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Abstract

We introduce Gentzen calculi for intuitionistic logic extended with an
existence predicate. Such a logic was first introduced by Dana Scott,
who provided a natural deduction proof system for it. We prove that
the Gentzen calculus has cut elimination in so far that all cuts can be
restricted to very simple ones. Applications of this logic to Skolemization,
truth value logics and linear frames are also discussed.
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1 Introduction

In this paper we introduce Gentzen calculi for so-called existence logics. These
logics are extensions of intuitionistic predicate logic IQC with an existence pred-
icate F, where the intuitive meaning of Et is that ¢ exists. The motivation
behind these logics is that in the context of intuitionistic logic it is natural to
be able to denote whether a term exists or not.

Existence logic IQCE was first introduced by D. Scott in [11], where he pre-
sented a Hilbert style proof system for the logic. In this system both variables
and terms range over arbitrary object while the quantifiers are assumed to
range over existing objects only. Existence logic in which terms range over all
object while quantifiers as well as variables only range over existing objects is
denoted by IQCE™ and has e.g. been used by M. Beeson in [3]. M. Unterhalt
thoroughly studied the Kripke semantics of these logics and proved respectively
completeness and strong completeness for the systems IQCE and IQCE™ in [16].
Completeness results for the Gentzen calculi presented in this paper can be
found in [1].

The Gentzen calculi that we introduce in this paper are called LJE and LJE(Z.),
which is LJE extended by axioms Yz, to be defined below. LJE corresponds to
Scott’s IQCE, and for a specific ¥, the calculus LJE(Eg) corresponds to IQCE™.
This paper is devoted to the proof that both these systems have cut elimination
in so far that cuts in proofs can be restricted to very simple ones (Theorem 4.7).
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1.1 Applications

Existence logic has many many applications, and sometimes leads to surprising
solutions of problems that do not seem solvable in intuitionistic logic pure. We
do not describe these applications in full detail here, but we try to explain the
general idea and give pointers to the literature.

1.1.1 Skolemization

The foremost use of the existence predicate is in the setting of Skolemization. As
is well-known, the classical Skolemization method of replacing strong quantifiers
in a formula by fresh function symbols and thus obtaining a equiconsistent
formula, is not complete with respect to IQC. That is, there are formulas that
are underivable, but for which their Skolemized version is derivable in IQC. For
example,

IQCH/ Va(Az VvV B) — (VzAz vV B) 1QCHVz(Az VvV B) — (AcV B).

In [1] an alternative Skolemization method called eSkolemization is introduced
and is shown to be sound and complete with respect to IQC for a large class of
formulas, including all formulas in which every strong quantifier is existential
or of the form Vz——Az. This class is much larger than the class of formulas for
which the standard Skolemization is sound and complete. This eSkolemization
method makes use of the existence predicate. It replaces negative occurrences
of existential quantifiers 3xBx by (Ef(y) A Bf(y)), and positive occurrences of
universal quantifiers VaBx by (Ef(y) — Bf(y)). For example, the eSkolemiza-
tion of the displayed formula above is

IQCE i/ Vz(Ax vV B) — ((Ec — Ac) V B).
Then it is shown in [1] that

Theorem 1.2 For each formula A in which all strong universal quantifiers
Qz Bz are of the form Vo——Bx: g, )= A if and only if g5, )= A°.

The definition of ¥, and LJE will be given below. We will not proceed the topic
of eSkolemization here but refer the interested reader to [1] instead.

1.2.1 Truth-value logics and linear frames

Another application of the existence predicate is in the context of truth-value
logics. These are logics based on truth-value sets V, i.e. closed subsets of the
unit interval [0, 1], also called Gddel sets. One can, for a given Gddel set V,
interpret formulas by mapping them to elements of V. The logical symbols
receive a meaning via restrictions on these interpretations, e.g. by stipulating
that the interpretation of A is the infimum of the interpretations of the respective
conjuncts, or that the interpretation of 3z Az is the supremum of the values of Aa
for all elements a in the domain. Given these interpretations, one can associate
a logic with such a Gédel set V': the logic of all sentences that are mapped to 1
under any interpretation on V.

