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Abstract

This paper contains a proof–theoretic account of unification in interme-
diate logics. It is shown that many existing results can be extended to
fragments that at least contain implication and conjunction. For such
fragments, the connection between valuations and most general unifiers
is clarified, and it is shown how from the closure of a formula under the
Visser rules a proof of the formula under a projective unifier can be ob-
tained. This implies that in the logics considered, for the n-unification
type to be finitary it suffices that the m-th Visser rule is admissible for a
sufficiently large m. At the end of the paper it is shown how these results
imply several well-known results from the literature.
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1 Introduction

Unification theory is concerned with the problem whether two given terms can
be identified via a substitution against a certain background theory of equality.
In this paper the background theories are fragments of propositional interme-
diate logics that contain at least implication and conjunction. Thus the terms
are formulas and equality is logical equivalence in the logic. In this setting
unification becomes the study of substitutions under which a formula becomes
provable in a logic, in which case the substitutions are called the unifiers of the
formula. This paper presents a proof-theoretic treatment of unification in these
logics. It originates from the unpublished PhD-thesis [32] by the second author,
while the first author obtained new proofs of the theorems in [32] and thereby
strengthened and simplified the results. In this introduction we will explain
what these results are and discuss related work. We start by explaining what
unification types and admissible rules are.
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1.1 Unifiers

In intermediate logics, any consistent formula is classically satisfied under some
valuation (assigning 0 or 1 to the atoms). This valuation corresponds to a unifier
of the formula, by taking > for 1 and ⊥ for 0. Thus the existence of a unifier
is equivalent to the consistency of the formula. Finding a maximal unifier for a
formula is less trivial. A substitution is a maximal unifier (mu) of a formula if
among the unifiers of the formula it is maximal in the following ordering:

τ 6 σ ≡def ∃π(τ =L πσ),

and it is a most general unifier (mgu) if it is also unique modulo =L. Here =L

is the equivalence relation on substitutions associated with the logic: σ =L τ
if and only if σ(p) ↔ τ(p) is derivable for all atoms p. If τ 6 σ we say that
τ is less general than σ. Mgus generate all unifiers of a formula, which is the
reason that they play an important role in unification theory. The mgus that
are important in the setting of logics are projective unifiers. σ is a projective
unifier (pu) of a formula A if it is a unifier of A and A implies that σ is the
identity:

∀p : A ` σ(p)↔ p.

In this case A is called projective. Projective unifiers were first introduced by
Wroǹski under the name transparent unifiers [37], and they form one of the key
notions in unification theory in logic.

In classical propositional logic every consistent formula has a mgu, but in non-
classical logics this no longer is the case. In intuitionistic logic p ∨ ¬p is an
example of such a formula: the two valuations that classically satisfy this for-
mula correspond to substitutions σ1(p) = > and σ2(p) = ⊥, that cannot both
be less general than another unifier. For if τ is a unifier of p ∨ ¬p, the logic
derives either τp or ¬τp by the disjunction property. Therefore either σ1 6 τ
or σ2 6 τ holds, but not both. Hence p ∨ ¬p has no mgu.

1.2 Unification types

The phenomenon that certain unification problems do not have mgus gave rise
to the definition of unification types, which classify theories according to the
existence or non-existence of mgus and mus. Although this definition applies
to all theories, here we restrict ourselves to logics. A complete set of unifiers
for a formula is a set of unifiers such that every unifier of the formula is less
general than a unifier in the set. A formula is unifiable if it has at least one
unifier. A logic has unitary n-unification type if every unifiable formula of size
(number of symbols) at most n has a mgu and finitary n-unification type if
every unifiable formula of size at most n has a finite complete set of mus. It has
unitary unification type if it has unitary n-unification type for all n, and similarly
for the finitary unification type. The other two types, infinitary (every unifiable
formula has a (in)finite complete set of mus) and nullary (some unifiable formula
does not have mus) will not be discussed any further in this paper.
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1.3 Admissible rules

As it turns out, many modal and intermediate logics have finitary unification,
and this paper provides a proof-theoretic proof of this fact for intermediate
logics. We use a notion that is closely related to unification types, that of
admissible rules. A multi-conclusion rule Γ/∆ for finite sets of formulas Γ and
∆ is admissible, written Γ |∼ L∆, if and only if

∀σ (∀A ∈ Γ `L σA ⇒ ∃A ∈ ∆ `L σA) .

Thus a rule is admissible if it can be added to the logic without leading to new
theorems, and the set of admissible rules form the largest class of inferences
allowed to obtain the theorems of a logic and nothing more. It may be useful
to know the admissible rules of a logic for various reasons. They may shorten
proofs, as is the case for the cut rule in many Gentzen calculi. Or they may
express properties of the logic that are intuitive yet invisible in standard axiom-
atizations, such as the disjunction property in the case of intuitionistic logic.
The description of the admissible rules of a logic is usually given via a basis,
which is a set of rules that axiomatize the admissible rules of the logic, see [20]
for further details.

1.4 Projective approximations

In recent years, these two notions, unification and admissible rules, have been
shown to be intimately connected, starting from the pioneering work of Ghilardi.
In [10] Ghilardi proves that IPC has finitary unification by showing that every
formula has a finite projective approximation ΠA, which is a finite set of projec-
tive formulas such that

∨
ΠA ` A |∼ IPCΠA. Note that this indeed implies that

A has a finite complete set of maximal unifiers, namely the projective unifiers
of the formulas in its projective approximation. The proofs in this paper that
certain intermediate logics and fragments thereof have finitary or unitary unifi-
cation follow the same pattern. By showing the stronger

∨
ΠA `L A `RL ΠA, for

some particular set of admissible rules R, we simultaneously prove that R is a
basis for the admissible rules of L. Here `RL denotes derivability in L extended
by the rules R. In this way results about unification are closely tied to results
about admissible rules.

