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Abstract

This paper is a sequel to the papers [4, 6] in which an alternative skolem-
ization method called eskolemization was introduced that, when restricted
to strong existential quantifiers, is sound and complete for constructive
theories. In this paper we extend the method to universal quantifiers and
show that for theories satisfying the witness property it is sound and com-
plete for all formulas. We obtain a Herbrand theorem from this, and apply
the method to the intuitionistic theory of equality and the intuitionistic
theory of monadic predicates.

Keywords: Skolemization, eskolemization, Herbrand’s theorem, constructive theories,

intuitionistic logic, decidability.

1 Introduction

Skolemization occurs in many places in mathematics and computer science.
Indeed, proofs of universal statements that start with the sentence “Let c be
an arbitrary element” implicitly use the fact that proving ∀xAx is equivalent
to proving Ac for an arbitrary element c. In computer science, skolemization is
a powerful tool when used in combination with Herbrand’s theorem. Together
they provide a correspondence between predicate and propositional logic, which
is the reason for their important role in automated theorem proving and the
investigation of the decidability of a theory.
Skolemization seems to be a method that is particularly useful in a classical
setting, since for many nonclassical theories the method is no longer complete,
although it is sound in many cases. That is, for As being the skolemization of
A, we often have

` A ⇒ ` As,

but not
` As ⇒ ` A.

This, of course, does not exclude the possibility that there are other ways to
replace the strong quantifiers in a formula and obtain an equiderivable formula
in which all quantifiers are weak. In this paper we present such a method.
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In classical logic skolemization is a method that applies to formulas in prenex
normal form, and since every formula has a prenex normal form, the method
implicitly applies to all formulas. But in general in nonclassical theories formulas
do not have a prenex normal form. This, however, is not the reason for the
incompleteness of skolemization in nonclassical theories. For the absence of
prenex normal forms can be overcome by skolemizing on the spot: instead
of first putting a formula in prenex normal form, one directly skolemizes the
strong quantifiers in the formula, that is, the positive occurrences of universal
quantifiers and the negative occurrences of existential quantifiers. For classical
theories, this generalization of skolemization is also sound and complete, but for
many nonclassical theories it still is not.
In [4] an alternative skolemization method called eskolemization was introduced
that, when restricted to existential quantifiers, is sound and complete for intu-
itionistic existence logic IQCE, which is intuitionistic logic IQC extended by an
existence predicate E. In eskolemization strong existential quantifiers ∃xAx are
replaced by Ec∧Ac, and strong universal quantifiers ∀xAx by Ec→ Ac, where
c is a fresh constant not occurring in A. If the strong quantifiers occur in the
scope of weak quantifiers, functions are used instead of constants, in the same
way as in skolemization. This method is sound for intuitionistic existence logic,
and it was shown in [4] that for strong existential quantifiers it is also complete:

`IQCE A ⇔ `IQCE A∃,

where A∃ denotes the result of eskolemizing only the strong existential quanti-
fiers in A. Since for formulas A not containing E we also have

`IQC A ⇔ `IQCE A,

this method can be viewed as an alternative skolemization method for pure
intuitionistic logic as well, since it implies

`IQC A ⇔ `IQCE A∃.

There are many examples that show that eskolemization is not complete for
universal quantifiers, such as the double negation shift, ∀x¬¬Ax → ¬¬∀xAx,
for which the eskolemization ∀x¬¬Ax → ¬¬(Ec → Ac) is derivable, while the
formula itself is not.
In a later paper [5], another method to remove strong quantifiers from formulas
was introduced, which is sound and complete for constructive theories in the
same way as eskolemization is, but for all formulas. Under this translation,
(·)o, strong quantifiers are replaced by expressions that besides the existence
predicate contain an order relation as well. The method, called orderization,
is sound and complete for the corresponding logic IQCO, which is intuitionistic
existence logic extended by an order relation:

`IQCO A ⇔ `IQCO Ao.

Since also for this logic derivability in IQC equals derivability in IQCO, at least
for formulas not containing the new symbols, orderization could be viewed as
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an alternative skolemization method for IQC that applies to all formulas and all
theories T based on intuitionistic logic:

T `IQC A ⇔ T `IQCO Ao.

In this paper we return to the eskolemization method and try to see how far
it can be applied in full. We introduce a property, the witness property, which
implies the completeness of eskolemization for all formulas. That is, for theories
T satisfying the witness property, we show that for all formulas A:

T `IQC A ⇔ T `IQCE A ⇔ T `IQCE Ae,

where Ae denotes the eskolemization of A. As a corollary we obtain an analogue
of the Herbrand theorem for universal constructive theories, and show that
there exists a propositional formula A′, which is the result of replacing the weak
quantifiers by term instantiations, such that

T `IQC A ⇔ T `IQCE Ae ⇔ T `IQCE A′.

Thus, as for classical logic, we obtain a correspondence between a constructive
theory and its propositional fragment. We apply the results to the theory of
equality and the theory of monadic predicates.
There are other answers to the failure of skolemization in nonclassical settings.
Several results have been obtained here, especially for modal logic, intuition-
istic logic, and fuzzy logics. In modal logic, analogues of skolemization and
Herbrand’s theorem are presented in [12]. As in eskolemization, the language
is extended and, using this extra expressive power, a method to remove strong
quantifiers from formulas is introduced that is sound and complete and allows
for a Herbrand-like theorem.
In the context of fuzzy logics, one of the first questions that was addressed is for
which fragments skolemization is complete, and whether there is a corresponding
Herbrand theorem. For intuitionistic logic, a large class of formulas belongs to
this fragment, and satisfies a Herbrand theorem [15, 16, 18]. For Gödel logic, it
is proved in [1, 2, 10] that this fragment at least contains all formulas in prenex
normal form, and also that the Herbrand theorem holds for prenex formulas.
As is shown in [8], Gödel logic is in fact the only fuzzy logic with a Herbrand
theorem for its prenex fragment. For fuzzy logics for which even that does not
hold, there is the notion of an approximate Herbrand theorem that could be
used instead. This approach first occurred in [21], for  Lukasiewicz logic, and
has recently been extended to other fuzzy logics based on continuous t-norms,
such as Basic logic and Product logic [9]. Thus the search for alternatives to
skolemization and Herbrand theorems continues, and who knows what surprising
new solutions the future has in store for us?
The paper is built up as follows. In Section 2 we introduce sequent calculi
LJE and LJEL for existence logic, and in Section 2.3 we discuss theories over
this logic. In Section 3 we recall the Kripke semantics for existence logic. In
Section 4 we introduce the eskolemization method, which in Section 5 is shown to
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be sound and complete for theories satisfying the witness property. In Section 6
we prove the Herbrand theorems, and in Section 7 we apply the results to several
constructive theories.
I thank Matthias Baaz and Norbert Preining for interesting discussions during
a much enjoyed visit to Vienna.

