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1 Introduction

Interpolation has been studied in a variety of settings since William Craig
proved in 1957 that classical predicate logic has interpolation. Interpolation
is a desirable property for a logic to have because it indicates that the logic
is well-behaved in a sense reminiscent to analyticity: if an implication ϕ→ ψ
holds in the logic, then there is a χ in the common language of ϕ and ψ that
interpolates, that is, such that ϕ→ χ and χ→ ψ hold. What the common lan-
guage is depends on the logic one considers. In propositional logics it typically
means that all atoms in χ occur in both ϕ and ψ.

In 1992 it was proved by Andrew Pitts that intuitionistic propositional logic
IPC, which has interpolation, also satisfies the stronger property of uniform
interpolation: given a formula ϕ and an atom p, there exist uniform interpolants
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∀pϕ and ∃pϕ which are formulas (in the language of IPC) that do not contain
p and such that for all ψ not containing p:

` ϕ→ ψ ⇔ ` ∃pϕ→ ψ ` ψ → ϕ ⇔ ` ψ → ∀pϕ.

This is a strengthening of interpolation in which the interpolant only depends
on the premiss (in the case of ∃) or the conclusion (in the case of ∀) of the given
implication: ∀p1 . . . ∀pnϕ and ∃p1 . . . ∃pnϕ interpolate any ψ → ϕ and ϕ→ ψ,
respectively, such that p1, . . . , pn do not occur in ψ. In case ∀p1 . . . ∀pnϕ or
∃p1 . . . ∃pnϕ contain additional variables not in the common language of ϕ and
ψ, these have to be replaced by > or ⊥ or a variable in the common language.

As the notation suggests, the fact that the uniform interpolants are de-
finable in IPC also shows that the propositional quantifiers are definable in
that logic. From the algebraic point of view the quantifiers are left and right
adjoints of certain embeddings.

Around the time that Pitts obtained his result, Shavrukov proved, by com-
pletely different methods, that the modal logic GL has uniform interpolation
[9]. Since then, uniform interpolation has been established for various other
logics, including the modal logics K and KT [1,11,12]. Intriguingly, the modal
logics K4 and S4 do not have uniform interpolation [1,4]. As there are only
seven propositional intermediate logics with interpolation [6], the number of
intermediate logics with uniform interpolation is necessarily bounded by that
number. Ghilardi and Zawadowski showed that there are exactly that many
[5].

Whereas in the presence of a decent analytic sequent calculus, proofs of
interpolation are often relatively straightforward, proofs of uniform interpola-
tion are in general quite complex. Moreover, it is less clear in how far, if at
all, proof systems such as sequent calculi can be of help in establishing the
property, as there are logics with analytic sequent calculi that have uniform
interpolation (K and GL) as well as logics with analytic sequent calculi that
do not (K4 and S4).

In this paper our aim is twofold: to develop a method to extract uniform
interpolants from sequent calculi and to prove, using this method, that logics
without uniform interpolation lack certain calculi. For both aims it holds that
the more general the considered calculi are, the stronger the result. In this
paper we restrict ourselves to classical propositional modal logics, but the
method applies to intermediate logics as well. For such logics the method is
more complicated though, since ∃ is not expressible in terms of ∀, whereas in
the classical case one can just take ¬∀p¬ for ∃p. We plan to treat intermediate
logics in a separate paper.

Our construction of uniform interpolants on the basis of calculi provides
a modular approach to uniform interpolation. Namely, to establish that the
extension of a given calculus with uniform interpolation by a given rule still has
uniform interpolation, only certain local properties have to be verified, whereas
for most other methods the proof of uniform interpolation for the extension
has to be given again in full. Our method is different from but inspired by
Pitts’ ingenious syntactic method. B́ılková used a similar method as Pitts in
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combination with a clever termination strategy for the logics K, GL, KT and
Grz [1]. Most other proofs of uniform interpolation are of a semantical nature.

In our method, we isolate a certain type of propositional rules called fo-
cussed rules and a certain type of modal rules called focussed modal rules and
prove that any logic with a terminating balanced sequent calculus consisting
of focussed and focussed modal rules has uniform interpolation. Termination
means that in no rule the premisses are more complex, in a certain given order-
ing, than the conclusion. And a calculus is balanced if for certain combinations
of left and right rules, either both rules belong to the calculus or both do not.
This result then implies the well-known fact that classical propositional logic
has uniform interpolation, and that so do K and KD. Whereas for K this was
already known, for KD the result is new. Our results also imply that K4 and
S4 cannot have sequent calculi of the above kind. Although for S4 this might
be easy to infer in another way, for K4 this seems to be a novel insight.

Besides the mentioned results, uniform interpolation is obtained for various
other modal logics as well. The main interest in these results lies not so much in
the logics involved, but rather in the illustration they provide of the flexibility
of the method developed here. The calculi covered in this paper are not the
only calculi to which our method applies, or so we conjecture. It seems likely
that similar reasoning applies to other calculi for modal and intermediate
logics. We chose, however, to first set up the general framework in this paper
because we think it is of interest in itself, and in this way we steer clear of
the complexities that might arise once the existential quantifier is no longer
expressible in terms of the universal quantifier, as is the case in nonclassical
logics.

2 Logics and calculi

The logics we consider are modal propositional logics, formulated in a language
L that contains constants > and ⊥, propositional variables or atoms p, q, r, . . .
and the connectives ∧,∨,¬,→ and the modal operator 2. We assume that all
logics we consider are extensions of classical propositional logic CPC and satisfy
the necessitation rule, but we do not assume them to be normal. The logics
are given by consequence relations denoted by ` or `L and we assume them to
be consistent, meaning to not derive ⊥. F denotes the set of formulas in L and
M is the set of all finite multisets of formulas in F. Given a set of atoms P,
F(P) denotes all formulas in L in which all atoms belong to P. The language
Lqf is defined to be the extension of L with propositional quantifiers ∀p and
∃p for every atom p, and Fqf is the set of formulas in that language.

Sequents are expressions Γ ⇒ ∆, where Γ and ∆ are finite multisets of
formulas, that are interpreted as I(Γ ⇒ ∆) = (

∧
Γ →

∨
∆), where

∧
∅ and∨

∅ are interpreted as > and ⊥, respectively. We denote finite multisets by
Γ,Π,∆,Σ. In a sequent, notation Π,Γ is short for Γ ∪Π. We also define (a
for antecedent, s for succedent):

(Γ ⇒ ∆)a ≡def Γ (Γ ⇒ ∆)s ≡def ∆.
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For sequents S and S′, S ⊆ S′ denotes that Sa ⊆ S′a and Ss ⊆ S′s. When
sequents are used in the setting of formulas, we often write S for I(S), such
as in `

∨
i(Si ⇒ S), which thus means `

∨
i

(
I(Si)→ I(S)

)
. Multiplication of

sequents is defined as

S1 · S2 ≡def (Sa1 ∪ Sa2 ⇒ Ss1 ∪ Ss2).

The set Fex is the smallest set of expressions that contains F, is closed under the
connectives and modal operator, and if S is a sequent such that all its elements
belong to F, then ∀pS and ∃pS belong to Fex. For example, 2∀p1(p1 ⇒ p2)
belongs to Fex, but ∀p1∀p2(p1 ⇒ p2) does not. We say that a sequent is in L

or in F if all formulas that occur in it are in F, and likewise for Lqf , Fqf and
Fex.

The interpretation of Fex into Fqf is the identity on formulas in F, commutes
with the logical operators and interprets quantified sequents as

∀pS ≡def ∀pI(S).

2.1 Rules and axioms

For a proper syntactic treatment of interpolation we need to make a distinction
between the language and the meta-language. L is a copy of L in which every
atom p is replaced by p. The set F of formulas in this language is defined
as usual. M is an infinite set of symbols for meta-multisets, the elements we
denote by Γ ,Π,∆,Σ. A meta-sequent is an expression X ⇒ Y , where X and
Y are multisets consisting of elements in F ∪M.

A substitution σ is a map from F ∪M to F ∪M that commutes with the
connectives and modal operator and such that σ[F] ⊆ F and σ[M] ⊆M. Sub
is the set of all substitutions.

A sequent calculus is a set of rules, which are expressions of the form

S1 S2 . . . Sn
S0

R
(1)

for some meta-sequents S0, S1, . . . , Sn. A rule is also called an axiom in case
there are no premisses, so that it consists of a single meta-sequent. Thus axioms
are considered to be special instances of rules.

For any substitution σ, the inference

σS1 σS2 . . . σSn
σS0

σR

is an instance of R. Throughout this paper we denote schematic rules by R

and instances of rules by R. Sets of rules are denoted by R, and Rins denotes
the set of instances of rules in R. We use the same symbols for axioms but it
will always be clear from the context, explicitly stated or immaterial whether
the rule is an axiom or not.
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As is often done implicitly in papers on sequent calculi, we will from now
on confuse the meta-level with the object-level by omitting overscores and the
word “meta”, trusting that it will always be clear from the context (or does
not matter) on which level we are. For example, an axiom such as Γ , p⇒ p,∆
will simply be written as Γ, ϕ⇒ ϕ,∆.