1.5 Results

What is new in this paper is the way in which it is proved that the formulas in the
projective approximation are projective. This is related to the way the projective
formulas are obtained. First we show, in the style of [21], that for every formula
A there is a set of formulas ΠA, the irreducible projective approximation of A,

such that
∨

ΠA `L A `VL ΠA and every formula in ΠA is closed under the Visser
rules V. The Visser rules will be introduced in Section 6 and closure under a
rule means that if all formulas in the antecedent are derivable, then so is at least
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one of the formulas in the conclusion. Then we show that the formulas in ΠA

are projective by showing that they are strongly satisfiable (to be defined below)
and that, Theorem 1, strong satisfiability implies projectivity. The combination
of these results imply that if the Visser rules are admissible, they form a basis
and the logic has finitary or unitary unification.

The use of strong satisfiability also clarifies the connection between classical
valuations and projective unifiers that is already present in Ghilardi’s work [12].
In IPC, the condition of strong satisfiability is also necessary for projectivity,
and therefore it can be viewed as an analogue of Ghilardi’s semantical charac-
terization of projective formulas.

Most theorems in this paper apply to any fragment of any intermediate logic
that contains implication and conjunction. In this way some of the known
results on unification and admissibility in intermediate logics are generalized
to such fragments. But rather than this slight generalization, which is not
very surprising or particularly useful, we think the merit of this approach is its
generality, which stems from the fact that the proofs are purely syntactic and
do not presuppose completeness with respect to a well-behaved class of Kripke
models. It also provides short proofs of various other results on unification and
admissible rules. That it is applicable also to other logics is shown in [19], where
the method is applied to transitive modal logics.

1.6 Related work

We saw that classical logic has unitary unification type and any intermediate
logic with the disjunction property does not. Ghilardi [10] proved that intu-
itionistic propositional logic has finitary unfication, and he and Wroński [37]
proved that De Morgan Logic and Gödel-Dummett logic have unitary unifica-
tion, respectively. Intermediate logics of nullary type are also known to exist
[13]. Whether there is an intermediate logic with infinitary unification type is
not known. Dzik located logics with unitary unification in the lattice of inter-
mediate logics by showing that all extensions of De Morgan logic have nullary
or unitary unification, and that for the latter the converse holds too [6]. There
exist modal logics for which the unification problem is undecidable [36], but
whether there exists an intermediate logic with this property is unknown. Ry-
bakov showed that for intuitionistic and De Morgan logic with parameters the
unification type is finitary [35].

For fragments the situation is as follows. Prucnal [29] proved that the im-
plication fragment of IPC has unitary unification, and the same holds for the
implication-conjunction and the implication-conjunction-negation fragment of
any intermediate logic [25]. The implication-negation fragment, however, has
finitary instead of unitary unification, as was shown by Cintula and Metcalfe
[4], who in the same paper also provide a basis for the admissible rules of that
fragment.

The paper is built-up as follows. Section 2 contains preliminaries and Section 3
explains the idea behind the proof of the main Theorem 2. Section 4 con-
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tains the technicalities needed to prove Theorem 1, which is done in Section 5.
In Section 6 the relation between the Visser rules and strong satisfiability is
established, which in Section 7 is used to obtain results about projective ap-
proximations, which imply results on unification in Section 8.

We thank Emil Jeřábek, Jeroen Goudsmit and George Metcalfe for the fruitful
discussions we have had on the topics of this paper. We also thank an anonymous
referee for numerous helpful comments.

2 Preliminaries

Let L be a language for propositional logic with propositional variables, or
atoms, P = {p1, p2, . . . }. p, q, r, s denote arbitrary elements of P ∪ {⊥}, and
in case that ⊥ is not part of the language, of P. In this paper L can be any
fragment of any propositional intermediate logic that contains the {∧,→,>}-
fragment of intuitionistic logic IPC. > is not strictly necessary, but it will be
convenient to have a separate symbol for truth available. Note that every logic
is a fragment of itself. `L stands for derivability in logic L and we sometimes
the “L”.

We use Γ,Π,∆,Σ to denote finite sets of formulas. Sequents are expressions
Γ ⇒ ∆. In the case that ⊥ and negation do not belong to the language, we
require that ∆ is not empty, and in the case that disjunction does not belong
to the language, we require that |∆| ≤ 1. S,R range over sequents. Given a
subset L′ of L, a formula, sequent or set of sequents is in L′ if all symbols in it
belong to L′.
Atomic implications are implications of the form p → q, where p 6= ⊥. Note
that ¬p is an atomic implication. Ln is L minus the atoms pi for i > n. Given
a set of sequents G, LG denotes L minus the atoms that do not occur in G and
nG is the number of different atoms that occur in G. For a sequent S, i(S)
denotes the number (n{S} + 2m)2, where m is the number of implications in S,
and similarly for formulas.

A sequent (Γ ⇒ ∆) is irreducible if ∆ is empty or consists of atoms, and Γ is
empty or consists of atoms and atomic implications. SG is the set of irreducible
sequents in LG . var(A) is the set of atoms that occur in A and similarly for
sequents and sets of sequents. In general, we will use S and T for arbitrary
finite sets of sequents and G and H for finite sets of irreducible sequents.

We need the following notation, where v stands for variable, i for implication,
a for antecedent, and c for conclusion:

(Γ⇒ ∆)a ≡def Γ (Γ⇒ ∆)c ≡def ∆

Γv ≡def {p ∈ P | p ∈ Γ} Γi ≡def Γ\Γv Γi∆ ≡def {(p→ q) ∈ Γ | p ∈ ∆}
Γa ≡def {p | ∃q (p→ q) ∈ Γ} Γc ≡def {q | ∃p (p→ q) ∈ Γ}
ΠS ≡def

⋃
{Sai | S ∈ S} ΣGS ≡def {p | G ` ΠS ⇒ p}.

