Cc̄) ⊂ IF (Bb̄), and
thus IF (Ab̄c̄) = IF (Cc̄), this proves (6).
The cases for the quantifiers are a little less straightforward. First we treat the
existential quantifier. We have to show that for all formulas ∃yA(x̄, y) in L and
all ā = a1, . . . , an ∈ DF :

f({w ∈ W | ā ∈ Dw, w ! ∃yA(ā, y)}) = inf
(

inf
i≤n

e(ai), IF (∃yA(ā, y))
)
.

This follows from the following list of equalities

f({w ∈ W | ā ∈ Dw, w ! ∃yA(ā, y)}) =

f(
⋃

b∈DF

{w ∈ W | ā, b ∈ Dw, w ! A(ā, b)}) =

sup
b∈DF

f({w ∈ W | ā, b ∈ Dw, w ! A(ā, b)}) = (IH)

sup
b∈DF

inf(inf
i≤n

e(ai), e(b), IF (A(ā, b)) =

inf
(

inf
i≤n

e(ai), sup
b∈DF

inf(e(b), IF (A(ā, b)))
)

=

inf
(

inf
i≤n

e(ai), sup
b∈DF

(e(b) ∧ IF (A(ā, b)))
)

=

inf(inf
i≤n

e(ai), IF (∃yA(ā, y))

This finishes the case of the existential quantifier.
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For the universal quantifier we have to show that for all formulas ∀yA(x̄, y) in
L and for all ā = a1, . . . , an ∈ DF :

f({w ∈ W | ā ∈ Dw, w ! ∀yA(ā, y)}) = inf
(

inf
i≤n

e(ai), IF (∀yA(ā, y))
)
. (8)

Let f(Xb) = IF (A(ā, b)). The Xb exist because f is an isomorphism. First note
that the induction hypothesis on IF (A(ā, b)) implies

{w ∈ W | āb ∈ Dw, w ! A(ā, b)} = Cāb ∩ Xb. (9)

Define

Y ≡def {b ∈ DF | IF (A(ā, b)) < e(b)} = {b ∈ DF | Xb ⊂ Cb}.

As observed in Section 1.2,

Y = ∅ ⇒ IF (∀xA(ā, x)) = 1
Y += ∅ ⇒ IF (∀xA(ā, x)) = inf{IF (A(ā, b)) | b ∈ Y }.

Thus to show (8) it suffices to show that

Y = ∅ ⇒ {w ∈ W | ā ∈ Dw, w ! ∀yA(ā, y)} = Cā (10)

Y += ∅ ⇒ {w ∈ W | ā ∈ Dw, w ! ∀yA(ā, y)} = Cā ∩
⋂

{Xb | Xb ⊂ Cb}. (11)

To prove (10) assume Y = ∅. This implies Cb ⊆ Xb for all b. Hence (9) implies
that for all b:

{w ∈ W | āb ∈ Dw, K, w ! A(ā, b)} = Cāb.

Thus āb ∈ Dw implies w ! A(ā, b). Hence {w ∈ W | ā ∈ Dw, w ! ∀yA(ā, y)} =
Cā, which proves (10).
To prove (11) assume Y += ∅. Thus now there is a c ∈ DF such that Xc ⊂ Cc.
We prove

{w ∈ W | ā ∈ Dw, w ! ∀yA(ā, y)} = Cā ∩
⋂

{Xb | b ∈ DF , Xb ⊂ Cb}.

as follows.
⊆: Suppose ā ∈ Dw and w ! ∀yA(ā, y). Clearly w ∈ Cā. We have to show that
w ∈ Xb for all Xb such that Xb ⊂ Cb. Now Xb ⊂ Cb implies the existence of a
node v ∈ W such that v ∈ Cb and v +∈ Xb. Thus b ∈ Dv. Hence by the induction
hypothesis (9), ā +∈ Dv or v +! A(ā, b). Note that in both cases it follows that
v # w. Hence b ∈ Dw, and thus w ! A(ā, b). Whence w ∈ Xb by (9).
⊇: Assume w ∈ Cā∩

⋂
{Xb | b ∈ DF , Xb ⊂ Cb}. To show w ! ∀yA(ā, y), assume

w # v and b ∈ Dv. Hence v ∈ Cāb. To show v ! A(ā, b) we distinguish two
cases. If Cb ⊆ Xb, then by (9) we have v ! A(ā, b). If Xb ⊂ Cb, then w ∈ Xb,
and whence v ∈ Xb, since w # v. Thus by (9) v ! A(ā, b) also in this case.
This finishes the case of the universal quantifier. Whence (5) is proved, and
thereby it is shown that (a) holds.
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To prove (b) we proceed in a similar way. Let (D, e) be a domain assignment
to V and let I be a Scott logic interpretation on (V, D, e). We define a Kripke
model (F, DV , IV ) on F as follows. DV = {Dw | w ∈ W} where

Dw ≡def {a ∈ D | w ∈ g(e(a))}.