Sometimes rules come with side conditions, which formally are conditions
on the substitutions that are allowed. For example, an axiom Γ, ϕ⇒ ϕ,∆ could
have the side condition that for ϕ only atoms may be substituted. Also in this
case we follow common procedure, by writing such an axiom as Γ, p⇒ p,∆.

For R as in (1) and for any meta-sequent S, R(S) denotes the rule

S · S1 S · S2 . . . S · Sn
S · S0

R(S)

For instances R and sequents S, R(S) is defined similarly.
A rule is backwards applicable to a sequent S when there is at least one

instance of the rule with S as the conclusion. An instance of a rule is backwards
applicable to S if its conclusion is S. A sequent is free if it is not the conclusion
of any instance of any rule and it is not an instance of any axiom.

When a logic L given by a consequence relation `L has a sequent calculus
with respect to which it is sound and complete, then we assume that the
consequence relation is such that for every instance S1 . . . Sn/S0 of a rule in
the calculus, I(S1), . . . , I(Sn) `L I(S0) holds.

By `RCPC we denote the smallest consequence relation containing R and
such that ϕ1, . . . , ϕn `RCPC ψ holds whenever ψ or (

∧
ϕi → ψ) hold in CPC.

2.2 Focussed rules

A rule R that is not an axiom is focussed if there are meta-sequents S1, . . . , Sn,
a meta-sequent S0 consisting of exactly one meta-formula that is not an atom,
and a meta-sequent S = (Γ ⇒ ∆) for two distinct meta-multisets Γ and ∆
that do not occur in the Si, such that R is the rule

S · S1 S · S2 . . . S · Sn
S · S0

R

The rule is a right rule in case Sa0 is empty and a left rule otherwise.
An axiom is focussed if it is either of the form (Γ, r ⇒ r,∆) or (Γ,⊥ ⇒ ∆)

or (Γ ⇒ >, ∆). Thus when we speak of a focussed rule, this either means a
focussed rule that is not an axiom, or a focussed axiom. A calculus is focussed
if every rule in it is focussed.

Typical focussed rules are the left and right rules of many Gentzen calculi.
The right conjunction rule

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆ (2)

is clearly focussed, as one can take (Γ ⇒ ∆) for S, (⇒ ϕ ∧ ψ) for S0 and
(⇒ ϕ) and (⇒ ψ) for S1 and S2, respectively.
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2.3 Terminating calculi

A calculus is defined to be a collection of axioms and rules. If G is a calculus,
`G S denotes that sequent S is derivable in G. G is closed under weakening if
whenever a sequent S is derivable, the sequent S ·S′ is derivable for any sequent
S′. It is terminating if it is finite and for all sequents S and rules in the calculus
there are at most finitely many instances of the rule backwards applicable to
S, and there is a well-founded order ≺ on sequents such that in every rule of
the calculus the premisses come before the conclusion in this order, all proper
subsequents of a sequent come before that sequent, (Γ ⇒ ) ≺ (2Γ ⇒ ) and
(⇒ Γ ) ≺ (⇒ 2Γ ) for any multiset Γ , and no sequent comes before the empty
sequent.

A typical example of a rule that in general cannot belong to a terminating
calculus is the cut rule, as there can be infinitely many instances of the rule
with the same conclusion. We will see that many standard cut-free calculi for
modal logic are terminating.

All calculi in this paper are assumed to derive at least all sequents for
which the interpretation holds in classical propositional logic.

2.4 Partitions

The method to construct uniform interpolants that we are going to develop
uses partitions of sequents and rules. A partition of a sequent S is an ordered
pair (Sr, Si) (i for interpolant, r for rest) such that S = Sr · Si, where =
denotes equality on multisets. It is a p-partition if p does not occur in Sr. It
is trivial if Sr is the empty sequent, and whence Si = S.

A (p-)partition pt(R) of a rule

S1 . . . Sn
S0

R

is an expression of the form

Sr1 · Si1 . . . Srn · Sin
Sr0 · Si0

pt(R)

where (Srj , S
i
j) is a (p-)partition of Sj . The (p-)partitions (Sr1 , S

i
1), . . . , (Srn, S

i
n)

of the premisses of R are said to R-correspond to (Sr0 , S
i
0) under pt.

The way the partition of a rule is denoted above is slightly ambiguous.
Although S · S′ is equal to S′ · S as a sequent, in denoting the partition of a
rule as is done above, S · S′ refers to the partition (S, S′) of sequent S · S′,
while S′ · S refers to the partition (S′, S) of the same sequent S · S′. We allow
this ambiguity in order to keep the notation of partitions of rules simple.

For ? ∈ {i, r} the rule R? is defined as

S?1 . . . S?n
S?0

R?
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Note that for every p-partition of S0 there exists at least one p-partition of R
that partitions S0 in exactly the same way, for example by choosing for the
Sri (i > 0) the empty sequents.

2.5 Rank

Given an order ≺ on sequents we define another order, the rank, on Fex as
follows. We first associate the following set of formulas with a formula. Given
a formula ϕ in Fex, let qf(ϕ) be the multiset consisting of all occurrences of
subformulas of the form QpS in ϕ. The order on multisets of the form qf(ϕ)
is in the style of [2]: qf(ϕ) ≺qf qf(ψ) iff qf(ϕ) is the result of replacing one or
more formulas of the form QpS in qf(ψ) by zero or more formulas of the form
QqS′ with S′ ≺ S. This order is well–defined since by definition such S are
sequents in L, to which ≺ applies.

The order on Fex, that we will also denote with ≺, is defined by cases. If
ϕ,ψ ∈ F, then ϕ ≺ ψ iff (⇒ ϕ) ≺ (⇒ ψ). If ϕ ∈ F and ψ 6∈ F, then ϕ ≺ ψ
holds and ψ ≺ ϕ does not. If ϕ,ψ 6∈ F, then ϕ ≺ ψ holds if qf(ϕ) ≺qf qf(ψ).
When ϕ ≺ ψ, we say that ϕ is of lower rank than ψ. Clearly, if the order ≺
on sequents is well–founded, then so is the order ≺ on Fex.

3 Uniform interpolants

Let R be a terminating calculus. Recall that Rins denotes the set of instances
of rules in R. A universal interpolant assignment for R, assigns, for every atom
p, sequent S in L and for every R being either ∅ or an instance of a rule in R
backwards applicable to S, to the expression ∀RpS a formula in Fex that is of
lower rank than ∀pS. For free sequents S the interpolant assignment assigns
formulas in Fex of lower rank than ∀pS to expressions ∀∅pS.

If ϕ is the formula chosen for ∀RpS, then we write ∀RpS∼0ϕ. We define an
equivalence ∼ on formulas in Lex that is the smallest equivalence relation that
commutes with the connectives and modal operator and furthermore satisfies:

∀pS ∼

{
∀∅pS if S is free

∀atpS
∨
{∀RpS | R ∈ Rins backwards applicable to S} if S is not free.

The first disjunct is defined as

∀atpS ≡def I({q ∈ Sa | q 6= p} ⇒ {q ∈ Ss | q 6= p}).

Observe that there could be more than one instance of a single rule R which
has S as a conclusion, in which case every instance corresponds to a separate
disjunct of the interpolant.

Remark 1 Because of the definition of universal interpolant assignments, for
every sequent S minimal in order ≺, the formula assigned to ∀pS belongs to
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L. Therefore one can show by induction along ≺ that for every sequent S and
atoms p1 . . . pn there exists a formula in L denoted by p∀p1 . . . pnSq such that
∀p1 . . . pnS ∼ p∀p1 . . . pnSq.

Example 1 Suppose the calculus only contains the rule R for conjunction on
the right as given in (2) and there exists an ordering in which sequents with
more connectives come after sequents with less connectives. Let S be the se-
quent (⇒ ϕ1 ∧ψ1, ϕ2 ∧ψ2) and Ri stand for the instance of R with ϕi ∧ψi as
the main formula. By the above definition,

∀pS ∼ ∀R1p S ∨ ∀R2p S

Let Sϕ1
= (⇒ ϕ1, ϕ2 ∧ ψ2) and Sψ1

= (⇒ ψ1, ϕ2 ∧ ψ2), and similarly for
Sϕ2

and Sψ2
. The standard interpolant assignment introduced below, assigns

∀pSϕ1
∧ ∀pSψ1

to ∀R1p S and ∀pSϕ2
∧ ∀pSψ2

to ∀R2p S. This implies that

∀pS ∼ ∀atpS ∨ (∀pSϕ1
∧ ∀pSψ1

) ∨ (∀pSϕ2
∧ ∀pSψ2

).

3.1 The interpolant properties

A given formula ϕ in F has uniform interpolants if for every atom p there exist
two formulas in F, denoted ∀pϕ and ∃pϕ, such that for all ψ not containing p:

` ψ → ϕ ⇔ ` ψ → ∀pϕ ` ϕ→ ψ ⇔ ` ∃pϕ→ ψ.