Gédel logics Gy are an example of truth value logics. Without going into the
precise definition of these logics here, we only want to mention that these logics



naturally correspond to the logics of linear frames. As has been shown by A.
Beckmann and N. Preining this correspondence takes the following form.

Theorem 1.3 (A. Beckmann and N. Preining [2]) For every countable linear
frame F' there exists a Godel set V' such that

Gy E A < Aholds in all Kripke models on F' with constant domains, (1)

and vice versa: for every Godel set V' there exists a countable linear frame F'
such that (1).

In [8] so-called Scott logics Sy are introduced which correspond to linear frames,
but now for possibly non constant domains. That is, we have

Theorem 1.4 [8] For every countable linear frame F' there exists a Godel set
V such that

Sy = A < A holds in all Kripke models based on F, (2)

and vice versa: for every countable Godel set V' there exists a countable linear
frame F' such that (2).

In the same paper it is shown that there is a natural and faithful translation
from Scott logics into Godel logics. This translation (-)€, that makes use of the
existence predicate, allows to transfer properties about Godel logics to Scott
logics. (+)¢ is defiend as follows.

(P(1))" = P(t) for atomic P and terms Z,
()¢ commutes with the connectives,
(FwA(z))® = 3x(Ex A (A(z))),
(VzA(z))¢ =Vz(Ex — (A(z))°).
Given this translation we then have the following theorem.

Lemma 1.5 [8] For any Godel set V, ()¢ is a faithful translation of Sy into
Gy, i.e. for all L-sentences A

Sy EA & G = A

Note the similarity between the different applications of the existence predicate:
the translation (-)¢ does a similar thing to quantifiers as eSkolemization does.
Essentially, it all has to do with the fact that an existence predicate allows
us in a Kripke model to name objects that do not exist in the root but come
into existence only at a later stage in the model. Both [1] and [8] describe this
intuition in more detail.



2 Preliminaries

We consider languages £ C L for intuitionistic predicate logic plus the existence
predicate F, without equality. For convenience we assume that L contains
at least one constant and no variables, and that L’ contains infinitely many
variables. The reason for this has to do with the semantics for the Gentzen
calculi introduced below; a topic we will not proceed here, but which is discussed
in [1].

The languages contain |, and —A is defined as A — 1. A, B,C, D, E, .. range
over formulas in L', s,t,.. over terms in L’. T',A,II range over multisets of
formulas in L. Sequents are expressions of the form I' = C, where T is a finite
multiset. A sequent is in L if all its formulas are in £. And similarly for £L’. A
formula is closed when it does not contain free variables. A sequent I' = C' is
closed if C and all formulas in " are closed.

In the final proof system (= Et ) will hold for the terms in £, but not necessarily
for the terms in L\L. T, denotes the set of terms in L, F, denotes the set of
formulas in £, 8¢ denotes the set of sequents in £, and similarly for L.

In order not to drown in brackets we often write Az for A(z).

3 The proof system

In this section we define the system LJE, a conservative extension of LJ for
L’ that covers the intuition that Et means t exists. Such a system was first
introduced by Dana Scott in [11], but then in a Hilbert style axiomatization,
and called IQCE. The Gentzen calculus for this system given below is new.
Given an existence predicate, terms, including variables, typically range over
existing as well as non-existing elements, while the quantifiers range over existing
objects only. Proofs are assumed to be trees.



The system LJE

Az T',P= P P atomic L1 T, 1=C
A INA,B=C RA = A '=2-h
I AnB=~C I'=AAB
NA=~=C rB=C RY I'= A i=0.1
IMAvB=~C I'= AgV A
L NA—B=4A I''B=C A= 1B
- T A-B=C R=T_4-5B
I, VzAz, At = C I'\VzAzx = Et RY I'Ey = Ay .
I'\VzAz = C I = VoA[z/y]
IEy, Ay = C I = At I' > Ft
3
L3 T, 3zAlz/y] = C i R I'= 3zAx
o ' A INA=C
ut r=sc=C

Where (%) denotes the condition that y does not occur free in I' and C.