For n-ary predicates P and sequences ā in Dw,

(IV )w(P ) ≡def {ā ∈ Dw | w ∈ g(I(P )(ā))}.

For function symbols h and sequences ā ∈ Dw, put (IV )w(h)(ā) = I(h)(ā). A
point of notation: for L-formulas Ax̄ and ā ∈ D, let

IV (Aā) ≡def {w ∈ W | ā ∈ Dw, (F, DV , IV ), w ! Aā}.

To show (b), it suffices to show that DV is a domain assignment to F , that
(F, DV , IV ) is a Kripke model, and that (3) holds. To show that DV is a
domain assignment to F it suffices to show that

⋂

w∈W

Dw =
⋂

w∈W

{a ∈ D | w ∈ g(e(a))} += ∅

and that w # v implies Dw ⊆ Dv. That the intersection of the Dw is nonempty
follows from the fact that g(e(a)) = W for some a, which again follows from the
fact that e(a) = 1 for some a. The persistency follows from the fact that the
g(e(a)) are cones.
Next we show that (F, DV , IV ) is a Kripke model. That for n-ary predicates
P , (IV )w(P ) is a n-ary predicate on Dn

w, and that (IV )w(a) = a for all a ∈ D
follows from the definition of the (IV )w. It is similarly easy to see that the
(IV )w satisfy the persistency requirements. Thus it remains to show that for
nodes w and n-ary functions h, (IV )w(h) is a function from Dn

w to Dw. But
this is so, since if a1, . . . , an = ā ∈ Dn

w, then w ∈ g(e(ai)) for all i. Since by the
definition of Scott interpretations,

inf
i≤n

e(ai) ≤ e(I(h)(ā)),

this implies w ∈
⋂

i g(e(ai)) = g(infi≤n e(ai)) ⊆ g(e(I(h)(ā))). And whence
(IF )w(h)(ā) = I(h)(ā) ∈ Dw.
It remains to show (3). For this it suffices to show that for all L-formulas A,
for all ā = a1, . . . , an ∈ D,

n⋂

i=1

g(e(ai)) ∩ g
(
I(Aā)

)
= IV (Aā). (12)

We again use formula induction. The atomic case and the connective cases are
similar as in case (a), and left to the reader. Observe that

a ∈ Dw ⇒ w ∈ g(e(a)). (13)
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For the existential quantifier, by the induction hypothesis we have that

IV (∃xA(ā, x)) =
⋃

b∈D

IV (A(ā, b)) =
⋃

b∈D

n⋂

i=1

g(e(ai)) ∩ g(e(b)) ∩ gI(A(ā, b)).

That (12) holds for the existential quantifier follows from the following equali-
ties:

IV (∃xA(ā, x)) =
⋃

b∈D

n⋂

i=1

g(e(ai)) ∩ g(e(b)) ∩ gI(A(ā, b)) =

n⋂

i=1

g(e(ai)) ∩ (
⋃

b∈D

g(e(b)) ∩ gI(A(ā, b))) =

n⋂

i=1

g(e(ai)) ∩ g
(
sup
b∈D

(
inf

(
e(b), I(A(ā, b))

))
=

n⋂

i=1

g(e(ai)) ∩ g
(
sup
b∈D

e(b) ∧ I(A(ā, b))
)

=

n⋂

i=1

g(e(ai)) ∩ g
(
I(∃xA(ā, x))

)
.

Finally, we treat the universal quantifier. Define

X ≡def {b ∈ D | e(b) > I(A(ā, b))}.

As observed in Section 1.2,

X = ∅ ⇒ I(∀xA(ā, x)) = 1
X += ∅ ⇒ I(∀xA(ā, x)) = inf{I(A(ā, b)) | b ∈ X}.