For k ∈ {a, c} and l ∈ {a, c, i, v}, Skl abbreviates (Sk)l.
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Sequents are interpreted in the usual way: I(S) = (
∧
Sa →

∨
Sc), where an

empty conjunction is > and an empty disjunction ⊥. For notational convenience
we sometimes write S for I(S), for example in ` S, which thus should be read
as ` I(S). Sets of sequents are interpreted as conjunctions:

I(G) ≡def

∧
S∈G

I(S),

interpreting empty disjunctions by ⊥ and empty conjunctions by >. For sets of
irreducible sequents G we sometimes denote I(G) by the noncalligraphic version
of the name of the set. For example, G ≡def I(G) and Gi ≡def I(Gi). When we
speak of the (in)consistency of G, we mean the (in)consistency of G.

We use σ and τ to denote substitutions, which are maps from propositional
formulas to propositional formulas that commute with the connectives. ι is
the identity substitution. As usual, τΓ = {τA | A ∈ Γ} and τS = (τSa ⇒
τSc). Throughout the paper substitutions are assumed to have finite domains,
denoted by dom(·). We use the following notation for substitutions with the
same domain:

σ ↔ τ ≡def

∧
p∈dom(σ)

σ(p)↔ τ(p).

Observe that
` σ ↔ τ implies ` σA↔ τA.

Given two finite sets of sequents T and T ′, S is closed under the multi-conclusion
rule T /T ′ if whenever I(S) derives I(T ) it derives I(S) for at least one sequent
S in T ′. The rule is admissible if for all substitutions σ, S is closed under the
rule σT /σT ′. In the single-conclusion case, which means the case that |T ′| ≤ 1,
T /T ′ is derivable if I(S) derives I(T ) → I(T ′). The same notions apply to
logics by considering a logic L as the set of its theorems (thus by taking for S
the set {(⇒ A) | `L A}). In this case we write T |∼ LT ′ if the rule is admissible,
and T `L T ′ if the rule is derivable.

3 Proof idea

The main technical part of the paper is the proof of Theorem 2, which is divided
in two parts, the proof of Theorem 1 and the proof of Lemma 11. In this section
we briefly explain these proofs in general, the next three sections provide the
technical details. The proofs make use of a connection between valuations and
substitutions that go back to Prucnal [29, 31] and are crucial in the work of
Ghilardi [10] and Rozière [32, 33].

Given a set of atoms I and a formula A we define the valuation vI and substi-
tution σI as follows:

vI(p) ≡def

{
1 if p ∈ I
0 if p 6∈ I σAI (p) ≡def

{
A→ p if p ∈ I
A ∧ p if p 6∈ I.
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For sequents, vI(S) is short for vI(I(S)) and σSI for σ
I(S)
I . It is not difficult to

see that in classical logic vI(A) = 1 implies `CPC σAI A. This no longer holds in
IPC, a counter example is provided below. There is, however, a weaker form of
the statement that does hold. For a certain composition σA of substitutions of
the form σAI and a certain notion of satisfiablity called strong satisfiability, it is
shown in Theorem 1 that if A is strongly satisfiable, then σA is a unifier for A.
As σA is a composition of σAI ’s, it is a projective unifier of A, thus showing that
strong satisfiability implies projectivity. Lemma 11 shows that closure under
the Visser rules (to be defined below) is a necessary and sufficient condition for
strong satisfiability. Together with Theorem 1 it therefore proves Theorem 2.

The proof of Lemma 11 is fairly straightforward and will be discussed in Sec-
tion 6, but the proof of Theorem 1 needs some clarification, which we provide
in the remainder of this section.

Instead of formulas it is convenient to work with a set of irreducible sequents G
and corresponding formula G = I(G). As mentioned above, vI(S) = 1 does not
imply `IPC σSI (S), S = (p⇒ q, r) and I = {q} being a counter example. But it is
not hard to see that vI(S) = 1 does imply `IPC σSI (S) in case S is an irreducible
sequent and Sc contains at most one formula. So (the formulas corresponding
to) these sequents are projective anyway. For the remaining sequents, those
for which Sc contains more than one atom, we consider them relative to a
set of irreducible sequents S ⊆ G in which they are contained. The notion
of satisfiability that we need is that of strong satisfiability with respect to S,
meaning that vI(S

av, Sai
ΣG

S
⇒ Sc ∩ ΣGS), denoted by vI(S | S), equals 1.

The aim is to prove for S1 ∈ S and a composition σ = σm . . . σ1 of substitutions
of the form σGI that ` σS1 given that S1 is strongly satisfiable with respect to
G. Let us denote σm . . . σi by σi, which means that σ1 = σ. Note that in order
to prove ` σS1, one has to show that ` σ1S

a
1 ⇒ σ1S

c
1. For this it suffices to

show that for some i2 ≥ 1 and for all S2 ∈ G:

` σ1S
a
1 ⇒ I(σi2S2). (1)

This would namely imply that ` σ1S
a
1 ⇒ σi2I(G), which means ` σ1S

a
1 ⇒ σi2G.

And as the σj are such that ` G → σi2−1 . . . σ1G, an application of σi2 gives
` σi2G⇒ σ1G. Thus ` σ1S

a
1 ⇒ σ1G, which implies ` σ1S

a
1 ⇒ σ1S1, as S1 ∈ G.

And thus ` σ1S
a
1 ⇒ σ1S

c
1.

Repeating this argument shows that to prove (1) it suffices to show that for
some i3 ≥ i2 and for all S3 ∈ G:

` σ1S
a
1 , σi2S

a
2 ⇒ I(σi3S3). (2)

Continuing this argument, one sees that in order to prove ` σG it suffices to show
that for all possible sequences S1, . . . , Sm of sequents from G and all numbers
1 ≤ i2 ≤ i3 ≤ · · · ≤ im there is a j ≥ im such that for all S ∈ G:

` σ1S
a
1 , σi2S

a
2 , . . . , σimS

a
im ⇒ I(σjS). (3)
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As one can see (and will be proved below), if σj = σGI for an I such that
vI(S

av, Sai
ΣG

S
⇒ Sc∩ΣGS) = 1, where S ∈ S = {S1, . . . , Sm}, then (3) holds. This

is the core idea behind the proof of Theorem 1 stating that strong satisfiability
implies projectivity. This completes the informal explanation, and we continue
with the technical details.