The principal formula of a rule is defined as usual. In the Cut rule the formula
A is called the cutformula, and it is the principal formula of the Cut rule. The
formulas Ft and Fy are not principal in respectively LY, R3 and RV, L3.

We write LJE I S if the sequent S is derivable in LJE. For a set of sequents X
and a sequent S, we say that S is derivable from X in LJE, and write X | jg .5,
if S is derivable in the system LJE to which the sequents in X are added as
initial sequents. We also denote this system by LJE(X).

In the system LJE no existence of any term that is not a variable is assumed
This implies e.g. that we cannot derive VxPx = Pt, but only Vx Pz, Et = Pt.
Note however that the former is derivable in LJE from (= Ft). This is the
reason why we consider derivations from extra axioms, especially axioms of the
form (= Et). Therefore, we define the following sets of sequents

e =def {F = FEt | teT.,I'a multiset}.

Note that because of the assumptions on L, X contains at least one sequent
and for all sequents I' = Et in X, t is a closed term. Given two languages
L C L/, we write

LIE(SL) =4 {S € 8o/ | X FLie= S}

The L is not denoted in LJE(X ), but most of the time it is clear what is the
“larger” language L’ of which L is a subset.

We often write ¢ for gz, ).



Example 3.1
ViLe= JxFEx FLe= VaeE.

FLJE(ZL):> deEx AVxFEx.

Lemma 3.2 For all sequents S in £ that do not contain E:

LJF S implies LIE(Xg) F S.

Proof Since S is a sequent in L, we may assume w.l.o.g. that when S is provable
in LJ it has a cutfree proof in which all terms that are not eigenvariables are
terms in L. Call this set of terms X. Clearly, X°* = {I' = Et |t € X} is a
subset of Xp. At every application of R3 or LV, add the appropriate I' = Et
as the right hypothesis. At every application of RV or L3 add the appropriate
Ey to the antecedent. This gives a proof of I' = A in LJE. O

Later on, in Proposition 4.11, we will see that the converse of the above lemma
holds too.

3.3 Uniqueness

Observe that given another predicate E’ that satisfies the same rules of LJE as
E', it follows that

LIE(Xe) - Ft = E't A LIE(Ze) - E't = Et.

Namely, LJE(Xz) F (= (VzEx AVzE'z)), and LIE(Xe) b (VeEz, E't = Et)
and LIE(Xg) F (VaE'z, Et = E't). Finally, two cuts do the trick. This shows
that the existence predicate E is unique up to provable equivalence.

3.4 IQCE and IQCE™

As remarked above, given an existence predicate, terms typically range over
existing as well as non-existing elements, while quantifiers range over existing
objects only. As to the choice of the domain for the variables, there have been
different approaches. Scott in [11] introduces a system IQCE for the predicate
language with the distinguished predicate F, in which variables range over all
objects, like in LJE and LJE(Xz). On the other hand, Beeson in [3] discusses a
system in which variables range over existing objects only.

The formulation of the system IQCE in [11], where logic with an existence pred-
icate was first introduced was in Hilbert style, where the axioms and rules for
the quantifiers are the following:

VeAx AN Et — At B/\Ey._)Ay §
B — VrAx
Ay/\Ey—>B At AN Bt — JzAx
S
JdzAx — B



Here * are the usual side conditions on the eigenvariable .

The following formulation of IQCE in natural deduction style was given in [14].
We call the system NDE (Natural Deduction Existence). It consists of the
axioms and quantifier rules of the standard natural deduction formulation of IQC
(as e.g. given in [14]), where the quantifier rules are replaced by the following
rules:

[Ey]
Ay VE V:chA Bt
VI * t
Vax Az
[Ay][Ey]
o At Et 1 :
Py B Jr Az - c .

Again, the * are the usual side conditions on the eigenvariable y. It is easy to
see that the following holds.

Fact 3.5 VA € Fr: Fiqce A if and only if Fype A if and only if b jg= A.