Thus to show (12) for the universal quantifier it suffices to show that

X = ∅ ⇒ IV (∀xA(ā, x)) =
n⋂

i=1

g(e(ai)) (14)

X += ∅ ⇒ IV (∀xA(ā, x)) =
n⋂

i=1

g(e(ai)) ∩
⋂

b∈X

g(I(A(ā, b))). (15)

First observe that by the induction hypothesis

IV (A(ā, b)) =
n⋂

i=1

g(e(ai)) ∩ g(e(b)) ∩ g(I(A(ā, b))). (16)

This implies (14). For if X = ∅ then g(e(b)) ⊆ g(I(A(ā, b))) for all b. Therefore,
if w ∈

⋂n
i=1 g(e(ai)) ∩ g(e(b)) then w ! A(ā, b), for all w. Hence (14).
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To prove (15) assume X += ∅. We prove

IV (∀xA(ā, x)) =
n⋂

i=1

g(e(ai)) ∩
⋂

b∈X

g(I(A(ā, b)))

as follows.
⊆: Consider w such that ā ∈ Dw and w ! ∀xA(ā, x). We have to show that w ∈
g(I(Aā, b)) for all b ∈ X . Pick b ∈ X . Then e(b) > I(A(ā, b)), thus g(e(b)) ⊃
g(I(A(ā, b))). Whence there is a v ∈ g(e(b)) such that v +∈ g(I(A(ā, b))). Thus
b ∈ Dv, and by the induction hypothesis (16), ā +∈ Dv or v +! A(ā, b). In
both cases, v # w follows. Thus b ∈ Dw. Hence w ! A(ā, b). Therefore,
b ∈ g(I(A(ā, b))) by (16), which is what we had to prove.
⊇: Consider w ∈

⋂n
i=1 g(e(ai)) ∩

⋂
{g(I(A(ā, b))) | b ∈ X}, and v " w and

b ∈ Dv. We have to show that v ! A(ā, b). By the induction hypothesis (16)
it suffices to show that v ∈ g(I(A(ā, b))), which we prove as follows. If b ∈ X ,
then v ∈ g(I(A(ā, b))), as w ∈ g(I(A(ā, b))) and g(I(A(ā, b))) is a cone. On the
other hand, if b +∈ X , then e(b) ≤ I(A(ā, b)). Since b ∈ Dv, v ∈ g(I(A(ā, b)))
follows. This proves (15), and thereby (12), and thereby (3). This proves (b)
and thereby the theorem. !

4 An interpretation

There is a faithful interpretation of Scott logics into Gödel existence logics that
will enable us to again prove Theorem 2, and thereby the main correspondence
result in Section 5.

Definition 3 We define a translation (·)e from formulas in L to formulas in Le

as follows.
(
P (t̄)

)e = P (t̄) for atomic P and terms t̄,

(·)e commutes with the connectives,

(∃xA(x))e = ∃x
(
Ex ∧ (A(x))e

)
,

(∀xA(x))e = ∀x
(
Ex → (A(x))e

)
.

Lemma 4 For any Gödel set V , (·)e is a faithful translation of SV into GV , i.e.
for all L-sentences A

SV |= A ⇔ Ge
V |= Ae.

Proof ⇒: given a Gödel domain assignment D to V and a Gödel existence logic
interpretation I on (V, D) we construct a Scott domain assignment (D, e) and
a Scott logic interpretation I ′ such that for all LD-sentences A

I ′(A) = I(Ae). (17)
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Define e : D → V
e = I(E).

For predicates P += E and for all functions h in L define

I ′(P ) = I(P ) I ′(h) = I(h).

By definition there is an a ∈ D such that I(Ea) = 1. Hence e(a) = 1 for
some a ∈ D. Also, for all n-ary function symbols h in L, for all sequences
ā = a1, . . . , an ∈ D

I(
∧

i≤n

Eai) ≤ I(Eh(ā)).

Hence
inf
i

e(ai) ≤ e(I ′(h)(ā)).

The last two observations show that I ′ indeed is a Scott logic interpretation on
(V, D, e). The proof that (17) holds we leave to the reader.
⇐: given a domain assignment (D, e) to V and a Scott interpretation I on
(V, D, e) we construct a Gödel existence logic interpretation I ′ on (V, D) such
that for all LD-sentences A

I(A) = I ′(Ae). (18)

For predicates P += E and for all functions h in L define

I ′(P ) = I(P ) I ′(h) = I(h).

For E define
I ′(E) = e.

The proof that I ′ indeed is a Gödel existence logic interpretation on (V, D) and
that (18) holds are left to the reader. !

