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Abstract

In this paper an alternative Skolemization method is introduced that for
a large class of formulas is sound and complete with respect to intuition-
istic logic. This class extends the class of formulas for which standard
Skolemization is sound and complete and includes all formulas in which
all strong quantifiers are existential. The method makes use of an exis-
tence predicate first introduced by Dana Scott.
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1 Introduction

Skolemization is the replacement of strong quantifiers in a sequent by fresh
function symbols, where a strong quantifier is a positive occurrence of a universal
quantifier or a negative occurrence of an existential quantifier. Skolemization
can either be considered in the context of derivability or of satisfiability. In this
paper we take the former approach; in the latter instead of the strong quantifiers
the weak quantifiers are replaced.

Of course, Skolemization applies to formulas as well, but in this paper
we will mainly use sequents instead of formulas and only at the end list the
corresponding results for formulas. Via Skolemization one obtains a sequent
that is equiderivable with the original sequent and that does not contain any
strong quantifiers anymore. This idea goes back to Skolem, in his seminal pa-
per from 1920. Together with Herbrand’s theorem Skolemization provides a
connection between predicate and propositional logic. For a prenex formula
A = ∃x1∀y1 . . . ∃xn∀ynP (x1, y1, . . . , xn, yn), with P quantifier free, this corre-
spondence takes the following form: there are terms tij such that

LK # (⇒ A) ⇔ LK #
(
⇒

m∨

i=1

P (ti1, f1(ti1), . . . , tin, fn(ti1, . . . , tin))
)
,
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where LK is the standard Gentzen calculus for classical predicate logic, and the fi

are ‘fresh’ function symbols, not occurring in A. As in classical logic all formulas
have a prenex normal form this provides a correspondence between derivability
in predicate and propositional logic, that is, of derivability in predicate logic and
in a decidable theory. Of course, the terms tij cannot be found recursively in A
as this would make predicate logic decidable. Nevertheless, Skolemization and
Herbrand’s theorem can be very useful, and are extensively used in automated
theorem proving.

We let SS denote the Skolemization of a sequent S. Note the two different
uses of S: in (·)S it stands for the Skolemization translation, in S it ranges
over sequents. We say that Skolemization is sound or complete for L if in the
following equivalence ⇒ respectively ⇐, holds:

∀S : L # S ⇔ L # SS . (1)

Thus Skolemization is sound and complete for classical logic. For prenex se-
quents, i.e. sequents in which all formulas in the sequent are in prenex normal
form, it is known that Skolemization is also sound and complete in the set-
ting of intuitionistic logic [16, 17]. Clearly, this does not imply soundness and
completeness for all sequents, since not all sequents have a prenex form in in-
tuitionistic logic. This, however, is not the real problem in this setting: even if
one Skolemizes infix sequents on the spot (definition in Section 2) Skolemization
fails to be complete, but is sound:

S #LJ SS and LJ # SS '⇒ LJ # S.

The following sequents

∀x(Ax ∨ B) ⇒ (∀xAx ∨ B) ¬¬∃xAx ⇒ ∃x¬¬Ax. (2)

illustrate these facts. They are not derivable in LJ, but their Skolemizations

∀x(Ax ∨B) ⇒ Ac ∨B ¬¬Ac ⇒ ∃x¬¬Ax, (3)

are. Many more counter examples to the completeness of Skolemization can
be found in the papers [16, 17] by Mints in which a full characterization of the
sequents for which (1) holds is given. This characterization and its completeness
proof are complicated, which already shows that in the context of intuitionistic
logic Skolemization is a non trivial affair.

In this paper we define an alternative Skolemization method, called eSkolem-
ization and denoted by (·)s, that is sound and complete for a class of sequents
S∃ that is a proper extension of the class of sequents for which Skolemization
is sound and complete. For example, it contains the formulas in (3), and all
sequents in which all strong quantifiers are existential. In the remainder of the
introduction we will discuss the main idea behind this alternative Skolemization
method, all definitions and precise details will follow in the next section.

1.1 The existence predicate and eSkolemization

ESkolemization makes use of a so-called existence predicate first introduced by
Dana Scott in [21]. This predicate, E, denotes whether a term exists: Et means
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t exists. The idea is that terms may denote partial objects but quantifiers range
over existing objects only. Using this predicate one can formulate an extension
IQCE of intuitionistic predicate logic IQC that covers the meaning of this pred-
icate, as was done in [21]. A Gentzen calculus LJE corresponding to IQCE was
first introduced in [1] and will be recalled in Section 3 below. Based on this
notion of existence eSkolemization is defined as follows: in a sequent, negative
occurrences ∃xA(x, ȳ) are replaced by Ef(ȳ) ∧ A(f(ȳ), ȳ) and positive occur-
rences ∀xA(x, ȳ) by Ef(ȳ) → A(f(ȳ), ȳ). Thus, when considering the case that
f(ȳ) = c, the existential statements are replaced by “c exists and A(c) holds”
and the universal statements are replaced by “if c exists, then A(c) holds”. The
original sequents we consider are in a language L, the eSkolemized sequents are
in a language L′ that includes the Skolem functions and the existence predicate.
SL denotes the set of sequents in L.