Given a formula ϕ, its universal uniform interpolant with respect to p1 . . . pn is
∀p1 . . . pn(⇒ ϕ), which we write as ∀p1 . . . pnϕ. As we only consider classical
logics we can take ¬∀¬ for ∃ and the above is equivalent to

` ∀pϕ→ ϕ ` ψ → ϕ ⇒ ` ψ → ∀pϕ. (∀)

Because in this paper we express most results in terms of universal inter-
polants, we usually omit the word universal and just speak of uniform inter-
polants.

A logic has uniform interpolation if all its formulas have uniform inter-
polants. This is equivalent to the statement that for every atom p and for any
set of atoms P not containing p, the embedding of F(P) into F(P ∪ {p}) has
a right and a left adjoint.

As will be shown in Lemma 1, in the approach via sequents, (∀) is replaced
by the following requirements, the interpolant properties.

(∀l) for all p: ` Sa,∀pS ⇒ Ss;
(∀r) for all p: ` Sr · (⇒ ∀pSi) if S is derivable and Sr does not contain p.

A calculus G has uniform interpolation if (∀l) and (∀r) hold, where ` de-
notes `G.

Property (∀l) is the independent (from partitions) interpolant property, and
(∀r) is the dependent interpolant property. For every such property and any
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R ∈ Rins ∪ {∅}, the R-variant is the result of replacing quantifier ∀p in the

property by ∀Rp . A partition (Sr, Si) of S satisfies the interpolant properties
if, in the case of the independent property, S satisfies it (in which case we also
say that S satisfies it), and in case of the dependent property, it holds for that
particular partition. A sequent satisfies a property if every possible partition
of the sequent satisfies it.

Remark 2 Observe that the independent interpolant property holds for a se-
quent S if and only if the R-variant of the independent interpolant property
holds for all R backwards applicable to S and the independent interpolant
property in which ∀p is replaced by ∀atp holds. If the R-variant of the depen-

dent interpolant property holds for partition (Sr, Si) for at least one R that
is backwards applicable to Si, then the property holds for (Sr, Si).

Lemma 1 If all sequents satisfy the interpolant properties, then L has uniform
interpolation.

Proof We have to show that (∀) holds. Consider S = (⇒ ϕ). Hence ∀pϕ = ∀pS
by definition. By (∀l), ` I(∀pϕ⇒ ϕ), that is, ∀pϕ→ ϕ is derivable.

Consider a ψ not containing p such that ` ψ → ϕ. Let S = (ψ ⇒ ϕ)
and consider the partition (Sr, Si), where Sr = (ψ ⇒ ) and Si = (⇒ ϕ).
Hence ∀pϕ = ∀pSi by definition. And ` (ψ ⇒ ) · (⇒ ∀pϕ) by (∀r). Therefore
(ψ → ∀pϕ) is derivable.

A fact that we will often be used is that all free sequents satisfy the de-
pendent interpolant properties.

3.2 Soundness

In order to divide the proof of the main theorems in separate parts we introduce
the following three properties of rules R.

(IP)R {Sj · (∀pSj ⇒ ) | 1 ≤ j ≤ n} ` S0 · (∀RpS0 ⇒ ) for every instance
R = S1 . . . Sn/S0 of R.

(DPB)R For every instance S1 . . . Sn/S0 of R and every p–partition (Sr0 , S
i
0) of

S0 such that R is backwards applicable to Si0, there exists a partition

of R such that {Srj · (⇒ ∀pSij) | 1 ≤ j ≤ n} ` Sr0 · (⇒ ∀
R
pSi0), where

R is an instance of R with conclusion Si0.
(DPN)R For every instance S1 . . . Sn/S0 of R and every p–partition (Sr0 , S

i
0)

of S0 such that Si0 is not empty and R is not backwards applicable
to Si0, if all sequents lower than S0 satisfy the interpolant properties,
then the sequent Sr0 · (⇒ ∀pSi0) is derivable.

((IP) stands for independent property, (DP) for dependent property, B for back-
wards.)

(FP) If S is free and all sequents lower than S satisfy the interpolant proper-
ties, then S satisfies the independent interpolant property.
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An interpolant assignment is sound for a given calculus if (FP) holds and
(IP)R, (DPB)R and (DPN)R hold for every rule R in the calculus.

Since free sequents trivially satisfy the dependent interpolant property, this
seems to suggest that one could always take ⊥ for the interpolant assignment
of free sequents. Free sequents do, however, also play a role in the dependent
interpolant property, because the partition of a sequent might be such that Si

is a free sequent. Therefore this simple interpolant assignment for free sequents
might not always be possible.

Lemma 2 If a logic L has a terminating calculus that is closed under weaken-
ing and for which there exists a sound interpolant assignment, then all sequents
satisfy the interpolant properties.

Proof We have to show that under the assumptions in the lemma, the in-
terpolant properties hold for any p–partition (Sr, Si) of any sequent S. Free
sequents satisfy the dependent property in a trivial way, as they are not deriv-
able. Therefore, using Remark 2, it suffices to show that for any sequent S and
any p-partition (Sr, Si) of S:

1. ` Sa,∀atpS ⇒ Ss if S is not free,

2. ` Sa,∀RpS ⇒ Ss for all R backwards applicable to S, if S is not free,
3. ` Sr · (⇒ ∀pSi) in case S is derivable,
4. S satisfies the independent interpolant property if S is free.

For 1, note that in case ∀atpS is empty, 1 clearly holds. Therefore assume

∀atpS is not empty, say it is of the form
∧
qi →

∨
rj , where the disjunct or

conjunct may be empty, but not both. Then Sa,∀atpS ⇒ Ss is clearly derivable.
Statements 2 and 3 are proved by induction on the well-founded order ≺

on Fex defined in Section 2.5. Recall that in every rule of the calculus the
premisses come before the conclusion in this order, and all proper subsequents
of a sequent come before that sequent.

Sequents S that are not free and minimal in the order have to be axioms.
Thus 2 follows from (IP)R as the set corresponding to the premisses is empty
since an axiom has no premisses. For 3, since S is minimal in the order, Si = S
or Si is the empty sequent. In the first case, for the same reason as in the case
of (IP)R, property (DPB)R implies that ` Sr · (⇒ ∀RpSi). In the last case,
because Sr = S and S is derivable, also the weakening Sr · (⇒ ∀pSi) is
derivable. Hence 3 holds.

For the induction step, assume that all sequents lower than S satisfy the
interpolant properties. For 2, consider an instance R = (S1 . . . Sn/S) of a
rule. The induction hypothesis implies that the interpolant properties hold for
S1, . . . , Sn. Therefore 2 follows from (IP)R. For 3, assume that S is derivable
and let R be a rule or axiom that is backwards applicable to S, and consider
a partition (Sr, Si) of S and a corresponding partition of R. In case Si is the
empty sequent, Sr = S and 3 clearly holds. Thus assume Si is not empty. In
case R is backwards applicable to Si, then 3 follows from (DPB)R. In case R

is not backwards applicable to Si, (DPN)R applies.
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Finally, 4 is proved by induction to ≺. If S is minimal in the ordering, then
it satisfies the independent interpolant property by (FP). In the induction step
we assume that all sequents lower than S satisfy the interpolant properties.
Hence we can apply (FP) again to show that the independent interpolant
property holds for S.

Theorem 1 If a logic L has a terminating calculus that is closed under weak-
ening and for which there exists a sound interpolant assignment, then L has
uniform interpolation.

Proof This follows from Lemma 1 and Lemma 2.

4 Standard assignments for propositional logic

In this section we define a specific universal interpolant assignment for propo-
sitional logic inspired by Pitts’ method. It is proved to be sound for focussed
axioms and rules.

For an instance
S1 S2 . . . Sn

S0
R

of a n-premiss rule the standard universal interpolant assignment is

∀RpS0 ∼0 ∀pS1 ∧ ∀pS2 ∧ . . . ∧ ∀pSn.

If all instances of a schematic rule R have a standard interpolant assignment,
then the interpolant assignment for R is standard.

For instances R of focussed axioms consisting of sequent S, the standard
interpolant assignment is defined as

∀RpS ∼0 >.

For free sequents S the standard interpolant assignment is

∀∅pS ≡def ({ϕ ∈ Sa | ϕ does not contain p} ⇒ {ψ ∈ Ss | ψ does not contain p}).

We fix a partitioning of instances R of focussed rules R with the property that
if R is backwards applicable to (S · S0)i, then Ri is an instance of R and if R
is not backwards applicable to (S ·S0)i, then Rr is an instance of R. Therefore
we define a partition pt(R)

((S · S1)r, (S · S1)i) . . . ((S · Sn)r, (S · Sn)i)

((S · S0)r, (S · S0)i)
pt(R)

of an instance (S · S1), . . . , (S · Sn)/(S · S0) of a focussed rule to be standard
if for all 1 ≤ j ≤ n:

(S · Sj)i =

{
(Si · Sj) if (S · S0)i = Si · S0 for some Si ⊆ S
(S · S0)i otherwise.
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(S ·Sj)r is defined to be the unique sequent such that ((S ·Sj)r, (S ·Sj)i) is a
partition of (S ·Sj). If the first case in the definition of (S ·Sj)i does not apply,
then as S0 contains exactly one formula, S0 ⊆ (S · S0)r and (S · S0)i ⊆ S.
Therefore

(S · Sj)r =

{
(S · S0)r if (S · S0)i = Si · S0 for some Si ⊆ S
(Sr · Sj) if (S · S0)r = Sr · S0 for some Sr ⊆ S.