Existence logic in which terms range over all object while quantifiers and vari-
ables only range over existing objects is denoted by IQCE' and has e.g. been
used by M. Beeson in [3]. The logic is the result of leaving out Ey in the two
rules for the quantifiers in IQCE given above and adding Fx as axioms for all
variables z. A formulation in natural deduction style is obtained from NDE by
replacing the VI and JE by their standard formulations for IQC and adding Fx
as axioms for all variables 2. We call the system NDET. In this case we have
the following correspondence.

Fact 3.6 VA € F/:
Fiqee+ A iff Fype+ A iff {T' = Ex2 | x a variable, I' a multiset} - jg(s, )= A.

M. Unterhalt in [16] thoroughly studied the Kripke semantics of these logics
and proved respectively completeness and strong completeness for the systems
IQCE and IQCE™. Similar results for the Gentzen calculi presented here can be
found in [1].

4 Cut elimination

We assume eigenvariables, free and bound variables to be three distinct sets of
variables. The variable y in L3 and RV is called an eigenvariable. The depth
of a sequent in a proof is inductively defined as the sum of the depths of its
upper sequents plus 1. Thus axioms have depth 1. The complexity |C| of a
formula is the number of occurrences of connectives and quantifiers in C. The
rank of a cut is 1 + the complexity of the cut formula. The level of a cut is
the sum of the depths of its two hypotheses. The cutrank cr(P) of a proof P is
the maximal rank of cuts in P. The depth of a proof, dp(P), is the depth of its
endsequent. We write LJE 4 S when S has a proof of depth < d in LJE, We
write LJE F¢ .S when S has a proof of cutrank < ¢. Similarly for LJE(X). For
a proof P, P[t/y] denotes the result of substituting ¢ for y everywhere in P.



4.1 Substitution, Weakening and Contraction
We start with the substitution lemma.

Lemma 4.2 For L € {LJE(XZz), LJE}:

If Pis a proof in L of a sequent S in £’ in which y occurs free, and if ¢ is a term
in £’ that does not contain eigenvariables or bound variables of P, then P[t/y] is
a proof of S[t/y] in L. Moreover, c¢r(P[t/y]) < cr(P) and dp(P[t/y]) < dp(P).

Proof We treat the case L = LJE(Z). We use induction to the depth d of P.
Let P! = P[t/y], S’ = S[t/y]. First d = 1, the case that P is an instance of an
axiom. The axioms Az, L_L in P are replaced by instances of the same axioms in
P’, so these will not be violated under the transformation. For axioms Il = FE's
in X it follows that s is a closed term in L. Hence the sequent that results
from the substitution, (II[t/y] = Es), belongs to ¥r too. This completes the
case d = 1.

Suppose d > 1. First note that because eigenvariables are distinct from free
variables in a proof, y cannot be an eigenvariable in P. We distinguish by cases
acoording to the last rule in P. The connective rules and cuts in P are replaced
by instances of the same rules in P’, so these will not be violated under the
transformation. Thus the quantifier rules remain.

Suppose the last inference in P is a quantifier rule. In the case of LV and R3
there are no side conditions, whence these rules will not be violated in going
from P to P’. We treat RV, the case L3 is similar. Consider an application of
RV in P:

Py
II, Ez = Bz
II = YuBu
Thus z is not free in I1, and z # y and u # y, since y is no eigenvariable or bound

variable. By assumption on ¢, u does not occur in t. Under the transformation
this will become

Pilt/y]

I[t/y], Ez = Bz[t/y]
I[t/y] = YuBult/y]

To see that this a valid application of RV, it suffices to see that z is not free in
I1[t/y], which is clear from the assumption on t.

To check that cr(P’) < er(P) and dp(P’) < dp(P) is left to the reader. O

Lemma 4.3 For L € {LJE(X¢),LJE}: LEGT = C implies LFGT, A= C.

Proof Left to the reader. For the quantifier rules, use Lemma 4.2 to repair
variable clashes. O

Lemma 4.4 For L € {LJE(Xz),LJE}: L has contraction. In fact:
LEGT,A A= C implies LF;T, A= C (3)



Proof To show that the system has contraction we need the following claim.