As it turns out, eSkolemization has many of the nice properties that one
would wish any reasonable alternative to Skolemization to have. For example,
it satisfies:

* The eSkolemization Ss of a sequent S is a sequent in which all quantifiers
are weak.

* There is a simple, recursive, way in which we can obtain Ss from S.

Completeness we do not have for LJ pure, as this system does not cover the
existence predicate occurring in eSkolemized sequents. We therefore have to
move to LJE, and then we do have (Corollary 8.14), for a set of axioms ΣL and
set of sequents S∃ to be defined below, that

∀S ∈ S∃ ∩ SL : #LJ S ⇔ ΣL #LJE Ss. (4)

The system LJE together with the axioms ΣL is a very natural extension of LJ,
Scott in [21] gives many reasons for extending intuitionistic logic in this way. In
fact, for sequents in the language L it is equal to LJ:

∀S ∈ SL : #LJ S ⇔ ΣL #LJE S. (5)

Moreover, like LJ, ΣL #LJE is decidable for quantifier free formulas (Section 4.10).
For all this reasons one might say that the eSkolemization method solves the
Skolemization problem for LJ with respect to existential quantifiers.

Finally, let us remark that (4) also holds for the system LJE itself (Theo-
rem 8.13):

∀S ∈ S∃ ∩ SL : ΣL #LJE S ⇔ ΣL #LJE Ss. (6)

1.2 Alternative approaches

In the context of automated theorem proving the lack of Skolemization in intu-
itionistic logic is often overcome by putting certain restrictions on proofs. Here
not all proofs in IQC are considered but only a proper subset P of its proofs,
for which it is shown that

IQC # A ⇔ ∃P ∈ P (P is a proof in IQC of AS).

Approaches along these lines have e.g. been introduced in [9, 10, 15, 18, 22].
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In this paper we have taken a different approach. Our aim was to define an
alternative Skolemization method that satisfies properties that standard Skolem-
ization has in classical logic, properties like the ∗’s and (4) above, and for which
the (partial) completeness proof does not put restrictions on proofs, like the P
above. Of course, our final aim is to have a method that satisfies (4) for all
sequents. Although our results are still partial in this respect, we think them
of interest, as in contrast to most approaches in automated theorem proving so
far, they provide a canonical approach to Skolemization in intuitionistic logic
which does not put restrictions on the proofs allowed and which moreover is
based on a clear intuition about what terms in intuitionistic logic should mean.
This intuition will be explained in more detail in the next section.

1.3 Section contents

Section 2 contains the definitions of Skolemization and eSkolemization and ex-
plains the idea behind the latter. Section 3 introduces the Gentzen calculi LJE
and LJE(ΣL). Section 4 recalls results from [1, 2] on the proof theory of these
calculi. In Section 6 an alternative Kripke style semantics is introduced, which
is shown to be sound and complete with respect to LJE(ΣL) in Section 7. In
Section 8 the class of sequents S∃ is defined and it is shown that for this class
eSkolemization is sound and complete. Section 8.16 contains examples that
show that eSkolemization is not complete with respect to all sequents. Sec-
tion 9 contains the translation of the obtained results to IQC, i.e. to the setting
of formulas.

2 Skolemization and eSkolemization

In this section we give the definitions of classical Skolemization (·)S , introduce
the alternative Skolemization method (·)s, and discuss the ideas underlying the
latter definition and the proofs to come.

2.1 Preliminaries

We consider languages L, Ls, Le and Le
s as explained in the introduction: Ls is

the Skolem language for L: an extension of L by function symbols that are not
in L, for every arity infinitely many. Constants are considered as 0-ary function
symbols. Le is the extension of L by the existence predicate E and by infinitely
many variables. Le

s is the extension of Ls by the existence predicate E and
infinitely many variables. Thus L ⊆ Le and L ⊆ Ls ⊆ Le

s. Most of the time
we denote Le

s by L′ to decrease the number of indices. Thus L′ is the biggest
language that we work with. If we talk about a formula without specifying in
which language it is, it is tacitly assumed to be in L′. None of the languages
contain equality, see the last section for the reason for this. We assume that
L contains at least one constant and no variables. The former requirement is
needed to make the construction of the reduction trees work: see Definition 7.6,
the remark at the case R∀. The latter requirement will be clarified after the
introduction of the Gentzen calculi. Given a set D, L′