4 Substitutions and valuations

The discussion above serves as a motivation for the notions introduced in this
section. In this and the next section we consider an arbitrary finite set G of
irreducible sequents, and corresponding formula G = I(G), and assume the
atoms that occur in G to be {p1, . . . , pnG}. Most definitions are relative to G
but for simplicity we do not always indicate this in our notation. G? consists of
those sequents S ∈ G such that (Sav ∩ Scv) is empty. Note that all sequents in
G that are not in G? are derivable.

We fix an arbitrary enumeration J1, . . . , J2nG of all subsets of {p1, . . . , pnG}, and
let I range over subsets of {p1, . . . , pnG}. Given a set I the valuation vI has been
defined above, and σI denotes σGI , also defined at the beginning of Section 3.
We extend it to a valuation for sequents S relative to a set of sequents S: S is
strongly satisfiable with respect to S if

vI(S | S) ≡def vI(S
av, Sai

ΣG
S
⇒ Sc ∩ ΣGS) = 1.

If Sai
ΣG

S
is empty, the right side is read as vI(S

av ⇒ Sc ∩ ΣGS) = 1, similarly for

Sav and Sc ∩ ΣGS . The valuations are extended to sets of sequents in the usual
way: vI(S ′ | S) = 1 if and only if vI(S | S) = 1 for all S ∈ S ′. We write vI(S)
for vI(S | S). G is strongly satisfiable if for all S ⊆ G? there is an I such that
vI(S) = 1.

We use the following abbreviationa in this and the next section:

g = 2nG σG ≡def (σJg . . . σJ1)(|G|+1).

Thus σG is the concatenation of g(|G|+ 1) substitutions. The i-th substitution
in σG (reading from right to left) is denoted by σi and for i < j, σj . . . σi is
denoted by σj,i. We denote σg(|G|+1),i = σg(|G|+1) . . . σi by σi. For example,

σ2 = σg+2 = · · · = σg|G|+1 = σJ2 , σ1 = σG, and σg+1 = σ|G|. Note that for
i < j, σj is the tail of σi. We denote by Ii the set Jj such that σi = σJj . For
valuations we define: vi ≡def vIi .

Lemma 1 For all i < j: ` G→
(
ι↔ σi ↔ σj,i

)
and ` σjG→ σiG.

Proof The first equivalence in the first statement is clear. The second equiva-
lence follows from this and the fact that ` (B ↔ C)→ (A[B/p]↔ A[C/p]) for
any atom p.
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The first statement implies that ` G → σj−1,iG, which implies ` σjG → σiG.
2

Define

F (i1, . . . , ij , S1, . . . , Sj , A) ≡def σi1S
a
1 , σi2S

a
2 , . . . σijS

a
j ⇒ A. (4)

Proposition 1 For all S = {S1, . . . , Sj} ⊆ G and all 1 ≤ i1, . . . , ij ≤ g(|G|+1),
if vI(S) = 1, then for all S ∈ S: ` F (i1, . . . , ij , S1, . . . , Sj , σIS).

Proof First the case that Sav\I or Sc ∩ ΣGS is nonempty. In case p ∈ Sav\I,
σI(p) = G∧p, and thus σIS

a derives G, and therefore it derives Sc and σIS
c by

Lemma 1. Thus proving that σIS is derivable, even without the assumptions.
In case p ∈ Sc ∩ ΣGS , σI(p) = G → p and ` G ∧

∧
h S

a
h → p. Hence also

F (i1, . . . , ij , S1, . . . , Sj , σIp), which gives ` F (i1, . . . , ij , S1, . . . , Sj , σIS) as p ∈
Sc.

Finally the remaining case: there is an implication (p → q) ∈ Sa with p ∈ ΣGS ,
p ∈ I and q 6∈ I. Thus σI((p → q) | S) = (G → p) → G ∧ q. As p ∈ ΣGS ,
G `

∧
h S

a
h → p, and therefore Lemma 1 implies `

∧
h σihS

a
h → (G → p).

Hence `
∧
h σihS

a
h ∧ σISa → G ∧ q. The fact that S ∈ G finally leads to

`
∧
h σihS

a
h ∧ σISa → σIS

c, which is what we had to show. 2

5 Unifiers

In this section we show that every strongly satisfiable set of sequents G has
σG as a projective unifier. We need some terminology to be able to prove this
theorem by backwards induction. A sequence of m numbers followed by m
sequents i1, . . . , im, S1, . . . , Sm is appropriate if m ≤ |G|,

1 = i1 ≤ g < i2 ≤ 2g ≤ · · · < im ≤ mg,

and the sequents are distinct and belong to G. It is G-sufficient if for all num-
bers j such that mg < j ≤ (m + 1)g and vj({S1, . . . , Sm}) = 1, the formula
F (i1, . . . , im, S1, . . . , Sm, σjG) is derivable, where F is defined in (4).

Lemma 2 If G is strongly satisfiable, then for every appropriate sequence
i1, . . . , im, S1, . . . , Sm and any number k > 0 there exists a number h such
that kg < h ≤ (k + 1)g and vh({S1, . . . , Sm}) = 1.

Proof As G is strongly satisfiable, there is a j ≤ g such that vj({S1, . . . , Sm})
equals 1. Since vj = vkg+j , the lemma follows. 2

Lemma 3 If G is strongly satisfiable then for all m ≤ |G|: if all appropriate
sequences of length 2m are G-sufficient, then so are all appropriate sequences
of length 2m− 2.
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Proof Consider an appropriate i1, . . . , im−1, S1, . . . , Sm−1 and let j be such that
(m− 1)g < j ≤ mg and vj({S1, . . . , Sm−1}) = 1. We have to show that for all
S ∈ G:

` F (i1, . . . , im−1, S1, . . . , Sm−1, σjS) (5)

If S ∈ {S1, . . . , Sm−1}, then (5) follows from Proposition 1. If, on the other
hand, S 6∈ {S1, . . . , Sm−1}, then i1, . . . , im−1, j, S1, . . . , Sm−1, S is an appropri-
ate sequence of length 2m. By Lemma 2 there exists a number h such that
mg < h ≤ (m+ 1)g and vh({S1, . . . , Sm−1, S}) = 1. Therefore by G-sufficiency

` F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, σhG).