Claim 4.5 For d > 0, it holds that

LEGT,ANB = C impliess LFST,A,B=C

LEGT,Av B=C implies LFT,A=>CandLt4I'\B=C
L= A— B implies LF{I',A= B

LEGT, dxAx = C implies LFEGT, By, Ay = C, for all y.

Proof of Claim The only detail here is the possibility of variable clashes.
We only treat the case of the existential quantifier, with induction to d. If
I',dz Az = C is an axiom, then so is I', F'y, Ay = C'. Suppose it it not an axiom.
If in the last inference in the proof of I', 3z Az = C, Jz Az is not principal, then
the induction hypothesis applies: for the rules without eigenvariables this is
immediate. For the rules with eigenvariables, if the eigenvariable is y, we just
replace it by a fresh eigenvariable not occuring in the proof, and then using
the induction hypothesis we obtain a proof of I', Fy, Ay = C of same rank and
depth. If dx Az is principal in the last rule, the result follows immediately. This
proofs the claim.

Using this claim we prove (3) with induction to the depth d of the proof of
I'AJA = Cin L. If d = 1, the sequent is an axiom, and so I', A = C clearly is
an axiom too (also in the case of ). Consider the case d + 1. If the last rule
in the proof is a right rule or the principal formula is in T', then the induction
hypothesis applies. Therefore, suppose it is a left rule and the principal formula
is not in I'. We distinguish by cases. We treat LA and leave the other cases to
the reader. In this case the last part of the proof then looks as follows.

I'NAANB,A,B=C
I AANB,ANB=C

Assume the cutrank of the proof is n. Let P be the proof of 'y AAB, A, B = C.
Note that P has depth d. Thus we can apply the claim and obtain a proof of
I'A, B, A, B = C of depth < d and cutrank < n. Then we apply the induction
hypothesis, first to A and then to B, and obtain a proof of I'; A, B = C of depth
< d and cutrank < n. An application of LA provides a proof of '; AN B = C
of depth < d + 1 and cutrank < n, as desired. O

4.6 Restriction to Ecuts

Theorem 4.7 For L € {LJIE(Z.), LJE}:
Every sequent in L’ provable in L has a proof in L in which the only cuts are
instances of the ECut rule:

I'=> EteXYg IEt=C
I'=<C

ECut:

In particular, LJE has cut-elimination.



Proof For a smooth induction it is convenient to replace the Cut rule in LJE
by the following generalization of it, the so-called Miz rule:

I'= A I"A=C
IT=C

ix

In the Mix rule A is called the cutformula. When we speak about cuts in a
proof, we refer to instances of the Cut or the Mix rule. The notions of cutrank
are extended to proofs with the Mix rule in the obvious way. To prove the
theorem we then show that applications of Mix can be removed from a proof,
unless they are instances of EMix, which is

I'=s FEteXg IYEt=C
IT=C

EMix:

Note that this indeed implies that all provable sequents have a proof in which
the only cuts are instances of ECut: I' = Et € X implies I = Et € X, for
all IV, and thus the conclusion of the EMix as above can be obtained also via
the ECut

I'T = Ete X IT,Et=C
IT=C

For now, we call a proof ecutfree if all applications of Mix are instances of EMix,
and we call it cutfree when it contains no cuts at all. Recall that the cutrank
cr(P) of a proof P is 1 + the maximal complexity of cutformulas in P.

The proof of the theorem consists of two claims. The first shows how to remove
cuts of rank > 1 from a proof, and the second shows how cuts of rank 1 that are
not instances of EMix can be removed from a proof. These two claims together
imply the theorem.

Claim 4.8 For L € {LJE(X),LJE}: Every sequent in L’ provable in L has a
proof in L in which all cuts have rank 1.