Example 2 Consider the following instance R of the rule R for conjunction on
the right:

Γ ⇒ ϕ1, ∆ Γ ⇒ ϕ2, ∆

Γ ⇒ ϕ1 ∧ ϕ2, ∆

Thus S0 = (⇒ ϕ1 ∧ ϕ2), Sj = (⇒ ϕj) for j = 1, 2 and S = (Γ ⇒ ∆).
We will describe two standard partitions of the rule, one corresponding to the
first case in the definition above and the other to the second. First, consider
partition (Sr0 , S

i
0) of the conclusion S0, where (S · Sj)i = (⇒ ϕ1 ∧ ϕ2). From

S0 ⊆ (S · Sj)i it follows that (S · Sj)i = (⇒ ϕj) for j = 1, 2 and Srj = S for
j = 0, 1, 2.

Second, assume ∆ 6= ∅ and the formula in S0 does not occur in ∆, and
consider partition (Sr0 , S

i
0) of S0, where (S · S0)i = (⇒ ∆). Thus (S · S0)r =

((Γ ⇒ ) · S0). As S0 6⊆ (S · S0)i, (S · Sj)i = Si for j = 0, 1, 2, (S · S0)r = (Γ ⇒
ϕ1 ∧ ϕ2), and (S · Sj)r = (Γ ⇒ ϕj) for j = 1, 2.

Observe that in the first case Ri is an instance of R, and in the second case
Rr is. Generalising this gives the following lemma.

Lemma 3 For any instance R =
(
(S · S1) . . . (S · Sn)/(S · S0)

)
of a focussed

rule R with a standard partition, either S0 ⊆ (S · S0)i and Ri is an instance
of R or S0 ⊆ (S · S0)r and Rr is an instance of R.

4.1 Properties of focussed rules

Lemma 4 For any instance S1 . . . Sn/S0 of a focussed rule and any formulas
ϕ1, . . . , ϕn:

{Sj · (ϕj ⇒ ) | j = 1, . . . , n} `RCPC S0 · (
n∧
j=1

ϕj ⇒ ).

Proof Clearly, {S1, . . . , Sn} `RCPC S0. Let S = (
∧n
j=1 ϕj ⇒ ). Since R is fo-

cussed, we have {S · S1, . . . , S · Sn} `RCPC S · S0. Since Sj · (ϕj ⇒ ) `RCPC Sj · S,
the desired follows.

Lemma 5 For all formulas ϕ1, . . . , ϕn and any partition (Sr, Si) of the con-
clusion of an instance S1 . . . Sn/S of a focussed rule R which is backwards
applicable to Si:

{Srj · (⇒ ϕj) | j = 1, . . . , n} `RCPC Sr · (⇒
n∧
j=1

ϕj).



Uniform interpolation and sequent calculi in modal logic 13

Proof Consider the standard partition of R. As R is backwards applicable to
Si, Sr = Srj , which immediately implies what we had to show.

Lemma 6 For all sequents S and any standard partition of an instance R =
S1 . . . Sn/S0 of a focussed rule R which is not backwards applicable to Si0:

{Srj · S | j = 1, . . . , n} `RCPC Sr0 · S.

Proof As R is not backwards applicable to Si0, Rr is an instance of R by
Lemma 3, using the standard partition of R. Because the rule R is focussed,
{S · Sr1 , . . . , S · Srn}/S · Sr0 is an instance of R, which is what we had to show.

Lemma 7 For any focussed rule R in any calculus for a logic, (IP)R holds.

Proof Let R = S1 . . . Sn/S0 be an instance of R. Then ∀RpS0 ∼
∧n
j=1 ∀pSj .

Thus by letting ϕj = ∀pSj , Lemma 4 and the fact that `RCPC⊆` can be
applied to obtain (IP)R.

Lemma 8 For any focussed rule R in any terminating calculus with a stan-
dard interpolant assignment, (DPB)R holds.

Proof Consider an instance R = S1 . . . Sn/S of R and let (Sr, Si) be a partition

of S such that R is backwards applicable to Si. If R is an axiom, then ∀RpS ∼ >
and thus ∀pS ∼ >. Similarly for ∀pSi. Therefore (DPB)R clearly holds for
sequents that are instances of axioms. Suppose R is not an axiom. By Lemma 3
for the standard partition of R there is an instance R of R with conclusion
Si and premisses Si1, . . . , S

i
n. Therefore ∀RpSi ∼

∧n
j=1 ∀pSij . Thus by letting

ϕj = ∀pSij , Lemma 5 can be applied to obtain (DPB)R.

Lemma 9 For every instance S1 . . . Sn/S0 of a focussed rule R in any termi-
nating calculus with a standard interpolant assignment and every p–partition
(Sr0 , S

i
0) of S0 such that Si0 is not empty and R is not backwards applicable to

Si0:
{Srj · (⇒ ∀pSij) | 1 ≤ j ≤ n} `RCPC Sr0 · (⇒ ∀pSi0).

Proof First consider the case that R is an axiom. If it is of the form (Γ,⊥ ⇒
∆) or (Γ ⇒ >, ∆), then the fact that Si0 is not instance of it implies that
Sr0 · (⇒ ∀pSi0) is an instance of the axiom, and we are done. If it is of the form
(Γ, q ⇒ q,∆), then q 6= p. For if q = p, as Sr0 does not contain p, (q ⇒ q)
would be a subsequent of Si0, quod non. If q ⇒ q is a subsequent of Sr0 , then
Sr0 · (⇒ ∀pSi0) is an instance of the axiom, and we are done again. Therefore
consider the case that q ⇒ q is neither a subsequent of Si0 nor of Sr0 . If Si0 is
free, the standard interpolant assignment implies that `RCPC Sr0 · (⇒ ∀pSi0). If
Si0 is not free, it suffices to prove that `RCPC Sr0 · (⇒ ∀atpSi0), which follows from

the fact that Sr0 · (⇒ ∀atpSi0) contains the sequent q ⇒ q.
The case that R is not an axiom remains. By Lemma 6, the fact that R

is not backwards applicable to Si0 implies that for any standard partition and
any sequent S: {S · Srj | j = 1, . . . , n} `RCPC S · Sr0 . Lemma 3 implies that

Si0 = Sij , and thus (⇒ ∀pSij) = (⇒ ∀pSi0) for all j = 1, . . . , n, from which the
lemma follows.
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Lemma 10 For any focussed rule R in any terminating calculus with a stan-
dard interpolant assignment, (DPN)R holds.

Proof By Lemma 9.

Lemma 11 In any terminating calculus with a standard interpolant assign-
ment (FP) holds.

Proof Let S be a free sequent. We have to show that S satisfies the independent
interpolant property, that is, that Sa,∀pS ⇒ Ss is derivable. By definition
∀pS = ∀∅pS, where

∀∅pS ∼ I({ϕ ∈ Sa | ϕ does not contain p} ⇒ {ψ ∈ Ss | ψ does not contain p}).

Therefore Sa,∀pS ⇒ Ss is equivalent to a sequent Sa, (
∧
Γ →

∨
∆)⇒ Ss for

some Γ ⊆ Sa and ∆ ⊆ Ss, which is clearly derivable, even if Γ or ∆ is empty.

Theorem 2 A logic L with a terminating calculus in which all rules and ax-
ioms are focussed has uniform interpolation.

Proof First observe that such a calculus is closed under weakening. By Theo-
rem 1 it suffices to prove that the interpolant assignment is sound. This follows
from Lemmas 7, 8, 10, and 11.

4.2 Classical logic

To establish that classical propositional logic has uniform interpolation is not
hard. More generally, it is known that if a logic has interpolation and is locally
tabular1, properties that indeed hold for CPC, then it has uniform interpola-
tion. However, with the methods developed in the previous sections one can
also easily infer that CPC has uniform interpolation from the existence of a
terminating calculus for the logic in which all axioms and rules are focussed.
The propositional part, G3p, of the calculus G3 from [10] which is given in
Figure 4.2 has these properties. It is terminating (using the natural ordering
given by the number of symbols in a sequent) and the axioms and rules are
clearly focussed. The calculus has no structural rules, but they are admissible
in it, as is the cut rule.

1 For any finite set of variables there are only finitely many nonequivalent formulas in
those variables.
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Γ, p⇒ p,∆ At (Γ ∪∆ atoms) Γ,⊥ ⇒ ∆ L⊥

Γ ⇒ ϕ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆ R∧
Γ, ϕ, ψ ⇒ ∆

Γ,ϕ ∧ ψ ⇒ ∆
L∧

Γ ⇒ ϕ,ψ,∆

Γ ⇒ ϕ ∨ ψ,∆ R∨
Γ, ϕ⇒ ∆ Γ,ψ ⇒ ∆

Γ,ϕ ∨ ψ ⇒ ∆
L∨

Γ, ϕ⇒ ψ,∆

Γ ⇒ ϕ→ ψ,∆
R →

Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ,ϕ→ ψ ⇒ ∆
L →

Γ, ϕ⇒ ∆

Γ ⇒ ¬ϕ,∆ R¬
Γ ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆
L¬

Fig. 1 The Gentzen calculus G3p

Theorem 3 Classical propositional logic has uniform interpolation.