Since ` σhG→ σjG and S ∈ G, this implies that

` F (i1, . . . , im−1, j, S1, . . . , Sm−1, S, σjS).

Hence ` F (i1, . . . , im−1, S1, . . . , Sm−1, σjS), which is what we had to show. 2

Lemma 4 If S ∈ G and 1, S is G-sufficient, then ` σS.

Proof By Lemma 2 there exists an i ≤ 2g such that vi({S}) = 1. Hence
` σ1S

a → σiG. Since ` σiG → σ1G by Lemma 1, this gives ` σ1S
a → σ1G.

As S ∈ G, ` σ1S follows, that is, ` σGS. 2

Lemma 5 Every appropriate sequence of length 2|G| is G-sufficient.

Proof Let |G| = m and consider an appropriate sequence i1, . . . , im, S1, . . . , Sm
and let j be such that mg < j ≤ (m + 1)g and vj({S1, . . . , Sm}) = 1. Because
m = |G| and the Si are distinct, {S1, . . . , Sm} = G. Therefore Proposition 1
gives ` F (i1, . . . , im, S1, . . . , Sm, σjG). 2

Theorem 1 If G is strongly satisfiable, then ` σGG.

Proof By Lemma 5 every appropriate sequence of length 2|G| is G-sufficient.
By repeated application of Lemma 3 it follows that 1, S is G-sufficient for every
S ∈ G. This implies ` σGS by Lemma 4. 2

6 Rules and satisfiability

In this section we show that closure under the Visser rules, (in sequent notation)

{Γ⇒ ∆}
{Γ⇒ A | A ∈ Γa ∪∆} V (Γ implications only),

implies strong satisfiability, thus proving by Theorem 1 that closure under the
Visser rules implies projectivity. We make use of a property, being closed, that
is equivalent to being closed under the Visser rules, Lemma 10, but easier to
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apply. Before giving the formal definition, we treat two examples indicating how
closure conditions can imply satisisfiability. In both examples G is a consistent
set of sequents, which means that it does not derive the empty sequent.

Given S ∈ G, the only way in which S = (Γ⇒ ∆) cannot be strongly satisfiable
with respect to G, which means vI(S | G) = vI(S

av, SaiΣG
⇒ Sv ∩ΣG) = 0 for all

I, is if Γ consists of implications such that Γa∩ΣG = ∆∩ΣG = ∅. However, if G
is closed under the Visser rules, it contains (Γ⇒ p) for at least one p ∈ Γa ∪∆.
But then p ∈ ΣG , contradicting Γa ∩ ΣG = ∆ ∩ ΣG = ∅. This shows that for
single S ∈ G, G being closed under the Visser rules implies that S is strongly
satisfiable with respect to G.

If we consider more than one sequent, we need the notion of being closed, as
illustrated by the following example. Consider sequents S1, S2 ∈ G such that
S1 = (Γ, q → r ⇒ q) and S2 = (q ⇒ ∆) and Γ consists of implications not equal
to (s → s) and q 6∈ ∆. If {S1, S2} is not strongly satisfiable with respect to G,
then Γa ∪∆ does not contain elements from ΣG If G is closed under the Visser
rules and as it derives Γ, q → r ⇒ ∆, it also derives Γ ⇒ p for at least one
p ∈ Γa ∪ {q} ∪∆. This, however, does no lead to a contradiction as in the case
above, as q can be taken for p. But as we will show in Lemma 10, closure under
the Visser rules implies being closed, which implies that G derives Γ⇒ p for at
least one p ∈ Γa∪∆, which is a contradiction. Thus showing that closure under
the Visser rules of G implies that {S1, S2} is strongly satisfiable with respect to
G.

The seemingly stronger notion of being closed is defined as follows. We use the
following notation for sets of formulas in which some implications are replaced
by their antecedents:

ΓI ≡def I ∪ Γ\{(p→ q) ∈ Γ | p ∈ I}.

G is closed if for all irreducible sequents (Γ ⇒ ∆) in LG such that Γ does not
contain atoms, G is closed under the rule

{ΓJ ⇒ ∆ | J ⊆ I}/{Γ⇒ p | p ∈ (Γa\I) ∪∆}.

Note that the Visser rules are a special instance of the above rule, namely for
I = ∅.

6.1 Resolution

To prove that being closed implies being strongly satisfiable, we argue by contra-
diction. Assuming that G is not strongly satisfiable, which means that vI(G) = 0
for all I ⊆ ΣG , we use a resolution proof on the sequents (Sav, SaiΣG

⇒ Sv ∩ΣG)
for S ∈ G, to conclude that G is not closed. The following lemmas about reso-
lution proofs are needed to draw that conclusion.

Resolution proofs in the usual sense correspond to sequent derivations in which
every sequent contains only atoms, and every inference is a cut. The only
difference between resolution proofs and the Σ-resolution proofs we consider
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below is that in our case we use irreducible sequents. And although the only
inference rules are cuts on atoms, the implications are present as additional
information that will be used in the next lemmas.

A sequent S is full in Σ if Saa ∩Σ ⊆ Sc. FΣ
G is the set of sequents that are full

in Σ and that can be obtained from S by left implications in Σ:

FΣ
S ≡def {Sa\Π,Πc ⇒ Sc, (Sa\Π)a ∩ Σ | Π ⊆ SaiΣ } FΣ

G ≡def ∪{FΣ
S | S ∈ G}.

Lemma 6 FΣ
G a` G. For every I ⊆ Σ: vI(FΣ

S ) = 1 implies vI(S) = 1.