Proof of Claim We treat the case LIE(X ), the case LJE is similar. It suffices
to show that a proof P ending in a cut

P1 P2
r=4 I A=C
I =C

with |A| > 0 and with ¢r(P;), cr(P2) < |A|, can be transformed into a proof
P’ of T'T" = C such that ¢r(P’) < cr(P). Note that er(P) = |A]+1>1. We
prove this by induction on the cutrank of P with a subinduction to the level of
the lowest cut of maximal rank in P (the level of a cut is the sum of the depths
of its two hypotheses). We call ' = A and I, A = C the hypotheses of the cut
and I'T” = C the conclusion. Since |A| > 0, A cannot be principal in an axiom,
including ¥ r. Note also that A cannot be of the form Et. Therefore, we only
have to distinguish the following two cases:

(a) the cutformula is not principal in one of the hypotheses,

(b) cutformula is principal in both hypotheses, which are not axioms.

10



(a) Suppose the cut formula is not principal in one of the hypotheses. If this
hypothesis is an instance of axioms Ax or L1, then so is the conclusion of the
cut, and whence we have a cutfree proof of it. If this hypothesis is an instance
of an axiom I' = Ft in X, then since |A| > 0 it has to be the right hypothesis.
Observe that (I' = Et) € ¥, implies that (Il = Et) € X, for all II. Hence the
conclusion of the cut is a sequent in X, in which case we have a cutfree proof
of it.

Next suppose that the hypothesis in which A is not principal is the lower sequent
of an application of one of the rules. In this case we can cut higher up. That is,
suppose the cutformula is not principal in the left hypothesis, and assume this
is a two hypotheses rule R, say RV. Then P looks as follows.

P P
=4 I,=A Py
RV T= 4 " A= C
I =C

Note that by assumption cr(P;) < cr(P) for i = 1,2,3. Then we transform the
proof into a proof P’ as follows.

P P Py P
I'=A I"'A=C o= A I"'A=C
nhI=C oI =C

R IT=C

Now we have two cuts on A, but the level of the lowest cut of maximal rank in
P’ is one of these cuts. Thus cr(P’) = cr(P), but the level of the lowest cut
of maximal rank in P’ is smaller than the level of the lowest cut of maximal
rank in P. Therefore, we can apply the induction hypothesis and are done. The
other cases are similar. Note that in the case that R is a cut, it is by assumption
a cut of rank < |A|+ 1. Hence also in this case the induction hypothesis applies
to P’.

(b) In this case the cut is principal in both hypotheses, and both hypotheses are
not axioms. We distinguish by cases according to the outermost logical symbol
in A: the cases A, V, — are treated in the same way as in the case of LJ, see
e.g. [15]. We treat the quantifiers.

V: then P looks as follows:

P P P
I'Ey = Ay p IV VoAz, At = C IV VoxAzr = Et g
I = Vedz IV VoAzr = C ?
IT"=~=C

Note that y is not free in I' because of the conditions on RV, and y is not
free in IV, C and t because of the conditions on eigenvariables in a proof. By
assmptions on variables, t does not contain eigenvariables or bound variables in
P.

We can transform the above proof into the following proof P’:

11



Py

I'Ey = Ay Ps P
I' = VzAx I",VzAz = Et Pylt/y] I, EFy = Ay P,
I'T = Et I, Et = At I' = VzAzx I, VxAx, At = C
ITT = At I'T, At = C
ITIT'TY = C

Note that the endsequent of P;[t/y] indeed is I', Et = At as y is not free
I'. By Lemma 4.2, P;[t/y] is a proof of (I', Et = At) in LJE(X¢) such that
er(Pq[t/y]) < er(P;) < cr(P). The cuts on YAz both have a lower level
and the same rank as in P. Therefore, we can apply the induction hypothesis
and obtain proofs of their conclusions of cutrank < c¢r(P). Whence there is a
proof of ITTT'TY = C of cutrank < cr(P). Application of some contractions,
Lemma 4.4, gives a proof of I'T = C of cutrank < ¢r(P). This proves the case
V.