Proof By Theorem 2 and the fact that the terminating calculus G3p is sound
and complete for CPC.

Note that for the above result one cannot use the propositional part of
Gentzen’s LK or other calculi that contain the Cut Rule, as such calculi may
not be terminating.

5 Standard assignment for modal logics

In this section we extend the method developed above to modal logic by
extending the class of rules to which Theorem 2 applies. We use the con-
vention that 2S = ({2ϕ | ϕ ∈ Sa} ⇒ {2ψ | ψ ∈ Ss}), implying that
2(Γ ⇒ ) = (2Γ ⇒ ) and 2(⇒ ∆) = (⇒ 2∆).

A focussed rule is defined as before, in Section 2.2, except that it is required
that the formula in S0 is not boxed. A rule R is a focussed modal rule if it is
of the form

2S1 · S0

S2 ·2S1 ·2S0
R

(3)

for certain sequents S0, S1, S2 such that

◦ Sa2 , Ss2 both consist of a meta-multiset;
◦ Sa1 , Ss1 both consist of at most one element, which is a meta-multiset;
◦ Sa0 , Ss0 both consist of meta-multisets and meta–atoms;
◦ S0 contains exactly one meta–atom;
◦ no meta–multiset occurs in S2 · S1 · S0 more than once;
◦ if Sai contains a meta–multiset for i = 0 or i = 1, then the meta–multiset

in Sa2 ranges over multisets of atoms;
◦ if Ssi contains a meta–multiset for i = 0 or i = 1, then the meta–multiset

in Ss2 ranges over multisets of atoms.
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Thus S1 may be empty, but S2 and S0 may not. Note that S2 is of the form
Λ⇒ Θ for two meta-multiset symbols Λ and Θ that do not occur in S1 or S0.
Given a focussed modal rule R, let R+ denote the rule obtained from R by
omitting the last two restrictions about the multisets in S2. In Lemma 21 it is
shown that R+ is not stronger than R. The reason to work with the restricted
rules is to simplify the proofs in this section.

Up to the renaming of meta-symbols there are eight possibilities for S0 and
four for S1. To each possibility corresponds a name, which is a set consisting
of the elements L,l,R,r,W,E, the lower case letters referring to the position of
the atom in S0 and the upper case letters to the presence and position of
the multisets in S0 (left and right) and in S1 (west and east). For brevity we
denote the sets as strings, so that, for example, Lr should be read as {L, r}.

name S0 name S0 name S1

LlR Γ, p⇒ ∆ LrR Γ ⇒ p,∆ ∅ (⇒ )
Ll Γ, p⇒ Lr Γ ⇒ p W (Π ⇒ )
lR p⇒ ∆ rR ⇒ p,∆ E (⇒ Σ)
l p⇒ r ⇒ p WE (Π ⇒ Σ)

The terminology for the 32 focussed modal rules is as follows. Consider a
focussed modal rule as in (3) and let x and y be the names in the list above
for S0 and S1, respectively. Then the name of the rule with this S0 and S1 is
Rx∪y, where x∪ y is again abbreviated as a string. For example, RWlR and RLr

denote the following rules, where the latter is the well-known rule for K.

2Π, p⇒ ∆

Λ,2Π,2p⇒ 2∆,Θ
RWlR

Γ ⇒ p

Λ,2Γ ⇒ 2p,Θ
RLr

RLr is also denoted by RK, and a calculus containing that rule is called normal.
For subsets x, y ⊆ {W, L, l, r,R,E}, Rx is a y-rule if all elements of y occur in x.

The following eight rules are called bad rules: RWlRx and RLrEx, where x
ranges over subsets of {W, L, l, r,R,E}. Note that RK is not a bad rule, and
neither is any rule that does not contain W or E.

As for focussed rules we fix a partition of instances of focussed modal rules,
for which we have to address a small technical detail first. Given the conclusion
of a focussed modal rule S = (S2 ·2S1 ·2S0), we assume that for every formula
in S it is indicated, although we will not explicitly do so, whether it belongs
to S0, S1 or S2. In this way, for any partition (Si, Sr) of S, j = 0, 1, 2 and
x ∈ {i, r}, there exist unique sequents Sxj ⊆ Sj (⊆ defined in Section 2) such
that Sx = Sx2 ·2Sx1 ·2Sx0 . Given this assumption, a partition

((2S1 · S0)r, (2S1 · S0)i)

((S2 ·2S1 ·2S0)r, (S2 ·2S1 ·2S0)i)
pt(R)

of an instance R = (2S1 ·S0/S2 ·2S1 ·2S0) of a focussed modal rule is standard
if for x ∈ {i, r}:

(2S1 · S0)x = 2Sx1 · Sx0 .
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Lemma 12 For any instance R of any focussed modal rule R with a standard
partition, either Ri or Rr (or both) is an instance of R.

Proof In case R is an r-rule, either Sis0 or Srs0 is not empty. In the first case,
Ri is an instance of R and in the second case Rr is. The case of an l-rule is
similar.

Remark 3 The fact that in focussed modal rules (3) the sequent S2 is of the
form (Γ ⇒ ∆) for two meta–multisets Γ and ∆, implies that if S/S′ is an
instance of a focussed modal rule, then so is S/S′ · S′′ for any sequent S′′.

Lemma 13 If R = (Su/S) is an instance of a focussed modal rule R that is
not bad, (Sr, Si) is a partition of S such that R is backwards applicable to Si

and Siu is the premiss of Ri, then one of the following cases hold:

1. Siu/S
i is an instance of R,

2. Siu consists of boxed formulas only,
3. Siu has an empty antecedent and R is an l–rule,
4. Siu has an empty succedent and R is an r–rule.

Moreover, in cases (2)–(4), for any ϕ: Siu · (ϕ⇒ )/Si · (2ϕ⇒ ) is an instance
of R if R is an l–rule and Siu · ( ⇒ ϕ)/Si · ( ⇒ 2ϕ) is an instance of R if R

is an r–rule.

Proof We treat the case that R is an l–rule, the other case is analogous. Thus
R is of the following form, where any of the Π,Γ,∆,Σ may be empty.

2Π,Γ, ϕ⇒ ∆,2Σ

Λ,2Π,2Γ,2ϕ⇒ 2∆,2Σ,Θ

The fact that R is backwards applicable to Si implies that Sia contains some
2ψ ∈ 2Γ ∪ {2ϕ} ∪ 2Π ∪ Λ. In case ψ = ϕ we have, for some partitioning
(Xi, Xr) of each of the multisets Λ,Π, Γ,∆,Σ,Θ:

Si = (Λi,2Πi,2Γ i,2ϕ⇒ 2∆i,2Σi, Θi) Siu = (2Πi, Γ i, ϕ⇒ ∆i,2Σi)
Sr = (Λr,2Πr,2Γ r ⇒ 2∆r,2Σr, Θr) Sru = (2Πr, Γ r ⇒ ∆r,2Σr).

And likewise if ψ ∈ Γ . In these cases Siu/S
i is an instance of R, thus 1. holds.

If this is not the case, then Sia contains no formula in 2Γ ∪ {2ϕ} but
there is a 2ψ ∈ Sia∩ (2Π ∪Λ). In case ψ ∈ Π, we have, for some partitioning
(Xi, Xr) of each of the multisets Λ,Π,∆,Σ,Θ with ψ ∈ Πi:

Si = (Λi,2Πi ⇒ 2∆i,2Σi, Θi) Siu = (2Πi ⇒ ∆i,2Σi)
Sr = (Λr,2Πr,2Γ,2ϕ⇒ 2∆r,2Σr, Θr) Sru = (2Πr, Γ, ϕ⇒ ∆r,2Σr).

The only way in which Siu does not consist of boxed formulas is if ∆i is not
empty, and whence R is an R–rule. Thus it is an WlR–rule, since Π 6= ∅.
But this cannot be since R is not a bad rule. Hence this case cannot occur
and Siu consists of boxed formulas only, which gives 2. It also implies that
Siu = (2Πi ⇒ 2Σi) and Si = (Λi,2Πi ⇒ 2Σi, Θi). Therefore, for any ϕ,
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Siu · (ϕ ⇒ )/Si · (2ϕ ⇒ ) is an instance of R, which proves that the second
part of the lemma holds.

If Sia contains no formula in 2Γ ∪ {2ϕ} ∪2Π but contains a 2ψ ∈ Λ, we
have, for some partitioning (Xi, Xr) of each of the multisets Λ,∆,Σ,Θ with
2ψ ∈ Λi:

Si = (Λi ⇒ 2∆i,2Σi, Θi) Siu = (⇒ ∆i,2Σi)
Sr = (Λr,2Π,2Γ,2ϕ⇒ 2∆r,2Σr, Θr) Sru = (2Π,Γ, ϕ⇒ ∆r,2Σr).