Lemma 5 For any frame F , (·)e is faithful translation of LF into Lcd
F , i.e. for

all L-sentences A
LF |= A ⇔ Lcde

F |= Ae.

Proof ⇒: Let K = (F, D, I) be an arbitrary Kripke existence model on F with
constant domains. It suffices to show that we can construct a Kripke model
K ′ = (F, D′, I ′) such that for all nodes w for all LD′

w
-sentences A

K ′, w ! A ⇔ K, w ! Ae. (19)

Define
D′

w = {a ∈ D | K, w ! Ea} D′ = {D′
w | w ∈ w}.

Define for predicates P and functions h in L

(I ′)w = Iw ↑ D′
w,
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where Iw ↑ D′
w denotes the restriction of Iw to D′

w. Note that K ′ = (F, D′, I ′)
indeed is a Kripke model: (I ′)w interprets functions h indeed as functions from
(D′)n

w to Dw because of the extra conditions of Kripke existence models, the
Dw are nonempty, etc. We leave the proof of (19) to the reader.
⇐: Let K = (F, D, I) be an arbitrary Kripke model on F . We show how to con-
struct a Kripke existence model K ′ = (F, D′, I ′) with constant domains. Then
we complete the proof by showing that for all nodes w for all LDw -sentences A

K, w ! A ⇔ K ′, w ! Ae. (20)

Observe that the linearity of F implies that for every ā there exists a vā ∈ W
such that ā ∈ Dvā . Define

D′
w =

⋃

v∈W

Dv I ′w(E) ≡def Dw.

Furthermore, let I ′w(P ) = Iw(P ) on L for predicates P , and put I ′w(h)(ā) =
Ivā(h)(ā). Observe that I ′w(P ) = Iw(P ) implies that K ′, w +! P ā if ā +∈ Dw.
However, this will not contradict (20), as there only LDw -sentences are consid-
ered. Note that the persistency requirements on K imply that I ′ is well-defined.
We leave the proof that K ′ = (F, D′, I ′) indeed is a Kripke existence model with
constant domains and that (20) holds to the reader. !

As mentioned above, the given interpretation of Scott logics into Gödel logics
enables us to again prove Theorem 2. We will only state here the main ingredi-
ents of the alternative proof and leave the details to the reader. Like in [3], the
proof uses a correspondence between cone structures, frames, and truth value
logics, where cone structures are defined as follows.

Definition 6 Given a frame F = (W, #) let F denote the cone structure(
Cones(F ), ⊆,

⋂
,
⋃ )

of F . Given such a cone structure F , an existence in-
terpretation on F is a pair (D, I), where D is a nonempty set and I is a map
from Le

D-sentences to Cones(F ) that satisfies the following requirements:

I(⊥) = ∅, I(7) = W , I(Ea) = W for some a ∈ D,

∀ā ∈ D :
⋂

i I(Eai) ⊆ I(Eh(ā)),

I(A ∧ B) = I(A) ∩ I(B),

I(A ∨ B) = I(A) ∪ I(B),

I(A → B) =
{

1 if I(A) ⊆ I(B)
I(B) otherwise,

I(∃xAx) =
⋃

a∈D I(At),

I(∀xAx) =
⋂

a∈D I(At).

The logic Le
F of F consists of those Le-sentences A such that I(A) = W for all

existence interpretations (D, I) on F .
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Given this definition we have the following lemma’s, the proofs of which we
leave to the reader.

Lemma 7 For every frame F , Lcde
F = Le

F .

Lemma 8 If
(
Cones(F ), ⊆,

⋂
,
⋃ ) ∼= (V, ≤, inf, sup), then Le

F = Ge
V .

4.1 Second proof of Theorem 2

All these lemma’s provide a short proof of Theorem 2: By Lemma’s 7 and 8,(
Cones(F ), ⊆,

⋂
,
⋃ ) ∼= (V, ≤, inf, sup) implies that Lcde

F = Ge
V . Whence by

Lemma 4 and 5, LF = SV follows.

5 Scott logics and linear frames

In this section we prove the main theorem of the paper on the correspondence
between Scott logics and linear frame logics. We start with the following obser-
vation.
Let F be a class of frames and let V be a set of Gödel sets. Suppose that for
every countable Gödel set V ∈ V there is a countable linear frame F ∈ F such
that (

Cones(F ), ⊆,
⋂

,
⋃) ∼= (V, ≤, inf, sup). (21)

and vice versa for every countable linear frame F ∈ F there is a Gödel set
V ∈ V such that (21). Then from Theorem 2 the following correspondence
between truth value logics and frame logics follows:

For every countable Gödel set V ∈ V there exists a countable linear frame
F ∈ F such that LF = SV .