2 The proof system

We work with two languages, L and Le. L can be any language for predicate
logic not containing E that contains at least one constant. Le can be any lan-
guage for predicate logic that contains L and a unary predicate E, the existence
predicate, and, for every arity, infinitely many functions of that arity. Unless
explicitly stated otherwise, formulas and theories are in Le, where it is assumed
that there are always infinitely many functions of every arity that do not occur
in the axioms of a theory, so that there are enough functions available to use
as skolem functions. As we will see in the definition of existence logic, given
the existence predicate, terms, including variables, typically range over existing
as well as non-existing objects, while the quantifiers range over existing objects
only.
Sequents are expressions of the form Γ ⇒ ∆, where Γ and ∆ range over finite
sets of formulas. They are interpreted as I(Γ⇒ ∆) = (

∧
Γ→

∨
∆).

Positive and negative occurrences of formulas in sequents are inductively defined
as follows. Given a sequent S = (Γ⇒ ∆), all formulas in ∆ occur positively in
S, and all formulas in Γ occur negatively in S. If A∧B, A∨B, ∀xAx or ∃xAx
occur positively (negatively) in S, then A occurs positively (negatively) in S. If
A→ B occurs positively (negatively) is S, then B occurs positively (negatively)
in S and A occurs negatively (positively) in S. The strong quantifiers in a
sequent are the positive occurrences of universal quantifiers and the negative
occurrences of existential quantifiers. The weak quantifiers are the quantifiers
that are not strong.

2.1 The calculus LJE

The sequent calculus LJE (Figure 1) is an analogue of LJ that includes the
existence predicate E and formalizes the intuition that Et means t exists. A
single-succedent version of the calculus has been introduced in [3]. The system
has no rules for weakening and contraction, but these are admissible. A proof
system for existence logic was first introduced by Scott in [22], but then in a
Hilbert-style formulation.
We let LJEex and LJdec be, respectively, the systems LJE and LJ extended by
the following rules, where P ranges over atomic formulas different from E (“ex”
standing for both ex istence and excluded middle, and “dec” for decidability):

Γ, P ⇒ ∆
Γ⇒ ¬P, ∆

Γ⇒ P, ∆
Γ,¬P ⇒ ∆
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Ax Γ, P ⇒ P, ∆ (P atomic) L⊥ Γ,⊥ ⇒ ∆

Γ, A, B ⇒ ∆
L∧

Γ, A ∧B ⇒ ∆

Γ⇒ A, ∆ Γ⇒ B, ∆
R∧

Γ⇒ A ∧B, ∆

Γ, A⇒ ∆ Γ, B ⇒ ∆
L∨

Γ, A ∨B ⇒ ∆

Γ⇒ A, B, ∆
R∨

Γ⇒ A ∨B, ∆

Γ, A→ B ⇒ A, ∆ Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Γ, A⇒ B
R→

Γ⇒ A→ B, ∆

Γ, ∀xAx, At⇒ ∆ Γ, ∀xAx⇒ Et, ∆
L∀

Γ,∀xAx⇒ ∆

Γ, Ey ⇒ Ay
R∀

Γ⇒ ∀xA[x/y], ∆

Γ, Ay, Ey ⇒ ∆
L∃

Γ, ∃xA[x/y]⇒ ∆

Γ⇒ A, ∆ Γ, A⇒ ∆
Cut

Γ⇒ ∆

Γ⇒ At, ∃xAx, ∆ Γ⇒ Et, ∃xAx, ∆
R∃

Γ⇒ ∃xAx, ∆

Figure 1: The sequent calculus LJE. (In L∃ and R∀ y does not occur free in Γ and
∆.)

2.2 The calculus LJEL

In the calculus LJE, for no term is it assumed that is exists. This implies that
one cannot derive formulas such as ⇒ ∃xEx or ∀xPx ⇒ Pt, although one can
derive ∀xPx, Et ⇒ Pt. This, of course, is undesirable, but as we will see, it
is crucial in eskolemization that not all terms do exist, that is, that not for all
terms t, Et is derivable. This is the reason for working with two languages: all
terms of the language L exist, while the terms in Le\L do not. That is, we add
the following set of axioms to LJE:

AxL ≡def {Γ⇒ Et, ∆ | t is a closed term in L and Γ and ∆ are multisets}.

LJEL is LJE extended by AxL, and LJEex
L is defined similarly. We write `, `ex,

`LJ, and `dec for derivability in respectively LJEL, LJEex
L , LJ and LJdec.