3J: Similar. Here P looks as follows:

Py P Ps
At o=kt 1 EyAdy=0C
I'= dzAx I, 3z Az = C
I =C

Because of the side condition that y is not free in IV and C' we can transform
this proof into the following proof P’:

P, By[t/y]
P I'= FEt I, Et, At = C
I'= At T, At = C
T = C
By Lemma 4.2, c¢r(Ps[t/y]) < cr(Ps). Thus cr(P’) < cr(P). This completes
(b) and thereby the proof of the claim. O

Claim 4.9 For L € {LJE(X), LJE}: Every sequent in £’ that has a proof in L
of cutrank 1, has a proof in L in which all cuts are instances of EMix.

Proof of Claim We treat the case LJE(Xr). We use induction to the depth d
of a proof P of cutrank < 1 of a sequent S. The case d = 1 is trivial, as then P
consists of an axiom only. Suppose d > 1. If the last inference in P is not a cut
or it is an application of EMix, we can apply the induction hypothesis and are
done. Therefore, suppose P ends in a cut that is not an instance of EMix:

P1 P2
=4 I A=C
IT"=C

12



Thus by the induction hypothesis P; and P» are ecutfree, i.e. all cuts they
contain are instances of EMix. And as P has cutrank < 1, A is atomic or L or
of the form FEt. Denote I'T” = C by S. We distinguish the following cases:

(c) the cutformula is principal in the rigth hypothesis,

(d) the cutformula is not principal in the right hypothesis.

(c) Assume the cutformula is principal in the right hypothesis. The form of A
implies that whence the right hypothesis IV, A = C has to be an axiom. Since A
is principal in it, C' = A or A = L. In the former case we can obtain a ecutfree
proof of S by weakening the sequent I' = A. If A = L, then it follows that
either | € I" or A is not principal in the left hypothesis. In the former case S is
an instance of L1 and we are done. In the latter case, since A is not principal
in it, I' = L is the conclusion of a rule R in which L is not principal. In this
case one can cut higher up, like in case (b) in the proof of the first claim: we
treat the case that R is an EMix, and leave the other cases to the reader. In
this case P looks as follows.

Py
I'=s Et € 3p I'Et = L
T = L ", 1 =C
Irr = C

We transform this proof into the proof P’:

Py
" Et=1 T 1=C
I=FEt € 5 T Bl = |
I = 1

We apply the induction hypothesis to P’ and are done.

(d) Assume the cutformula is not principal in the right hypothesis. If TV, A = C
is an axiom, then L € IV, C € IV or C = Et for some t € T. In all cases S
is an instance of the same axiom. If the right hypothesis is an application of a
rule R we proceed as follows. We treat the cases that R is a two hypothesis rule
that is not a cut, and the case that it is a cut, and leave the other cases to the
reader. First, suppose R is not a cut. Then P looks as follows.

Py P
P I, A= C Ty, A= Cy
r=A4 I"A=C
I =C

Note that by the induction hypothesis the P; are ecutfree. Then we transform
the proof into a proof P’ as follows.

Py P Py P
I'= A I',A=C I'=A Iy, A= Cs
T =0y I\I'y = Cs
I =C
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Since R is not a cut we can apply the induction hypothesis to P’ and are done.

Finally, we treat the case that R is a cut. By the induction hypothesis it is an
instance of EMix. Hence P looks like this:

P
P, A= Et € % I Et,A=C
= A 't A=C
IT'r” = C

Then we transform the proof into a proof P’ as follows:

Py Py
r=4 I Et,A=C
I!= FEt € X IT Et = C
T = C
To see that this is indeed a proof, note that (I'', A = Et) € X, implies t € T,

which implies (IY = FEt) € X. Now the induction hypothesis applies to P’,
and we are done. This proves the second claim. O

As explained above, the two claims imply the theorem. O

Corollary 4.10 LJE(X.) is consistent.

The cut elimination theorem allows us to proof the following correspondence
between LJ and LJE(X ), one direction of which has already been proved above.

Proposition 4.11 For every sequent S in L not containing E:

LJ - S if and only if LIE(Zg) - S.

Proof For the direction from left to right see Proposition 3.2. The direction
from right to left: show with induction to the depth of the proof that for I' and
A not containing E, if Ety,...,Et,,I' = A is derivable in LIE(Xz) by a proof
in which all cuts are instances of ECut, then I' = A is derivable in LJ. O
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