Given a set of atoms Σ, an Σ-resolution proof of S from G is a finite binary
tree labelled with sequents: the leafs are (labelled with) sequents in FΣ

G , the
root is S, and a sequent at an inner node is the result of a cut in Σ on the two
sequents immediately above it. CR is the set of cut formulas that occur in R.
Thus CR ⊆ Σ.

Lemma 7 If vI(G) = 0 for all I ⊆ Σ, then there exists a Σ-resolution proof
from G of a sequent S such that Sav ∪ (Sc ∩ Σ) = ∅.

Proof Let Σ be the complement of Σ in P. Consider

H = {
(
Sav, Sai\Sai

Σ
⇒ Sc ∩ Σ

)
| S ∈ G}.

Suppose vI(G) = 0 for all I ⊆ Σ. This implies that H is classically inconsistent,
as all positive atoms in the sequents in H belong to Σ. From Lemma 6 it
follows that FPH is classically inconsistent. By the completeness of resolution
refutations for classical logic, there exists a P-resolution proof from FPH of a
sequent that does not contain atoms. Since all cut formulas belong to Σ, this
proof corresponds to an Σ-resolution proof from G of a sequent S for which
Sav ∪ (Sc ∩ Σ) = ∅. 2

Lemma 8 If R is a Σ-resolution proof of S, then

(Saa ∩ Σ)\CR ⊆ Sc.

Proof With induction to the number of cuts in R. If R does not contain cuts,
then S ∈ FΣ

G , which clearly implies the statement. Suppose that R contains
cuts, that S = (Γ,Π⇒ ∆,Λ), and that the lowest cut is:

Γ⇒ p,∆ p,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Consider q ∈ (Saa ∩ Σ)\CR. Since p ∈ CR, q 6= p. Note that q ∈ Γa or q ∈ Πa.
In both cases the induction hypothesis implies that q ∈ ∆ ∪ Λ, which is what
we had to show. 2

Lemma 9 For all Σ-resolution proofs R of S ∈ G, and all I ⊆ CR:

G ` (SaI ⇒ Sc) or I ∩ Sc 6= ∅.
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Proof With induction to the number of cuts in R. If there are no cuts, the
lemma follows immediately. Suppose there are cuts in R and consider the lowest
cut

Γ⇒ p,∆ p,Π⇒ Λ

Γ,Π⇒ ∆,Λ

Let S be the conclusion, and let R′ and R′′ be resolution proofs of respectively
the left and the right premise. Consider I ⊆ CR and let J = I ∩ Γa and
H = I ∩ Πa and assume that I ∩ (∆ ∪ Λ) is empty, otherwise we are done
immediately. If there exists a q ∈ H\CR′′ , then q ∈ Λ by Lemma 8, and thus
Sc ∩ I is not empty, which contradicts our assumptions. Therefore H ⊆ CR′′ .
Thus G derives (p,ΠH ⇒ Λ) by the induction hypothesis.

If p ∈ I, this implies that ΠH ∪ {p} ⊆ ΠI , and thus G derives (ΓIΠI ⇒ ∆,Λ).
If, on the other hand, p 6∈ I, then p 6∈ J . Thus J ⊆ CR′ . Hence G derives
(ΓJ ⇒ p,∆) by the induction hypothesis. Thus it derives (ΓJ ,ΠH ⇒ ∆,Λ) and
whence (ΓI ,ΠI ⇒ ∆,Λ). 2

Lemma 10 G is closed if and only if G is closed under the multi-conclusion
Visser rules.

Proof The direction from left to right follows from the observation at the be-
ginning of this section. For the other direction, we first treat the case that
disjunction is in the language. Consider I and (Γ ⇒ ∆). Let Γ〈H,∆〉 be the
result of replacing every p ∈ Γa ∩H by (p ∧

∨
∆).

First we show that with induction to |H| that for all J,H ⊆ I:

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H,∆〉
J ↔ ΓJ .

Since the ← part is trivial, it remains to show

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H,∆〉
J ⇒ ΓJ . (6)

If H = ∅, then Γ
〈H,∆〉
J = ΓJ . Suppose |H| > 0, and consider pi ∈ H, such that

(pi → q) ∈ ΓJ (if there is more than one implication in Γ with antecedent pi,
the argument remains the same). By the induction hypothesis

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H\{i},∆〉
J∪{i} ⇒ ΓJ∪{i}.

Since {(ΓJ ⇒ ∆) | J ⊆ I} `L ΓJ∪{i} ⇒ ∆, this implies that

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H\{i},∆〉
J∪{i} ⇒ ∆.

As (pi ∧
∨

∆→ q) ∈ Γ
〈H,∆〉
J , (pi → q) 6∈ ΓJ∪{i} and pi ∈ ΓJ∪{i}, this gives

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H,∆〉
J ⇒ (pi → q).

Thus {(ΓJ ⇒ ∆) | J ⊆ I} `L Γ
〈H,∆〉
J ⇒ Γ

〈H\{i},∆〉
J , and the induction hypothesis

gives (6).
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Thus we have shown (6), and in particular

{(ΓJ ⇒ ∆) | J ⊆ I} `L Γ〈I,∆〉 ↔ Γ.

The following observations now prove the lemma:

(ΓJ ⇒ ∆) | J ⊆ I} ` Γ⇒ ∆

` Γ〈I,∆〉 ⇒ ∆

|∼ {Γ〈I,∆〉 ⇒ p | p ∈ (Γ〈I,∆〉)a ∪∆}
` {Γ⇒ p | p ∈ (Γ〈I,∆〉)a ∪∆}
` {Γ⇒ p | p ∈ Γa\I ∪∆}

The proof for the case that disjunction is not present is similar: we have to
replace (p ∧

∨
∆→ q) by

∧
r∈∆(p ∧ r → q). 2

Lemma 11 If G is closed under V, it is strongly satisfiable.