Recall that L contains at least one constant. Therefore AxL contains at least
one sequent, which implies that (⇒ ∃xEx ∧ ∀xEx) is derivable. In [3] single-
succedent versions of LJE and LJEL have been introduced that satisfy a similar
kind of cut-elimination as LJE and LJEL, Theorem 1. Also, these systems are
well-behaved in the sense that they have interpolation and the Beth property,
and a decidable quantifier-free fragment.
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2.3 Theories

The theories we consider are in Le and defined over the logic LJEL, unless
explicitly stated otherwise. If a theory is said to be in L we consider it a theory
over LJ. We assume that every theory is axiomatized over one of the logics by
a set of sequents, that is, the theories do not contain additional rules. Since
every theory is equivalent to such a theory, this does not exclude any theories,
but just facilitates the arguments below. All theories that we will consider
are closed in the sense that the free variables in the axioms are considered to
be universally quantified, or equivalently, that we may substitute any term for
them. Of course, in the context of LJ these terms belong to L, while in the
context of LJE they belong to Le and have to exist, as quantifiers range over
existing objects only. This implies that we have to change the axioms slightly
if we consider a theory over LJ a theory over LJE. We explain how.
Given a theory T in L, T dec is the theory in which the logic LJ is replaced by
LJdec, and T e (T ex) is the theory in which the logic LJ is replaced by LJEL
(LJEex

L ), and the axioms Γ ⇒ ∆ of T that are not part of the underlying logic
by Ex̄, Γ ⇒ ∆, where x̄ are all the free variables in Γ ⇒ ∆. Note that T e `ex

equals T ex `.
Thus under these conventions, in going from T to T e or T ex, an axiom of the
form ⇒ Bx is replaced by Ex ⇒ Bx, and stands for ⇒ ∀xBx. This is the
reason for adding Ex̄ to the antecedents of the axioms: the quantifier ∀ ranges
over existing objects, and if we did not add Ex̄, we could derive Bt also for
terms t that do not exist.
A theory is atomic if it is axiomatized by sequents in which only atomic formulas
occur. A strong quantifier theory is axiomatized by sequents without weak
quantifiers.
It is easy to see that the following lemma holds.

Lemma 1 [3] If a theory T and a closed sequent S are in L, then

T `LJ S if and only if T e ` S T `dec S if and only if T e `ex S.

2.4 Fragments

The L-fragment is the set of sequents that are in L. The quantifier-free fragment
of a theory consists of all quantifier-free sequents in the language of the theory.
In the strong quantifier fragment (sq) the sequents do not contain weak quan-
tifiers. In the strong existential weak quantifier fragment (sewq) the sequents
do not contain strong universal quantifiers. The strong existential quantifier
fragment (seq) is the intersection of the sq and the sewq fragment. In the no
nesting of strong quantifiers in the scope of weak quantifiers fragment (nnswq)
the sequents do not contain strong quantifiers that are in the scope of weak
quantifiers.
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2.5 Cut-elimination

The cut-hull of a theory is the set of all sequents that have a derivation in T in
which all inferences are cuts or axioms of T (including the axioms of LJEL). It
is not difficult to prove the following theorem, but we do not need it in what
follows, and have therefore omitted the proof. Note that it implies that the
quantifier-free fragment of atomic theories is decidable.

Theorem 1 For every atomic theory T , every sequent derivable in T has a
proof in T in which the conclusion of every cut belongs to the cut-hull of T .

3 Models

In the completeness proof below, Kripke models for the logic LJEL are used,
and in this section we describe these models. They are close to regular Kripke
models, the only difference being that the existence predicate is used in the
forcing of quantifiers. Because of the existence predicate, we can without loss
of generality assume that the models have constant domains: since quantifiers
are assumed to range over existing objects, k  Ed will replace d ∈ Dk.
A classical existence model is a classical model for Le defined in the usual
way, with the additional requirement that the interpretation of the existence
predicate is nonempty. To fix the notation we spell out the definition. The
model consists of a pair (D, I), where D is a set and I a map on Le such that
I(E) is a nonempty unary predicate on D, for every n-ary predicate P in Le,
I(P ) is an n-ary predicate on D, and for every n-ary function f in Le, I(f) is
an n-ary function from Dn to D (constants are 0-ary functions). I is extended
to the interpretation of formulas in the standard way. For terms ti, I(t1, . . . , tn)
is short for I(t1), . . . , I(tn). d̄ ∈ D means that di ∈ D for all di in the sequence
d̄.
A Kripke existence model is a quadruple K = (W,4, D, I), where (W,4) is a
rooted frame, D a nonempty set, the domain, and I a collection {Ik | k ∈ W}
such that the (D, Ik) are classical existence models satisfying the persistency
requirements, which means that for terms t̄(x̄) we have

k 4 l ⇒ ∀d̄ ∈ D : (D, Ik) |= P (d̄) ⇒ (D, Il) |= P (d̄)
k 4 l ⇒ ∀d̄ ∈ D : Ik(t̄(d̄)) = Il(t̄(d̄)).

In particular, Ik(t) = Il(t) for all closed terms t, since frames are rooted. When
it is clear from the context that we work in Le and not in L we talk about
(Kripke) models instead of Kripke existence models.
Given a Kripke existence model K = (W,4, D, I), the forcing relation is defined
as follows. For predicates P (t̄(x̄)) in Le (including E), where x̄ are the free
variables in the terms t̄:

∀d̄ ∈ D : K, k  P (t̄(d̄)) ≡def (D, Ik) |= P (t̄(d̄)).
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We define  in the usual way for connectives, but differently for the quantifiers:

k  ∃xA(x) ⇔ ∃d ∈ D k  Ed ∧A(d)
k  ∀xA(x) ⇔ ∀d ∈ D : k  Ed→ A(d).

Note that
k  ∀xA(x) ⇔ ∀l < k∀d ∈ D l  Ed→ Ad.

A formula A(x̄) is forced in K, K  A(x̄), if for all ā ∈ D, A(ā) is forced at
all nodes. A sequent S = (Γ ⇒ ∆) is forced, when I(S) is forced. K is an
L-model when it forces all sequents in AxL. K is a tree if its frame is a tree.
It is well-founded if its frame has no infinite descending chains, and conversely
well-founded if its frame has no infinite ascending chains. Finite models are
obviously conversely well-founded and well-founded.

Theorem 2 [4] For all theories T and all closed sequents S: T ` S if and only
if K  S for all L-models K that are well-founded trees and force T .

Since T ex can be viewed as a theory over LJE containing the axioms⇒ ∀x̄(P (x̄)∨
¬P (x̄)), for all atomic formulas P (x̄), the previous theorem implies the following
theorem.

Theorem 3 For all theories T and all closed sequents S: T `ex S if and only
if K  S for all L-models K that are well-founded trees and force T ex.