Thus this is the case in which the antecedent of Siu is empty and for all ϕ,
Siu · (ϕ⇒ )/Si · (2ϕ⇒ ) is an instance of R. Hence case 3 and the second part
of the lemma hold.

We use the abbreviations fc and fcm for focussed and focussed modal, re-
spectively. We will only consider terminating calculi, so that the number of
disjuncts in the definitions below is finite.

∀frpS ∼0


∀∅pS if S is free and contains a nonboxed formula
2∀pS′ if S is free, S = 2S′ and Sa = ∅
¬2¬∀pS′ if S is free, S = 2S′ and Ss = ∅
⊥ otherwise.

∀fcpS ∼0 ∀atpS
∨
{∀RpS | R an instance of a fc rule with conclusion S}.

For an instance R of a focussed modal rule R backwards applicable to S, define

∀RpS ∼0

{
2∀pSu if R = Su/S and R is a r–rule
¬2¬∀pSu if R = Su/S and R is a l–rule.

For a focussed modal l–rule R backwards applicable to S, define

∀RpS ∼0

∨
{2∀pSiu | for some standard p–partition Sru · Siu/Sr · Si of an

instance of R with S = Si and Siu ≺ S and R not

applicable to Siu}.

For a focussed modal r–rule R backwards applicable to S, define

∀RpS ∼0

∨
{¬2¬∀pSiu | for some standard p–partition Sru · Siu/Sr · Si of an

instance of R with S = Si and Siu ≺ S and R not

applicable to Siu}.

For a focussed modal l–rule R not backwards applicable to S, define

∀RpS ∼0

∨
{2∀pSiu | for some standard p–partition Sru · Siu/Sr · Si of an

instance of R with S = Si and Siu ≺ S}.
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For a focussed modal r–rule R not backwards applicable to S, define

∀RpS ∼0

∨
{¬2¬∀pSiu | for some standard p–partition Sru · Siu/Sr · Si of an

instance of R with S = Si and Siu ≺ S}.

In case the calculus contains no WLr-rules or lRE-rules, then define

∀fcmpS ∼0

∨
{∀RpS | R an instance of a fcm rule with conclusion S} ∨∨
{∀RpS | R a fcm rule backwards applicable to S} ∨∨
{∀RpS | R a fcm rule not backwards applicable to S}.

And otherwise define

∀fcmpS ∼0 ∀empS ∨∨
{∀RpS | R an instance of a fcm rule with conclusion S} ∨∨
{∀RpS | R a fcm rule backwards applicable to S} ∨∨
{∀RpS | R a fcm rule not backwards applicable to S},

where

∀empS ∼0



∨
{¬2¬∀p(Γ ⇒ ) | (2Γ ⇒ ) ⊆ S} if the calculus contains a

WLr-rule.∨
{2∀p(⇒ ∆) | (⇒ 2∆) ⊆ S} if the calculus contains an

lRE-rule.
⊥ otherwise.

The standard assignment in this modal setting is defined as ∀pS ∼0 > if S
is an axiom, and in all other cases:

∀pS ∼0 ∀frpS ∨ ∀fcpS ∨ ∀fcmpS.

Because in the case of focussed modal rules, the uniform interpolants have
become more complicated, we need to reformulate the sufficient conditions for
uniform interpolation in the following way. Given a calculus and an interpolant
assignment, we distinguish three properties.

(IP) If S is not free and all sequents lower than S satisfy the interpolant
properties, then S satisfies the independent interpolant property.

(DPB) If all sequents lower than S satisfy the interpolant properties and S
has a derivation which last inference is an instance of a rule R, then
for every partition (Sr, Si) of S such that Si is not empty and R is
backwards applicable to Si, the dependent interpolant property holds.

(DPN) If all sequents lower than S satisfy the interpolant properties and S
has a derivation which last inference is an instance of a rule R, then
for every partition (Sr, Si) of S such that Si is not empty and R is
not backwards applicable to Si, the dependent interpolant property
holds.
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Property (IP) holds if it holds for all sequents S, and similarly for (DPB)
and (DPN). As in Lemma 2 it is not hard to show that the above properties
are sufficient for having uniform interpolation:

Lemma 14 If a logic L has a terminating calculus for which there exists an
interpolant assignment such that (IP), (DPB), (DBN) and (FP) hold, then all
sequents satisfy the interpolant properties.

5.1 Properties of focussed modal rules

In the following lemmas,

2S1 · S0

S2 ·2S1 ·2S0
R

(4)

will always be an instance of a focussed modal rule R, and Su = 2S1 · S0

denotes the upper sequent and Sl = S2 ·2S1 ·2S0 the lower sequent of R.

One of the properties that we use to prove that our calculi have uniform
interpolation is that of being balanced. Given a calculus, a rule Rrx or Rlx is
covered if the calculus contains an Lrx-rule or an lRx-rule. A calculus is balanced
if it does not contain bad rules, every rule is covered, and if it contains a Wr-
rule or an lE-rule, that is the only modal rule it contains. Observe that this
implies that if a balanced calculus contains a Wr-rule or an lE-rule, it is the
unique modal rule in the calculus and a WLr–rule or an lRE–rule, respectively.

Lemma 15 If (Su/Sl) is an instance of a focussed modal r-rule R in a bal-
anced calculus, then Su · (ϕ⇒ ) ` Sl · (2ϕ⇒ ) for any formula ϕ.

Proof As the calculus is balanced, R = Rxr is covered, meaning that the cal-
culus contains an Lxr-rule or an lRx-rule. If the calculus contains an Lxr-rule,
then it can be applied to Su · (ϕ ⇒ ) to obtain Sl · (2ϕ ⇒ ). If the calculus
does not contain an Lxr-rule, then R is not an L-rule, and thus Sa0 is empty.
Therefore the lRx-rule can be applied to Su · (ϕ⇒ ) to obtain Sl · (2ϕ⇒ ).

Lemma 16 If (Su/Sl) is an instance of a focussed modal l-rule R in a balanced
calculus for a logic, then Su · (ϕ⇒ ) ` Sl · (¬2¬ϕ⇒ ) for any formula ϕ.

Proof As logics contain CPC by assumption, Su · (ϕ⇒ ) ` Su · (⇒ ¬ϕ). As the
calculus is balanced, R = Rlx is covered, meaning that the calculus contains
an lRx-rule or an Lrx-rule. In the first case, the lRx-rule can be applied to
Su · (⇒ ¬ϕ) to obtain Sl · (⇒ 2¬ϕ). This last sequent derives the desired
Sl · (¬2¬ϕ ⇒ ). In the second case, R is not an R–rule, thus Ss0 is empty.
Therefore the Lrx-rule can be applied to Su · (⇒ ¬ϕ) to obtain Sl · (⇒ 2¬ϕ).

Lemma 17 In any balanced terminating calculus consisting of focussed and
focussed modal rules (IP) holds.
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Proof If S is an axiom, it is derivable and has to be focussed, and is there-
fore closed under weakening at the left. The independent interpolant property
follows from this. Therefore assume S is not an axiom and not free. We have
to show, under the assumption that all sequents ≺–lower than S satisfy the
interpolant properties, that

` Sa,∀frpS ⇒ Ss ` Sa,∀fcpS ⇒ Ss ` Sa,∀fcmpS ⇒ Ss.

This means that for every disjunct χ of ∀frpS, ∀fcpS and ∀fcmpS we have to
prove that

` Sa, χ⇒ Ss. (5)

First consider a disjunct χ of ∀fcpS. Thus χ = ∀atpS or χ = ∀RpS for an instance
R of a focussed rule. The first case is treated as in the proof of Lemma 2, and
the second case as in the proof of Lemma 7, using the assumption that the
premisses of R satisfy the interpolant properties.

Next suppose χ is a disjunct of ∀frp. Since S is not free, χ = ⊥ and (5)
trivially holds. The case that χ is a disjunct of ∀fcmpS remains. We distinguish
the following four cases.

First, we consider disjuncts χ of ∀empS. The case that χ = ⊥ is trivial. We
treat the case that χ = ¬2¬∀p(Γ ⇒ ), where (2Γ ⇒ ) ⊆ S and the calculus
contains a WLr-rule R. The disjuncts of ∀empS of the form 2∀p(⇒ ∆) can
be treated in a similar way. As ` Γ ⇒ ¬∀p(Γ ⇒ ) and R is an Lr-rule, it can
be applied to Γ ⇒ ¬∀p(Γ ⇒ ) to obtain ` Sa ⇒ 2¬∀p(Γ ⇒ ), Ss. This gives
` Sa, χ⇒ Sswhich is what had to be shown.

Second, suppose χ = 2∀pSu, S = Sl and Su/Sl is an instance of a fcm
r–rule. Thus ` Su · (∀pSu ⇒ ) by assumption. Lemma 15 implies (5). The case
χ = ¬2¬∀pSu, where S = Sl and Su/Sl is an instance of a fcm l–rule, follows
in a similar way from Lemma 16.