Proof Suppose that G is not strongly satisfiable. Observe that this implies in
particular that for all I ⊆ ΣG , vI(G) = 0. By Lemma 7 there is a ΣG-resolution
proof R of a sequent S ∈ G for which Sav ∪ (Sc ∩ ΣG) = ∅. Thus Sa consists
of implications. Since CR ⊆ ΣG , Lemma 9 implies that G derives SaI ⇒ Sc

for all I ⊆ CR. If G would be closed, it would derive (Sa ⇒ p) for some
p ∈ Saa\CR ∪ Sc. Hence p ∈ ΣG . Thus p ∈ Sc by Lemma 8, which contradicts
that Sc ∩ ΣG is empty. Therefore G is not closed, and thus not closed under V
by Lemma 10. 2

Theorem 1 and Lemma 11 immediately give the following.

Theorem 2 If G is closed under V, then G is projective with projective unifier
σG.

IPC is the only intermediate logic with the disjunction property for which all
multi-conclusion Visser rules are admissible [16]. In this logic the closure con-
dition is a sufficient and necessary condition for strongly satisfiability.

Proposition 2 In IPC, G is closed under V if and only if G is strongly satisfiable.

Proof The direction from left to right is Lemma 11. The other direction uses
that V is admissible in IPC. Suppose that G is ΣG-satisfiable. Hence σG is a
projective unifier of G by Theorem 1. Let S/S′ be an instance of V such that G
derives S. Thus σGS is derivable in IPC, and by the admissibility of V in IPC,
so is σGS

′. Therefore G derives S′. 2

7 Projective approximations

In the setting of formulas the multi-conclusion Visser rules are defined as follows:∧
Γ→

∨
∆

{
∧

Γ→ A}A∈Γa∪∆
V (Γ implications only).
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Observe that we use the same symbol for the formula and sequent setting.
This is justified by the fact that for every instance S/S1, . . . , Sm of the sequent
version, I(S)/I(S1), . . . , I(Sm) is an instance of the formula version and vice
versa.

Recall that an irreducible formula is a formula of the form I(S), where S is
irreducible, and that F(p1, . . . , pn) and S(p1, . . . , pn) are the sets of formulas
respectively sequents in which only atoms in {p1, . . . , pn} occur.

Lemma 12 For every n and every set of sequents G ⊆ S(p1, . . . , pn), there ex-
ists a finite set of irreducible sequents H such that for every ∆ ⊆ F(p1, . . . , pn):

1. I(G) |∼∆ if and only if I(H) |∼∆,

2. I(G) `V∆ if and only if I(H) `V∆,

3. I(G) `
∧
σ(H) for some σ that is the identity on F(p1, . . . , pn).

Proof We follow the method of proof of a similar lemma in [4]. The length of
a formula is the number of symbols occurring in it. Let ml(G) be the multiset
of the lengths of the formulas in the sequents in G. We prove the lemma by
induction on ml(G), using the multiset ordering. At every step we construct
a new set of sequents G′ such that 1-3 hold and ml(G′) < ml(G), untill G′ is
irreducible. This will prove the lemma.

If ml(G) ≤ 1, G consists of irreducible sequents, and we can take G for G′.
Therefore suppose ml(G) > 1 and consider a formula A in a sequent S ∈ G
that has length greater than 1. Thus A is not an atom. If A = (B ∧ C) and
A ∈ Sa, we replace S by (Sa\{A}, B,C ⇒ Sc), and if A ∈ Sc we replace S by
(Sa ⇒ Sc\{A}, B) and (Sa ⇒ Sc\{A}, C). Similarly if A is a disjunction. For
H′ being the result of these replacements, 1-3 clearly hold.

Suppose A = (B → C). If A ∈ Sc we choose a fresh atom p different from
p1, . . . , pn and replace S by S1 = (Sa ⇒ Sc\{A}, p) and S2 = (p,B ⇒ C).
If A ∈ Sa, we choose a fresh atoms p, q different from p1, . . . , pn and replace
S by S1 = (Sa\{A}, p → q ⇒ Sc), S2 = (p ⇒ B) and S3 = (C ⇒ q). In
both cases call the result G′ and note we have I(S1) ∧ I(S2) ∧ I(S3) ` I(S)
and therefore I(G′) ` I(G). Note that there is a substitution σ that is the
identity on p1, . . . , pn such that I(G) ` I(σG′). Namely, in the first case all
such substitutions for which σ(p) = B → C, and the second case all such
substitutions for which σ(p) = B and σ(q) = C. This implies 3.

The direction from left to right of 1. and 2. holds because I(G′) ` I(G), as can
be seen from the construction. For the other direction of 1., consider a unifier
τ of I(G). This can be extended to a unifier τ ′ of I(G′) in the way explained
in the previous paragraph. Thus ` τ ′C for some C ∈ ∆. As τ equals τ ′ on ∆,
` τC follows, proving that I(G) |∼∆. To prove the direction from right to left

of 2., assume that I(G′) `V∆. For the substitution σ defined in the previous

paragraph I(σG′) `V∆ holds by structurality and the fact that σ is the identity

on ∆. As I(G) ` I(σG′), I(G) `V∆ follows. 2
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The following lemma has essentially been proved in [21].

Lemma 13 For every set of irreducible sequentsH there exist sets of irreducible
sequents H1, . . . ,Hm such that the I(Hi) are projective and for all i:

I(Hi) ` I(H) `V{I(H1), . . . , I(Hm)}.

Proof Define the following (rewrite) relation on finite sets of finite sets of irre-
ducible sequents in LH, where X and Y range over such sets and Γ over sets of
implications:

X ∪ {G ∪ {Γ⇒ ∆}} 7→ X ∪ {G ∪ {Γ⇒ ∆,Γ⇒ p} | p ∈ Γa ∪∆}.