3.1 Correspondence

There is a natural correspondence between Kripke models K in the usual sense,
for L, and Kripke existence models Ke for Le. K and Ke only differ in their
domains and the language in which they are a model: if the Dk are domains of
K, then the domain of Ke is

⋃
Dk, and the existence predicate and the domains

of K are connected in the following way:

Ke, k  Ed ⇔ d ∈ Dk.

The interpretations of Ke are extensions of the interpretations of K to Le that
interpret all functions in Le\L as the identity on D, and all predicates in Le\L,
except E, as empty. (in fact, one could interpret them by arbitrary functions
and predicates on D). The following lemma is easy to prove.

Lemma 2 For all closed sequents S in L: K, k  S ⇔ Ke, k  S.

Proof It suffices to show by induction that K, k  Γ ⇒ ∆ if and only if
Ke, k  Et̄, Γ⇒ ∆, where t̄ are all terms that occur in Γ⇒ ∆. ♥
A similar correspondence between Kripke models with and without constant
domains can be found in the paper [13] by Dick de Jongh.
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3.2 The witness property

In this section we introduce a semantical property that is a sufficient condition
for the completeness of eskolemization for a theory.
Given a formula Ax, an existence Kripke model has the A-witness property if it
is a well-founded tree and the following holds:

k 6 ∀xAx ⇒ ∃d∃l < k
(
l 6 Ad and l  Ed ∧ (Ad→ ∀xAx)

)
.

If the model satisfies this property for all formulas A it has the witness property.
A theory has the (A-)witness property if it is sound and complete with respect
to a class of models that satisfy the (A-)witness property.
The name of the property corresponds to the fact that Ad functions as a witness
of ∀xAx along any branch through l: Ed→ Ad is forced exactly where ∀xAx is
forced. The well-foundedness implies that there is a witness for formulas ∃xAx
too: if it is forced along a branch, there is a lowest node where it is forced, say
Ed∧Ad is forced there. Then along that branch, ∃xAx is forced exactly where
Ed ∧Ad is forced.
Below are examples of models with and without the witness property: the model
in Figure 2 has the witness property and the two models in Figure 3 do not.
Note that in the left model in Figure 3 ¬∀xA(x) is forced, and in the right
model ¬¬∀xA(x).

k2  Ed ∧Ad ∧ ∀xAx k3  Ed ∧ ¬Ad ∧ ¬∀xAx

k1  Ed ∧ (Ad→ ∀xAx)

jjUUUUUUUUUUUUUUUUU

44hhhhhhhhhhhhhhhhhh

k0 6 ∀xAx

OO

Figure 2: A model that has the witness property

In the introduction we saw that the double negation shift , ∀x¬¬Ax⇒ ¬¬∀xAx,
is a counter example to the completeness of eskolemization, since it is not deriv-
able in intuitionistic existence logic while its eskolemized version, ∀x¬¬Ax ⇒
¬¬(Ec → Ac), clearly is. As we will see, eskolemization is complete for theo-
ries with the witness property. Therefore such theories should prove the double
negation shift, which indeed they do:

Lemma 3 Every theory with the witness property derives the double negation
shift.

Proof It suffices to show that every model K satisfying the witness property is
a model of the double negation shift. We therefore assume that k in K forces
∀x¬¬Ax, and show that for all l < k there exists a node m < l that forces ∀xAx.
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k  ∀xA(x)

...
...

OO

k2  A(d1)

OO

k2  A(d1)

OO

k1  A(d0)

OO

k1  A(d0)

OO

k0

OO

k0

OO

Figure 3: Two models that do not have the witness property. Their domain is
{d0, d1, . . . }, Edi is forced at all nodes, and  A(di) is written at the first node
where it is forced.

Let l < k. If l forces ∀xAx we are done. If not, the witness property implies
that there exists a node m < l that, for some d, forces Ed ∧ (Ad→ ∀xAx) and
not Ad. Since k forces ∀x¬¬Ax, it follows that m forces ¬¬Ad, and hence also
¬¬∀xAx. Thus there is a node above m, and hence above l, that forces ∀xAx,
which is what we had to show. ♥
That the converse of this lemma does not hold is illustrated by the rightmost
model in Figure 3, which is a model of the double negation shift, but does not
satisfy the witness property. The following theorem shows that many models
have the witness property.

Lemma 4 Every tree model that is well-founded and conversely well-founded
has the witness property. In particular every finite model does. Thus every
theory with the finite model property satisfies the witness property.

4 Eskolemization

In this section we recall the eskolemization procedure introduced in [4]. The
eskolem sequence of a formula A is a sequence of formulas A = A1, . . . , An = Ae

such that An does not contain any strong quantifiers and Ai+1 is the result of
replacing the first strong quantifier QxB(x) in Ai (when reading Ai from left
to right) by

Ef(y1, . . . , yn)→ B
(
f(y1, . . . , yn)

)
if Q = ∀, and by

Ef(y1, . . . , yn) ∧B
(
f(y1, . . . , yn)

)
if Q = ∃,

10



where f ∈ Le\L does not occur in Ai, and the weak quantifiers in the scope of
which QxB(x) occurs are exactly Qy1, . . . , Qyn. If we work in the context of
a theory T , it is also assumed that the skolem functions f do not occur in the
axioms of T . The notion is extended to sequents in a straightforward way: if
S = (Γ ⇒ ∆) and

(
I(Γ ⇒ ∆)

)e = I(Γ′ ⇒ ∆′), then Se ≡def (Γ′ ⇒ ∆′). This
transformation (·)e on formulas and sequents is called existence skolemization,
or eskolemization for short.
Note that if QxB(x) is not in the scope of weak quantifiers, then f is a constant,
and that given S, Se is unique up to renaming of the skolem functions. Therefore
we speak of the eskolemization of a sequent.
Observe that classical skolemization is existence skolemization without the ex-
istence predicate, that is, without “Ef(y1, . . . , yn)→” and “Ef(y1, . . . , yn)∧”.
Clearly, `LJE A⇒ Ae. Hence also

` S ⇒ ` Se.