For every countable linear frame F ∈ F there exists a Gödel set V ∈ V
such that LF = SV .

This observation and the following theorem by A. Beckmann and N. Preining
provide the correspondence between Scott logics based and logics of frames.

Theorem 9 (A. Beckmann and N. Preining [3]) For every countable Gödel set
V there is a countable linear frame F such that

(
Cones(F ), ⊆,

⋂
,
⋃) ∼= (V, ≤, inf, sup). (22)

For every countable linear frame F there is a (not necessarily countable) Gödel
set V such that (22).

Proof From the proofs of respectively Lemma 23 and Theorem 20 in [3]. !

Using this theorem, Theorem 2 and the observation above, we have the following
corollary.
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Corollary 10 For every countable Gödel set V there exists a countable
linear frame F such that LF = SV .

For every countable linear frame F there exists a Gödel set V such that
LF = SV .

Let Fn be the linear frame with n elements. Then we also have the following
corollary.

Corollary 11 When V is a Gödel set with n + 1 elements, then SV = LFn .
In particular, Scott logics based on finite Gödel sets with the same number of
elements are equal.

6 Questions on axiomatization, equality and countability

Up till now we considered the correspondence between logics defined via Gödel
sets and logics defined via frames. One can view this as the relation between
logics defined via Gödel sets and logics defined via first-order semantics. And
indeed, one can view logics based on Gödel sets as intermediate logics. The
other natural question is what the relation between logics based on Gödel sets
and logics based axiom systems is. The question here is whether for a given
Gödel set V there is an axiom system with respect to which SV is sound and
complete, and similar questions for GV and Ge

V .

6.1 Gödel logics

In the case of Gödel logics this question has been solved completely by N.
Preining [8]. For G[0,1] completeness was obtained before by M. Takano [10],
M. Titani and G. Takeuti [11].
In [8] it has been shown that for countable infinite V , the logic GV is not
recursively enumerable, whence has no r.e. axiomatization. On the other hand,
for some other Gödel logics there do exist nice axiomatizations. For example,
G[0,1] is axiomatized by the system H [10]:

axioms of IQC
LIN (A → B) ∨ (B → A)
QS ∀x(A ∨ B(x)) → (A ∨ ∀xB(x)) (x not free in A).

The Gödel logics of finite Gödel sets {0, 1
2 , 2

3 , . . . , n−2
n−1 , 1} have the following nice

axiomatization Hn [8]: H plus the axiom FIN(n):

A1 ∨ (A1 → A2) ∨ . . . ∨ (An−2 → An−1) ∨ ¬An−1.

For uncountable Gödel sets the axiomatizability depends on certain properties
of the sets. We will not treat the details here, they can be found in [8].
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6.2 Scott logics

It is not clear whether the Scott logics are complete with respect to some r.e.
axiom system in the language of first-order logic. Clearly, the results in Sec-
tion 4 imply that when a Gödel existence logic Ge

V is decidable or r.e., then
so, respectively, is SV . However, the problem one encounters when trying to
prove completeness for Scott logics via the standard method via prime sets, is
to define domains on the basis of prime sets of formulas.
It would be nice to have answers to questions on Scott logics that are analogues
of the following solved problems about Gödel logics:

• Is S[0,1] complete with respect to the system IQCE + LIN, i.e. H without
QS?

• Is the logic S{0, 1
2 , 2

3 ,..., n−2
n−1 ,1} complete with respect to IQCE+LIN+FIN(n),

i.e. Hn without QS?

We conjecture the answers to be yes. Here results by G. Corsi [4, 5, 6] on the
axiomatization of linear frames might provide answers or be helpful.
There are a lot more questions, e.g. the ones related to equality. Intuitionistic
logic sometimes behaves strangely when adding equality. Skolemization is an
example [7]. Also, when equality is interpreted as real equality in the domains
it becomes decidable, which might not always be natural in an intuitionistic
setting. A natural question here is whether the correspondence results in this
paper hold when we add equality to the language.
Finally, note that in Theorem 1 by A. Beckmann and N. Preining there is a
correspondence between Gödel logics and countable linear frames. In this paper
a correspondence between Scott logics based on countable Gödel sets and linear
frames is established. We do not know whether this result can be extended to
arbitrary Gödel sets, as in the case of Gödel logics.
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