Third, χ = ¬2¬∀pSu, where Su ≺ S and for some fcm r–rule R that is
backwards applicable to S there are sequents S′, S′u such that S′u · Su/S′ · S
is a standard p–partition of an instance of R and R is not applicable to Su.
This implies that ` Su · (∀pSu ⇒ ), and thus ` Su · ( ⇒ ¬∀pSu). As Su/S is
not an instance of R, ` S · ( ⇒ 2¬∀pSu) holds by Lemma 13, which is what
had to be shown. The case that χ is of the form 2∀pSu and R is a fcm l–rule
backwards applicable to S is similar.

In the fourth case, χ = 2∀pSu, where Su ≺ S and for some fcm l–rule
R that is not backwards applicable to S there are sequents S′u, S

′ such that
S′u · Su/S′ · S is a standard p–partition of an instance of R. We have ` Su ·
(∀pSu ⇒ ) because (IP) holds for Su. As Su/S is not an instance of R, it
follows from Lemma 13 that ` S · (2∀pSu ⇒ ), which gives (5). The case that
χ is of the form ¬2¬∀pSu and R is a fcm r–rule not backwards applicable to
S is similar.

Lemma 18 In any balanced terminating calculus consisting of focussed and
focussed modal rules (DPB) holds.
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Proof Since axioms receive > as interpolant assignment, (DPB) holds for ax-
ioms. Therefore consider a sequent S that is not an axiom, that has a derivation
which last inference is an instance R of a rule R. Let (Sr, Si) be a p–partition
of S such that Si is not empty and R is backwards applicable to Si. We have
to show that

` Sr · (⇒ ∀pSi). (6)

For focussed rules the proof of (6) is similar to the proof of Lemma 8. Therefore
suppose R is a focussed modal rule, R = Su/S, and R is backwards applicable
to Si and consider the standard p–partition of R. By the assumption that all
sequents lower than S satisfy the interpolant properties, ` Sru · (⇒ ∀pSiu).

First, suppose Siu/S
i is an instance of R. Thus 2∀pSiu is a disjunct of ∀pSi

if R is an r-rule and ¬2¬∀pSiu is a disjunct of ∀pSi if R is an l-rule. Since
` Sru · (⇒ ∀pSiu), for (6) it therefore suffices to show that

Sru · (⇒ ∀pSiu) ` Sr · (⇒ 2∀pSiu) if R is an r-rule,
Sru · (⇒ ∀pSiu) ` Sr · (⇒ ¬2¬∀pSiu) if R is an l-rule.

If R is an r-rule, there are three possibilities: (1) R is an R-rule, (2) R is not
an R-rule but it is a E–rule and Srsu consists of boxed formulas only, (3) R is
not an R-rule and not a E–rule and Srsu is empty. In all three cases R can be
applied to Sru · (⇒ ∀pSiu) to obtain Sr · (⇒ 2∀pSiu).

We turn to the case that Siu/S
i is not an instance of R. We distinguish

according to cases 2–4 in Lemma 13, one of which has to hold, and use the
notation from the proof of that lemma.

2. We start with the case that Siu consists of boxed formulas only. We only
treat the case that R is an l–rule, say R = Rlx, the other case being similar.
Thus we have

Si = (Λi,2Πi ⇒ 2Σi, Θi) Siu = (2Πi ⇒ 2Σi)
Sr = (Λr,2Πr,2Γ,2ϕ⇒ 2∆,2Σr, Θr) Sru = (2Πr, Γ, ϕ⇒ ∆,2Σr).

If Π 6= ∅, then R is a Wl–rule, and as every rule is covered the calculus contains
a WlR–rule or a WLr–rule. Since the first rule is bad, the second rule has to
be present. But that contradicts the fact that if a WLr–rule is present it is the
unique fcm rule. This proves that Π = ∅, and thus Siau = ∅. As Siu is not
empty, R is an lE–rule, and thus the only modal rule, because the calculus is
balanced. Observe that whence all disjuncts of ∀pSiu are boxed formulas or ⊥,
so ∀pSiu is equivalent to a formula

∨n
i=1 2ϕi. Hence ` Sru · (⇒ 2ϕ1, . . . ,2ϕn).

An application of R to that sequent gives ` Sr · (⇒ 2ϕ1, . . . ,2ϕn), which
implies ` Sr · (⇒ ∀pSiu).

Therefore, to prove (6) it suffices to show that ∀pSiu implies ∀pSi, which
means, that any disjunct of ∀pSiu implies ∀pSi. Since R is the only modal rule
the only disjuncts that need to be considered are ∀empSiu and the disjuncts

of ∀RpSiu. For disjuncts of ∀empSiu it is clear that they are disjuncts of ∀empSi
since Siu ⊆ Si.

Therefore consider a disjunct 2∀pS2 of ∀RpSiu. Thus there is a standard
p–partition S3 ·S2/S1 ·Siu of an instance of R with S2 ≺ Siu and Sa2 = Siau = ∅.
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Note that S3 ·S2/S1 ·Si is the standard p–partition of an instance of R as well.
And as R is backwards applicable to Si and is not applicable to S2, 2∀pS2 is

a disjunct of ∀RpSi and thus of ∀pSi.
This completes the proof that any disjunct ∀pSiu is a disjunct of ∀pSi, and

thereby finishes case 2 of Lemma 13.
3. Suppose Siu/S

i is not an instance of R, Siu contains nonboxed formulas,
Siau = ∅, and R is an l–rule. By Lemma 13 we have:

Si = (Λi ⇒ 2∆i,2Σi, Θi) Siu = ( ⇒ ∆i,2Σi)
Sr = (Λr,2Π,2Γ,2ϕ⇒ 2∆r,2Σr, Θr) Sru = (2Π,Γ, ϕ⇒ ∆r,2Σr).

As ∆i is not empty, R is an lR–rule. Thus we can apply R to Sru · ( ⇒ ∀pSiu),
which is derivable, and establish that ` Sr · ( ⇒ 2∀pSiu). Since R is not
applicable to Siu but is backwards applicable to Si, 2∀pSiu is a disjunct of

∀RpSi and thereby of ∀pSi, which implies ` Sr · ( ⇒ ∀pSi).
4. Similar to case 3 and therefore left to the reader.

Lemma 19 In any balanced terminating calculus consisting of focussed and
focussed modal rules (DPN) holds.

Proof Consider a p–partition (Sr, Si) of a derivable sequent S, where the last
rule in the derivation is R, which is not backwards applicable to Si (whence
Si 6= S) and Si is not empty. We have to show that under the assumption
that all sequents lower than S satisfy the interpolant properties,

` Sr · (⇒ ∀pSi). (7)

For R a focussed rule (or axiom), the proof of (7) is analogous to the proof
of Lemma 10. It remains to consider the case that R is a focussed modal rule
and the last step of the derivation of S consists of instance R = Su/S, which
has standard p–partition Sru ·Siu/Sr ·Si. We distinguish the case that Siu ≺ Si

and that Siu = Si. In the first case, 2∀pSiu is a disjunct of ∀RpSi and thus of
∀pSi if R is an l-rule and ¬2¬∀pSiu is a disjunct of ∀pSi if R is an r-rule.
We only treat the last case, where R = Rxr. For (7) it suffices to show that
` Sr · (⇒ ¬2¬∀pSiu).

We have ` Sru · (⇒ ∀pSiu) as Su is derivable, and thus Sru · (¬∀pSiu ⇒ )
is derivable as well. As the calculus is balanced, it contains an Lxr–rule or
an lRx–rule. In the first case, that rule can be applied to Sru · (¬∀pSiu ⇒ ).
It yields ` Sr · (2¬∀pSiu ⇒ ), from which ` Sr · (⇒ ¬2¬∀pSiu) follows. In
the second case, R is not an L–rule, and thus the lRx–rule can be applied to
Sru · (¬∀pSiu ⇒ ), to obtain ` Sr · (2¬∀pSiu ⇒ ).

The case that Siu = Si remains. We only treat the case that R is an r–rule.
Given that R is of the form (4), this implies that Si is part of 2S1. As R is not
backwards applicable to Si, Si = Siu = (2Γ ⇒ ) and R is a Wr–rule. Because
the calculus is balanced, it is the only modal rule and a WLr–rule. This implies
that ∀pSi = ∀pSiu is a nonempty disjunction of the form

∨n
i=1 ¬2¬ϕi. Since

` Sru · (⇒ ∀pSi), also Sru · (2¬ϕ1, . . . ,2¬ϕn ⇒ ) is derivable. As R is an W-
rule, it can be applied to this sequent to obtain ` Sr · (2¬ϕ1, . . . ,2¬ϕn ⇒ ),
which implies ` Sr · (⇒ ∀pSi).
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Lemma 20 If a terminating calculus consists of focussed and focussed modal
rules only, then (FP) holds.