Here follow some examples of eskolemization (P and Q are unary predicates):

S = ∃xPx⇒ ∀xQx Se = Ec ∧ Pc⇒ Ed→ Qd

S = ∀x∃yR(x, y)⇒ Se = ∀x(Ef(x) ∧R(x, f(x)))⇒

Using the completeness result in [4] it can be shown that

6` ∀x(Ax ∨B)⇒ (∀xAx ∨B) 6` ∀x(Ax ∨B)⇒ ((Ec→ Ac) ∨B)
6` ¬¬∃xAx→ ∃x¬¬Ax 6` ¬¬(Ec→ Ac)→ ∃x¬¬Ax.

Thus although these sequents are counterexamples to the completeness of skolem-
ization, since IQC derives ∀x(Ax ∨B)⇒ (Ac ∨B) and ¬¬Ac→ ∃x¬¬Ax, they
are no longer so for eskolemization. That eskolemization is still not complete
with respect to all formulas is illustrated by the double negation shift, which
was discussed in the section on the witness property. As mentioned in the intro-
duction, an alternative skolemization method was developed in [5] that applies
to all constructive theories, and therefore covers more theories than the ones
discussed in this paper.

5 Completeness

In this section we prove the completeness of eskolemization with respect to
theories that satisfy the witness property. We treat the existential and universal
quantifiers separately, in Lemma 5 and 6. They state that for S′ being the
result of replacing a strong existential quantifier ∃xA(x) by Ef(ȳ)∧A(f(ȳ)), or
a strong universal quantifier ∀xA(x) by Ef(ȳ)→ A(f(ȳ)), it holds that

T ` S ⇔ T ` S′. (1)
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Lemma 5, treating the existential quantifier, has been proved before, both se-
mantically and syntactically [4, 6]. Here we present a somewhat different se-
mantical proof, because in this form it resembles the universal case. Also, the
proof for the existential quantifier is simpler, and might help the reader to better
understand the proof for the universal quantifier.
We first sketch the idea of the proof before we proceed with the technical details.
The direction from left to right of (1) is straightforward. For the other direction
we restrict ourselves to the case that f is a constant c; the general case will be
treated in the proofs. We consider a countermodel K = (W,4, I, D) to S, and
from this construct a countermodel K ′ = (W,4, I ′, D′) to S′. D′ consists of
all closed terms in D ∪ Le, and terms are interpreted as themselves in K ′. To
make K ′ into a countermodel to S′ we define the forcing in K ′ in such a way
that Ec∧Ac is forced in K ′ at exactly those nodes where ∃xAx is forced in K,
or in the universal case, Ec→ Ac is forced in K ′ at exactly those nodes where
∀xAx is forced in K. If the forcing of other formulas remains unchanged, K ′

will indeed be a countermodel to S′.
To define the forcing in K ′, we choose for every node k an element ck in D∪{c},
which will correspond to c in the forcing at k in K ′. In the case of the existential
quantifier we consider the lowest nodes k where ∃xA(x) is forced, and pick an
element e ∈ D such that Ee ∧ A(e) is forced at k, and put cl = e for all nodes
l < k. In the case of the universal quantifier we consider the lowest nodes k
where, for some e ∈ D, Ae is not forced while Ee and (Ae → ∀xAx) are, and
put cl = e for all nodes l < k. In both cases, for all nodes l not yet treated, we
put cl = c. Note that in the latter case cl 6∈ D, while in the former case cl ∈ D.
That such nodes k and elements e exist follows from the fact that the models
satisfy the witness property.
When we treat all branches in this way, we have defined ck for all k in K. Given
a term d in D ∪ Le, dk denotes the term in which c is replaced by ck, and d̄k is
short for (d1)k, . . . , (dn)k. The forcing of atomic formulas is defined as follows.

∀d̄ ∈ D′ :
{

K ′, k  P (d̄) ⇔ K, k  P (d̄k) if d̄k ∈ D
K ′, k 6 P (d̄) otherwise.

Thus at the nodes where ck = c, all atomic formulas containing c are not forced
at that node. At the other nodes, the forcing is inherited from K, where c is
replaced by ck. It will be shown in the completeness proofs that c has the desired
properties: Ec ∧ A(c) or Ec → A(c) is forced in K ′ exactly where ∃xA(x) or
∀xA(x) is forced in K.
For the case in which we deal with an n-ary skolem function f instead of a
constant, we have to choose elements corresponding to f(d̄) at every node in
the model. We therefore construct a map w : W × (D′)n → D′ and let f(d̄)
correspond to w〈k, d̄〉 in the forcing at k in K ′. This completes the sketch of
the proof, and we continue with the technical details.

12



5.1 Companions

Since the construction of the model K ′ does not depend on the form of the
quantifier we are considering, we treat this construction separately in this sec-
tion. Suppose an n-ary function f , a model K = (W,4, I, D), and a map
w : W × (D′)n → D′ are given. The set of closed terms in (D ∪ Le)\{f} is
denoted by C. The model K ′ = (W,4, I ′, D′) we are going to define is called
the f -companion of K. In the completeness proof we will construct w is such a
way that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉. (2)

The domain D′ of K ′ is the set of closed terms in D ∪ Le, and terms are inter-
preted as themselves. To define the forcing of atomic formulas we inductively
define for every k ∈W the following translation dk on D′.

dk =


d if d ∈ D
Ik(d) if d is a constant in Le

Ik(g(ēk)) if d = g(ē), ēk ∈ C, and g 6= f
w〈k, ēk〉 if d = f(ē) and ēk ∈ C
f(c̄) if d = g(ē) for some g ∈ Le, and ēk 6∈ C.

Here c̄ denotes some fixed sequence of n elements in D′. Recall that d̄k denotes
(d1)k, . . . , (dn)k. Observe that if d does not contain f , dk ∈ C. The forcing of
atomic formulas P (x̄), including E, is defined in the following way.

∀d̄ ∈ D′ :
{

K ′, k  P (d̄) ⇔ K, k  P (d̄k) if d̄k ∈ C
K ′, k 6 P (d̄) otherwise.