Slightly ambiguous, we also use 7→ for the transitive closure of this relation. A
set of sequents G is in 7→-normal form if there is no H ⊃ G such that G 7→ H.
As the number of atoms in H is finite and all sequents involved are irreducible
and contain no atoms than those in H, there are H1, . . . ,Hn such that {H} 7→
{H1, . . . ,Hn} and the Hi are in 7→-normal form. Observe that the latter means
that the Hi are closed under V, and thus that I(Hi) is projective by Theorem 2.
It is easy to see that they satisfy the other properties in the lemma as well. 2

Combining the previous two lemmas gives the following theorem.

Theorem 3 For every n and every set of sequents G ⊆ S(p1, . . . , pn), there
exist sets of irreducible sequents H1, . . . ,Hm such that all I(Hi) are projective
and for every ∆ ⊆ F(p1, . . . , pn):

1. I(G) `V∆ if and only if I(Hi) `V∆ for all i.

2. I(G) `V{I(σH1), . . . , I(σHm)} for some σ that is the identity on F(p1, . . . , pn).

Proof Given G, construct H and σ as in Lemma 12 and then sets of irreducible
sequents H1, . . . ,Hm as in Lemma 13. It is easy to see that 1. holds. For 2.,

observe that by Lemma 13 and structurality, I(σH) `V{I(σΠ1), . . . , I(σΠm)}.
As I(G) ` I(σH), 2. follows. 2

Given a formula A ∈ F(p1, . . . , pn), a set {B1, . . . , Bm} of projective formu-
las is an irreducible projective approximation of A if and only if there are sets
of irreducible sequents H1, . . . ,Hm such that Bi = I(Hi) and for all B in
F(p1, . . . , pn):

1. A |∼B if and only if Bi ` B for all i;

2. A |∼{σB1, . . . , σBm} for some σ that is the identity on F(p1, . . . , pn).

Corollary 1 For every formula A, if Vi(A) is admissible, then A has an irre-
ducible projective approximation.
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Proof Consider a formula A and let n and m be the number of atoms and
implications in A, respectively. Let H1, . . . ,Hn be as in Theorem 3, where
G = {(⇒ A)}, and let Bi = I(Hi). Thus the Bi are projective. We prove that
{B1, . . . , Bm} is an irreducible projective approximation of A. From the con-
structions in Lemma 12 and Lemma 13 it can be seen that the sequents in theHi
contain at most (n+2m)2 implications at the left: in Lemma 12 at most 2m new
atoms will be introduced and as the sequents in Hi are irreducible, there are at
most (n+2m)2 different implications occurring in their antecedents. Recall that
i(A) is defined as (n + 2m)2. This implies that Γ `Vi(A){

∧
σΠ1, . . . ,

∧
σΠm}.

Therefore the admissibility of Vi(A) implies the second requirement of projective
approximations. The proof of the first requirement follows easily by observing
that C |∼B if and only if C ` B for projective C and all B. 2

Corollary 2 If Vi(A) is admissible in L, then A has a finite complete set of
unifiers.

Proof Given a formula A, let B1, . . . , Bn be its irreducible projective approxi-
mation, which exists by Corollary 1. Thus there exists a σ that is the identity on
F(p1, . . . , pn) such that A |∼{σB1, . . . , σBm}. Let σ′i be the projective unifier of
Bi and let σi be equal to σ′i on the atoms in A and the identity everywhere else.
We verify that {σ1, . . . , σn} is a complete set of unifiers for A. Therefore sup-

pose that `L τA. Then for σ as in 2. of Theorem 3, τA `V{τσB1, . . . , τσBm}.
Thus ` τσBi for at least one i ≤ n by the admissibility of V. Hence τσ 6 σ′i.
Thus τ 6 σi. 2

8 Unification types

In this section we apply the results of the previous section to obtain results on
unification. The following theorem has been proved for the case L = IPC in
[10, 32], and for intermediate logics in [21]. In the latter paper the result for
fragments is implicit.

Theorem 4 If V9n2 is admissible, then the n-unification type of the logic is
finitary.

Proof Immediate from Corollary 2, using that for formulas A of size at most
n, i(A) ≤ 9n2 2

IPC is the only intermediate logic with the disjunction property for which all
multi-conclusion Visser rules are admissible [16]. Given this fact, the corollaries
above immediately imply what has been proved by Mints, Ghilardi, and Rozière
before.

Corollary 3 [10, 26, 32] Any fragment of IPC that contains IPC∧,→ has uni-
tary or finitary unification. If it does not contain disjunction it has unitary
unification.
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The fact that Vn+1 is admissible in the n-th Gabbay-De Jongh logic Tn [9, 16]
implies the following.

Corollary 4 [14] Any fragment of Tn that contains conjunction and implication
has finitary

√
n+ 1/9–unification. If it does not contain disjunction it has

unitary
√
n+ 1/9–unification under the same condition.

Another consequence of Corollary 2 is the following result by Mints (for IPC)
and Minari and Wroński (for all intermediate logics).

Corollary 5 [25, 26] The implication-conjunction(-negation) fragment of any
intermediate logic has unitary unification.

Using the fact that in Gödel-Dummett logic LC a disjunction A∨B is equivalent
to ((A → B) → B) ∧ ((B → A) → A) we can extend the result by Minari and
Wroński [25] that an intermediate logic has projective unification (every formula
has a pu) if and only if it contains LC, to fragments.

Corollary 6 Any fragment of LC that contains conjunction and implication
has projective unification.
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sis, Université Paris VII, 1992.

[33] P. Rozière, Admissible and derivable rules in intuitionistic logic, Mathematical
Structures in Computer Science 3, 1993, p.129–136.

[34] V. Rybakov, Admissibility of Logical Inference Rules, Elsevier, 1997.
[35] V. Rybakov, Writing out Best Unifiers in Intuitionistic Logic for Formulas

with Coefficients, Logic Journal of the IGPL, 2012, to appear.

19



[36] F. Wolter and M. Zakharyaschev, Undecidability of the Unification and Ad-
missibility Problems for Modal and Description Logics, ACM Transactions on
Computational Logic 9(4), article 25, 2008.
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