Proof Let S be a free sequent and assume that all sequents ≺-lower than
S satisfy the interpolant properties. We have to show that S satisfies the
independent interpolant property, that is, that Sa,∀pS ⇒ Ss is derivable. It
suffices to show that for all disjuncts χ of ∀frpS,∀fcpS,∀fcmpS:

` Sa, χ⇒ Ss. (8)

If χ is a disjunct of ∀fcpS or a disjunct of ∀frpS of the form ∀∅pS, then the
proof is similar to the proof of Lemma 11. If it is a disjunct of ∀frpS of the
form χ = ¬2¬∀pS′ for some S′ = (Γ ⇒ ), then we use that Γ,∀pS′ ⇒ is
derivable by assumption. As S = 2S′ is free, the calculus contains no l-rules,
and because it is balanced it therefore contains an Lr-rule (if it contains no
modal rules, the calculus is just G3p). This rule can be applied to obtain
` 2Γ ⇒ 2¬∀pS′, and thereby ` (2Γ, χ ⇒ ). The case that χ = 2∀pS′ for
some S′ = (⇒ ∆) is analogous.

Thus ∀fcmpS remains, where χ has to be a disjunct of ∀RpS for some rule
R such that Sru · Siu/Sr · Si is a standard p–partition of an instance of it,
where S = Si. We distinguish the case that Siu ≺ Si and that Siu = Si. In
the first case we treat the case that R is an r–rule, the case that it is an
l–rule is similar. Thus R = Rxr and χ = ¬2¬∀pSiu, and Sisu is empty as R

is not backwards applicable to Si. Since all sequents ≺-lower than S satisfy
the interpolant properties, Siu · (∀pSiu ⇒ ) is derivable. Because R is an r–rule
applicable to Sru ·Siu and Sisu is empty, it is applicable to Siu · (⇒ ¬∀pSiu). This
yields ` Si · (⇒ 2¬∀pSiu), from which ` Si · (¬2¬∀pSiu ⇒ ) follows.

The case that Siu = Si remains. We only treat the case that R is an l–rule,
the other case is treated in the last case of Lemma 19, to which this case is
analogous. Given that R is of the form (4), this implies that Si is part of 2S1.
And as R is not backwards applicable to Si, Si = Siu = (⇒ 2∆) and R is an
E–rule. Since the calculus is balanced, it therefore is the only modal rule and
of the form RlREx. This implies that ∀pSi = ∀pSiu is a nonempty disjunction
of the form

∨n
i=1 2ϕi. Since ` Sru · (⇒ ∀pSi), also Sru · (⇒ 2ϕ1, . . . ,2ϕn)

is derivable. As R is an E-rule, it can be applied to this sequent to obtain
` Sr · (⇒ 2ϕ1, . . . ,2ϕn), which implies ` Sr · (⇒ ∀pSi).

Since any calculus that consists of focussed and focussed modal rules is
closed under weakening, the previous lemmas imply the following two theo-
rems.

Theorem 4 For any balanced terminating calculus that consists of focussed
and focussed modal rules, (IP), (DPB), (DBN) and (FP) hold for the standard
interpolant assignment.

Theorem 5 A logic L ⊇ CPC with a balanced terminating calculus that con-
sists of focussed and focussed modal rules has uniform interpolation.
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6 Applications

In order to apply Theorem 5 it first has to be established that many standard
calculi for modal logics are terminating. For this we use the following weight
function on modal formula from [1]: ϕ ≺ ψ ≡def w(ϕ) < w(ψ), where

w(p) = w(⊥) = 1
w(ϕ ◦ ψ) = w(ϕ) + w(ψ) + 1 ◦ ∈ {∧,∨,→}
w(2ϕ) = w(¬ϕ) = w(ϕ) + 1.

The weight w(Γ ) of a multiset Γ is the sum of the weights of the formula oc-
currences in Γ , and the weight w(S) of a sequent is w(Sa∪Ss). It is easy to see
that calculi consisting of G3p plus some focussed modal rules are terminating
with respect to this order.

Next, we want to guarantee that our calculi G3K and G3KD are indeed
calculi for the modal logics K and KD. To that end we prove that the restricted
focussed modal rules R are in fact not weaker than their full version R+, which
are defined in the first part of Section 5.

Lemma 21 For any extension G of G3p that consists of focussed and focussed
modal rules, the calculus G extended by R is equal to G extended by R+.

Proof We have to show that for any calculus G that consists of focussed rules
and focussed modal rules R for which R+ = R, for any number of rules
R1, . . . ,Rn such that Ri 6= R+

i for all i, G extended by R1, . . . ,Rn is equal
to G extended by R+

1 , . . . ,R
+
n . Let ` denote derivability in G extended by

R1, . . . ,Rn. It suffices to prove with induction to the length d of derivations
that if ` S, then ` S · (⇒ ϕ) and ` S · (ϕ ⇒ ) for any sequent S and any
formula ϕ. We prove both cases simultaneously and use a subinduction to ϕ,
but we only treat the case (⇒ ϕ) explicitly. Let S′ = (⇒ ϕ).

If S is an instance of an axiom, then because the axiom has to be focussed,
S · S′ is an instance of that axiom too. Suppose that S has a proof of depth
d > 1. If the last rule is not one of Ri, then the derivability of S · S′ follows
from the induction hypothesis and the fact that the rules of G are closed
under weakening. Therefore suppose it is an instance of one of the Rh, where
S = S2 ·2S1 ·2S0 and the premiss is 2S1 ·S0. Thus for i = 0 or i = 1 (or both):
Sai or Ssi contains a meta–multiset. We show that ` S · S′ with induction to
w(ϕ).

If ϕ is an atom, then ` S · S′ follows by an application of Rh to 2S1 · S0.
Therefore suppose that ϕ is not an atom and that ` S · S′′ has been shown
for all S′′ = (⇒ ψ) and S′′ = (ψ ⇒ ) with w(ψ) < w(ϕ). If ϕ is a conjunction
ψ∧χ ∈ Sa, then ` S ·(S′a\{χ}, ψ, χ⇒ S′s) by the induction hypothesis. Thus
an application of the left conjunction rule implies that ` S · S′. Likewise for
ψ∧χ ∈ Ss and for all other connectives. Finally, suppose ϕ = 2ψ. Since Rh is
not equal to R+

h , there is an x ∈ {a, s} such that Sx2 ranges over multisets of
atoms, and either Sx1 or Sx0 contains a multiset. Thus R is an R–rule or an E–
rule. We treat the case that x = s. By the induction hypothesis the following
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two sequents are derivable.

2S1 · S0 · (⇒ ψ) 2S1 · S0 · (⇒ 2ψ)

In case R is an R–rule we apply it to the first sequent to establish ` S ·S′ and
if R is an E–rule we apply it to the second sequent.

Despite the above lemma, not all calculi consisting of focussed and focussed
modal rules correspond to a logic, because the cut rule is not always admissi-
ble in them. An example is the logic G3p + RWLr. Below it is explained that
contraction is not admissible in it. Hence neither is the cut rule.

For the application of Theorem 5 the next issue that needs to be addressed
is which of the calculi that consist of G3p (for the modal language) plus some
focussed modal rules are balanced. There are 32 calculi that contain exactly
one focussed modal rule, for which calculi it is easy to establish whether they
are balanced.

Theorem 6 Every calculus that consists of G3p plus a single rule Rx, where
x contains Lr or lR but not LrE and not WlR, has uniform interpolation.

For calculi that contain more than one focussed modal rule the situation is
more complex. Here we restrict ourselves to calculi with two focussed modal
rules where one is an extension of RK. The following theorem follows immedi-
ately from the properties of balanced calculi.

Theorem 7 If R1 = RLrx and R2 are two different fcm rules and G3p plus
these two rules is a balanced caculus, then either x is empty or equal to R
and R2 is one of Rl,RlR,Rr. Thus for these rules the calculus has uniform
interpolation.

Similar results can be obtained for extensions of lR-rules, as well as for
calculi with more than two focussed modal rules.

The terminating calculus G3K for the modal logic K consists of G3p (for
the modal language) extended by the rule RK = RLr below, and similarly for
the calculus G3D. G3KD stands for the calculus G3K extended by RD = RLl.

Γ ⇒ ϕ

Γ ′,2Γ ⇒ 2ϕ,∆
RK

Γ, ϕ⇒
Γ ′,2Γ,2ϕ⇒ ∆

RD

The versions R−K and R−D of the above rules in which Γ ′ ranges over multisets of
atoms are focussed modal rules, and in Lemma 21 it is shown that G3p+R−K and
G3p + R−K + R−D are equivalent to G3K and G3KD, respectively. As a corollary
of Theorem 6 and Theorem 7 we therefore obtain the following results, where
the result about K was first proved by B́ılková [1].

Theorem 8 K and KD have uniform interpolation.

S4 is known to have no uniform interpolation [4], and the same holds for
K4 [1]. This leads to the following observation.
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Theorem 9 Neither K4 nor S4 is sound and complete with respect to a bal-
anced terminating extension of G3p by focussed and focussed modal rules.

The theorem implies that the calculus G3p + RWLr, which is G3p extended
by rule

2Π,Γ ⇒ ϕ

Λ,2Π,2Γ ⇒ 2ϕ,Θ
RWLr,

cannot be a calculus for K4. And because G3p + RWLr would be equivalent
to one of the standard calculi for K4, were it closed under contraction, the
calculus G3p + RWLr cannot be closed under contraction. Thus it is a calculus
for a substructural logic. This in contrast to rules that are not WL–rules or RE–
rules: extending G3p by such rules preserves the admissibility of contraction
and weakening.
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