The upwards persistency requirement for atomic formulas, and hence for all
formulas, is satisfied, because (2) implies

k 4 l ∧ dk ∈ C ⇒ dk = dl, (3)

That the upwards persistency requirement is also satisfied for terms follows from
the fact that terms are interpreted as themselves in K ′. Also note that

K ′, k  Ed ⇔ dk ∈ C ∧K, k  Edk. (4)

This model K ′, the f -companion of K, is the main ingredient in the following
two lemmas, which together form the completeness proof.

5.2 The completeness proof

Lemma 5 If T is a theory, S a closed sequent, ∃xAx is an occurrence of a strong
existential quantifier in S, and S′ is the result of replacing this occurrence by
Ef(ȳ)∧Af(ȳ), where ȳ are the variables of all the weak quantifiers in the scope
of which ∃xAx occurs, and f ∈ Le\L does not occur in S, then

T ` S ⇔ T ` S′.
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Proof The non-trivial part is to show that T 6` S implies T 6` S′. Since this
is a semantical proof, it is more convenient to consider sentences rather than
sequents. Therefore let C = I(S), and C ′ = I(S′), and suppose there is an
L-model K of T that refutes C. By Theorem 2 we can assume that K is a
well-founded tree. We will define a map w : W × (D′)n → D′ such that the
corresponding f -companion K ′ refutes C ′. We assume that ȳ consists of one
variable, the general case being similar. Thus A = A(x, y). The set of closed
terms in (D ∪ Le)\{f} is denoted by C.
w will be defined in stages, wi : W ×D′

i → D′, where D′
i are the terms of depth

i in D′, and w =
⋃

wi, that is, for d ∈ D′
i, w〈k, d〉 = wi〈k, d〉. For d ∈ D′

i, we
define di

k as in the definition of the f -companion, but then relativized to wi.
Thus for d a constant in D ∪ Le, we define

d0
k =

{
d if d ∈ D
Ik(d) if d is a constant in Le.

And given wi and d ∈ D′
i+1, di+1

k is defined as follows, where d̄j
k is short for

(d1)j
k, . . . , (dn)j

k.

di+1
k =

 Ik(g(ēi
k)) if d = g(ē), ēi

k ∈ C, and g 6= f
wi〈k, e〉 if d = f(e) and ei

k ∈ C
f(a) if d = g(ē) for some g ∈ Le, and ēi

k 6∈ C.

Here a denotes some fixed element in D′, it does not matter which one. Note
that for all d ∈ D′

0, d0
k is defined, and if wi is defined, then so is di+1

k for
all d ∈ D′

i+1. This implies that the following inductive definition of the wi is
well-defined. For i ≥ 0 and d ∈ D′

i, wi is defined as follows.

(a) Consider the lowest nodes k in K for which di
k ∈ C and ∃xA(x, di

k) is
forced at k in K. This means that for no node l below one of these k’s,
di

l ∈ C and l forces ∃xA(x, di
l). For all these lowest nodes k we pick an

element ck ∈ D for which k forces Eck ∧ A(ck, di
k) and put wi〈l, d〉 = ck

for all l < k. Note that because K is well-founded, such a node k exists
along every branch unless for all nodes l along the branch either di

l 6∈ C or
l 6 ∃xA(x, di

l).

(b) For all k and d ∈ D′
i for which wi〈k, d〉 is not defined in (a), put wi〈k, d〉 =

f(d).

Note that wi is indeed a map: for all k and d ∈ D′
i, wi〈k, d〉 is not defined twice,

as K is a tree.
The case that f has larger arity than 1 is similar to the case we consider here. For
the case that f is a constant, the definition of w0 has to be changed accordingly.
This was explained in the proof sketch above. It is easy to show with induction
on i that for d ∈ D′

i, dk, as defined in the definition of f -companion, equals di
k.
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In the following observations we use that in the definition of wi, in (a) we have
wi〈k, d〉 ∈ D ⊆ C, and in (b) we have wi〈k, d〉 6∈ C. It is easy to prove by
induction on wi that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉.

Hence (3). Recall that (4) holds too.
To complete the theorem it suffices to show that K ′, k  C ′ ⇔ K, k  C and
that K ′ is a model of T . We first show that for all formulas B,

∀d̄k ∈ C : K ′, k  B(d̄) ⇔ K, k  B(d̄k). (5)

We prove this by induction on the complexity of B. If B is a predicate, the
definition of the forcing of atomic formulas in K ′ applies. Conjunction, disjunc-
tion, and implication are straightforward. Note that for implication we use (3).
We treat the quantifiers, where we suppress d̄.
∀ ⇒: If K, k 6 ∀zB(z), then there is some l < k and e ∈ D such that K, l  Ee
and K, l 6 B(e). Since e ∈ D, el = e and thus el ∈ C. Therefore K ′, l  Ee and
K ′, l 6 B(e) by the induction hypothesis. Hence K ′, k 6 ∀zB(x).
⇐: If K ′, k 6 ∀zB(z), then there is some l < k and e ∈ D′ such that K ′, l  Ee
and K ′, l 6 B(e). Hence el ∈ C by (4). Thus K, l  Eel and K, l 6 B(el) by
the induction hypothesis. Hence K, k 6 ∀zB(x).
∃ This follows from the induction hypothesis in the same way as for the universal
quantifier. This proves (5). From this it follows that K ′ is a model of T .
It remains to show that

∀ek ∈ C : K ′, k  Ef(e) ∧A(f(e), e) ⇔ K, k  ∃xA(x, ek). (6)

For together with (5) a straightforward induction on subformulas of C that are
not subformulas of A(x, y), shows that K ′, k  C ′ ⇔ K, k  C. The proof of
(6) runs as follows.
⇒: Suppose K ′, k  Ef(e)∧A(f(e), e). K ′, k  Ef(e) implies f(e)k ∈ C by (4).
Thus by (5) K, k  Ef(e)k∧A(f(e)k, ek), which implies that K, k  ∃xA(x, ek).
⇐: Suppose K, k  ∃xA(x, ek). By the definition of w there exists a lowest node
l 4 k for which el ∈ C, and for which for some c ∈ D, K, l  Ec ∧ A(c, el), and
w〈m, e〉 = c for all m < l. Note that since el ∈ C and l 4 k, ek = el. Hence
K, k  Ec∧A(c, ek). Since el ∈ C and l 4 k, we have f(e)k = f(e)l = w〈l, e〉 = c,
and thus K ′, k  Ef(e) ∧A(f(e), e) by (5). ♥

Lemma 6 If a theory T satisfies the A-witness property, S is a closed sequent,
∀xAx is an occurrence of a strong universal quantifier in S, and S′ is the result
of replacing this occurrence by Ef(ȳ)→ Af(ȳ), where ȳ are the variables of all
the weak quantifiers in the scope of which ∀xAx occurs, and f ∈ Le\L does not
occur in S, then

T ` S ⇔ T ` S′.
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Proof The proof is similar to the proof of the previous lemma, except that
the countermodel K that we consider now is a model that has the A-witness
property. Recall that this implies that it is a well-founded tree. Again we
assume that f is a unary function. The only difference lies in the definition of
wi and the proof of (6). In the definition of wi only the case (a) differs, which
is replaced by the following:

(a) Consider the lowest nodes k in K for which di
k ∈ C, and for some c ∈ D,

k forces Ec and A(c, di
k)→ ∀xA(x, di

k) but not A(c, di
k). This means that

for no node l below one of the k’s there is an e ∈ D such that l forces Ee
and A(e, di

l)→ ∀xA(x, di
l) but not A(e, di

l). For all these lowest nodes k we
pick an element ck ∈ D such that k forces Eck and A(ck, di

k)→ ∀xA(x, di
k)

but not A(ck, di
k), and put wi〈l, d〉 = ck for all l < k.

That wi is indeed a map, that is, for all k and d ∈ D′
i, wi〈k, d〉 is not defined

twice, is not difficult to see. It is easy to show by induction on i that for d ∈ D′
i,

dk, as defined in the definition of f -companion, equals di
k, and that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉.

To complete the theorem it suffices to show that K ′, k  C ′ ⇔ K, k  C and
that K ′ is a model of T . As in the proof of the existential quantifier, it suffices
to show that

∀d̄k ∈ C : K ′, k  B(d̄) ⇔ K, k  B(d̄k), (7)

and that

∀ek ∈ C : K ′, k 6 Ef(e)→ A(f(e), e) ⇔ K, k 6 ∀xA(x, ek). (8)

The proof of (7) is the same as the proof of (5) in the previous lemma. As in
the existential case, (7) implies that K ′ is a model of T , and together with (8)
it implies K ′, k  C ′ ⇔ K, k  C.
Thus it remains to show (8).
⇒: Let l < k be such that K ′, l  Ef(e) and K ′, l 6 A(f(e), e). Since ek ∈ C,
el = ek by (3). Also, l  Ef(e) implies f(e)l ∈ C by (4). Thus by the
induction hypothesis K, l  Ef(e)l and K, l 6 A(f(e)l, el), which implies that
K, k 6 ∀xA(x, ek).
⇐: Suppose K, k 6 ∀xA(x, ek). By the witness property there exists a node
m < k such that for some b ∈ D, m forces Eb and A(b, ek) → ∀xA(x, ek), but
not A(b, ek). Note that ek = em ∈ C. Because K is a well-founded tree, there is
a smallest such node l 4 m, for which el ∈ C, and which forces Ec and A(c, el)→
∀xA(x, el), but not A(c, el), for some c ∈ D. The definition of w implies that for
some c with this property, w〈n, e〉 = c for all n < l. Thus f(e)l = c ∈ C. Hence
by (7), K ′, l  Ef(e) and K ′, l 6 A(f(e), e). Thus K ′, l 6 Ef(e)→ A(f(e), e).
We have to show that K ′, k 6 Ef(e) → A(f(e), e). We distinguish the cases
k 4 l and l ≺ k. The first case is immediate. If l ≺ k, then K ′, k  Ef(e). From
el = ek it follows that K, k  A(c, ek) → ∀xA(x, ek). Since K, k 6 ∀xA(x, ek),
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also K, k 6 A(c, ek). Since f(e)k = f(e)l = c, K ′, k 6 A(f(e), e) by (7). Hence
K ′, k 6 Ef(e)→ A(f(e), e). ♥
Lemmas 1, 4, 5, and 6 imply the following theorems. Note that the theories in
the theorems include theories of the form T ex or T dec, that is, which logic is
LJEex

L or LJdec.

Theorem 4 For every theory T with the witness property, and every closed
sequent S:

T ` S ⇔ T ` Se.

Theorem 5 For every theory T and every closed sequent S in the sewq frag-
ment:

T ` S ⇔ T ` Se.

Corollary 1 For every theory T with the finite model property, and every
closed sequent S:

T ` S ⇔ T ` Se.

Corollary 2 For every theory T in L for which T e has the witness property,
and every closed sequent S in L:

T `LJ S ⇔ T e ` S ⇔ T e ` Se.

Corollary 3 The sq fragment of every theory with a decidable quantifier-free
fragment and the witness property is decidable.

Corollary 4 The seq fragment of every theory with a decidable quantifier-free
fragment is decidable. This also holds for theories in L.

Mints proved in [17] that the sq fragment of LJ is decidable. The above theorem
holds in particular for empty T , and therefore implies a part of Mints’s result,
namely that the seq fragment of LJ is decidable. The same holds for LJE and
LJEL.
Note that it follows from Lemma 1 and Corollary 3 that for a theory T in L with
a decidable quantifier-free fragment, and for which T e has the witness property,
the sq L-fragment is decidable.

6 Herbrand’s Theorem

In the context of intuitionistic logic there is a natural analogue of Herbrand’s
theorem. Following [11], we define an analogue of the notion of ∧∨-expansion for
the setting of existence logic. Given a theory T and a sequent S, let H(T , S)
be the Herbrand universe of (T , S), which consists of all terms generated by
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the constants and functions occurring in S or in (the axioms of) T , that is,
H(T , S) =

⋃
Hi(T , S), where

H0(T , S) ≡def {t | t is a constant in S or T }
Hi+1(T , S) Hi(T , S) ∪ {f(t̄) | t̄ ∈ Hi(T , S) and f in S or in T }.

Note that terms in T include all terms in L, as theories contain the logic LJEL,
in which axioms all closed terms in L occur. A sequent S′ is an ∧∨-expansion of
a sequent S if every positive occurrence of an existential quantifier QxA(x) in S
is replaced by

∨n
i=1 Esi∧A(si) for some terms si ∈ H(T , S), and every negative

occurrence of a universal quantifier QxA(x) is replaced by
∧n

i=1(Eti → A(ti))
for some terms ti ∈ H(T , S). It is not difficult to prove the following analogues
of Herbrand’s theorem. Note that these theorems include theories of the form
T ex.

Theorem 6 For every strong quantifier theory T and for every sequent S there
exists an ∧∨-expansion S′ of S such that

T ` S ⇔ T ` S′.

Theorem 7 For every strong quantifier theory T that has the witness property
and for every S, there exists an ∧∨-expansion S′ of Se such that

T ` S ⇔ T ` Se ⇔ T ` S′.

Theorem 8 For every strong quantifier theory T and for every S in the sewq
fragment, there exists an ∧∨-expansion S′ of Se such that

T ` S ⇔ T ` Se ⇔ T ` S′.

Corollary 5 For every strong quantifier theory T and for every S in L in the
sewq fragment, there exists an ∧∨-expansion S′ of Se such that

T `LJ S ⇔ T e ` Se ⇔ T e ` S′.

If T e also has the witness property this holds for all sequents S in L.

7 Applications

Theorem 8 and Corollary 5 apply to many constructive theories, such as the
theory of groups and the theory of apartness as given in [26], and several order
theories discussed in [20], and Theorem 7 obviously applies to all strong quanti-
fier theories with the finite model property. Of course, there are many theories
without the witness property, but even for some of these the results above can
be obtained. We conclude the paper by discussing some typical examples of
such theories.
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7.1 Equality

Let iEq be the theory of intuitionistic equality without functions given by the
following axioms over the logic LJ:

Axeq ≡def ⇒ t = t,
t = s⇒ s = t,
r = s, s = t⇒ r = t.

Thus iEqe is LJEL extended by the following axioms:

Axeq ≡def Γ, Et⇒ t = t, ∆
Γ, Et, Es, t = s⇒ s = t, ∆
Γ, Et, Es,Er, r = s, s = t⇒ r = t, ∆.

Because the theory iEqe contains the predicate E it should also contain the
axiom Et,Es, t = s⇒ Es, which is the translation of the axiom t = s, P t⇒ Ps
that holds in equality logic in the presence of predicates P . Since, however,
this sequent is already derivable in LJEL we do not have to include it in the
axioms. We have to add the side formulas Γ and ∆ because LJE does not
contain weakening.
Theorem 4 and Corollary 8 imply the following.

Theorem 9 For every S in the sewq L-fragment, there exists an ∧∨-expansion
S′ of Se such that

iEq `LJ S ⇔ iEqe ` S ⇔ iEqe ` Se ⇔ iEqe ` S′.

Thus the seq fragment of iEq is decidable.

For iEqdec and iEqex we obtain a full version of Herbrand’s theorem by using
the following theorem by Craig Smoryński that shows that every formula is
equivalent to a formula in the nnswq fragment that contains no strong universal
quantifiers. Note that in the eskolemization of such formulas no functions occur.

Theorem 10 [24] In iEqdec every sequent S in L is equivalent to a sequent of
the form ⇒

∨n
i=1 Ai ∧ Bi, where the Ai are conjunctions of atomic formulas

and their negations, and the Bi are propositional combinations of the formula
∃x(x = x), denoted by E1, and the formulas

En ∃x1 . . . xn

∧
i6=j

xi 6= xj (n > 1).

The sequent ⇒
∨n

i=1 Ai ∧Bi is the normal form of S and denoted by Snf .

Corollary 6 For every S in L there exists an ∧∨-expansion S′ of Se
nf such that

iEqdec ` S ⇔ iEqex ` S ⇔ iEqex ` Se ⇔ iEqex ` S′.
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7.2 Monadic predicates

In the same way as for equality we can derive Herbrand theorems for the in-
tuitionistic theory of monadic predicates without functions, iMP, again using a
theorem by Smoryński. Let Pi range over the predicates in the language.

Theorem 11 For every S in the sewq fragment and in L, there exists an ∧∨-
expansion S′ of Se such that

iMP ` S ⇔ iMPe ` S ⇔ iMPe ` Se ⇔ iMPe ` S′.

Thus the seq fragment of iMP is decidable.

Theorem 12 [24] In iMPdec every sequent S in L is equivalent to a sequent
⇒
∨n

i=1 Ai ∧ Bi, where the Ai are conjunctions of atomic formulas and their
negations, and the Bi are propositional combinations of the formulas

∃x(
m∧

i=1

Pi(x) ∧
n∧

j=1

¬Pj(x).

The sequent ⇒
∨n

i=1 Ai ∧Bi is the normal form of S and denoted by Snf .

Corollary 7 For every S in L there exists an ∧∨-expansion S′ of Se
nf such that

iMPdec ` S ⇔ iMPex ` S ⇔ iMPex ` Se ⇔ iMPex ` S′.

Smoryński uses Theorem 10 and Theorem 12 to prove that iEqdec and iMPdec

are decidable. This does not follow directly from Corollaries 6 and 7 as one has
to bind the number of expansions of a sequent to obtain it. This can be done,
but because of lack of space we will not do so in this paper.
Similar theorems as the ones discussed above could be obtained for other theories.
The theories treated here are just some typical examples of the possible appli-
cations of eskolemization.
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oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte
Mengen, Skrifter utgitt av Videnskapsselskapet i Kristiania, I, Mat. Naturv.
Kl. 4, 1920. (p.1993-2002)
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