D denotes the language
L′ extended by the elements of D, which are considered as constants of the
language, similarly for LD.
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The languages all contain ⊥, and ¬A is defined as A → ⊥. A, B, C, D, E, ..
range over formulas in Le

s, s, t, .. over terms in Le
s. Γ, ∆, Π range over finite

multisets of formulas in Le
s. A formula is closed when it does not contain free

variables. A sequent Γ ⇒ ∆ is closed if all formulas in Γ ∪ ∆ are closed. A
sequent is in L′ if all its formulas are in L′. For a formula A in which x does not
occur as a bound variable we write A[t/x] for the result of substituting t for x
everywhere in A. When we write A(x) then A(t) denotes the result of replacing
some, namely the indicated occurrences of x in A by t. Similar notions are
defined for sequents. Proofs are assumed to be trees. We assume that in a proof
bound variables and eigenvariables are all different. We often write Ax for A(x).
d̄ ranges over finite sequences of elements d1, . . . , dn. For a set D we write d̄ ∈ D
when all elements of d̄ are in D, and d̄ '∈ D when some element of d̄ is not in
D. TL′ denotes the set of terms in L′, FL′ denotes the set of formulas in L′,
SL′ denotes the set of sequents in L′. Similarly for the other three languages.

The notion of positive and negative occurrences of a formula are inductively
defined as follows. If A is an atom A occurs positively in A. If A occurs
positively (negatively) in B, then it occurs positively (negatively) in B ∧ C,
C ∧ B, B ∨ C, C ∨ B, C → B, ∀xB and ∃xB, and negatively (positively) in
B → C. Similar notions s are defined for sequents Γ ⇒ ∆ by considering them
as formulas

∧
Γ →

∨
∆.

2.2 Skolemization

Definition 2.3 Q denotes either ∀ or ∃. A strong quantifier in a formula A is
the occurrence of a subformula of the form QxB(x) in A, where Q = ∀ if the
occurrence is positive, and Q = ∃ if the occurrence is negative. The first strong
quantifier in A is the first strong quantifier in A when reading A from left to
right.

The Skolem sequence of a formula A is a sequence of formulas A = A1, . . . , An =
AS such that An does not contain any strong quantifiers and Ai+1 is the re-
sult of replacing the first strong quantifier QxB(x) in Ai by B

(
f(y1, . . . , yn)

)
,

where f ∈ Ls\L does no occur in Ai, and the weak quantifiers in the scope
of which QxB(x) occurs are exactly Qy1, . . . , Qyn. The formula AS is called
the Skolemization of A. In the proofs to come it necessary to define a Skolem-
ization sequence in this deterministic way because in the proof we need that
the replaced formula does no occur in the scope of any other strong quantifiers
anymore.

The definition of Skolemization we carry over to sequents by considering a
sequent Γ ⇒ ∆ as the formula

∧
Γ →

∨
∆. Define

M ≡def {S ∈ SL | S closed, LJ # S ⇔ LJ # SS}. (7)

As is well-known for classical predicate logic:

LK # S if and only if LK # SS . (8)

This is no longer true for LJ as the examples (2) above showed.
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2.4 ESkolemization

In this section we introduce the notion of eSkolemization. We will first present
the definition and afterwards explain the idea behind it.

Definition 2.5 The eSkolem sequence of a formula A is a sequence of formulas
A = A1, . . . , An = As such that An does not contain any strong quantifiers and
Ai+1 is the result of replacing the first strong quantifier QxB(x) in Ai by

Ef(y1, . . . , yn) → B
(
f(y1, . . . , yn)

)
if Q = ∀

and by
Ef(y1, . . . , yn) ∧B

(
f(y1, . . . , yn)

)
if Q = ∃,

where f ∈ Ls\L does no occur in Ai, and the weak quantifiers in the scope
of which QxB(x) occurs are exactly Qy1, . . . , Qyn. Again we carry over this
definition to sequents by considering a sequent Γ ⇒ ∆ as the formula

∧
Γ →∨

∆.

Note that if QxB(x) is not in the scope of any weak quantifier, then f is
a constant. Observe that in (e)Skolemization occurrences are replaced. For
example, if S = (⇒ ∀xBx∧∀xBx), then Ss is (⇒ Ec∧Bc∧Ed∧Bd) and not
(⇒ Ec ∧ Bc ∧ Ec ∧ Bc). Note that the (e)Skolemization of S is unique up to
renaming of the Skolem functions, therefore we speak of the (e)Skolemization of
S.

Example 2.6

S Ss

⇒ ∀xP (x) ⇒ Ec → P (c)
∃xP (x) ⇒ ∃xR(x) Ec ∧ P (c) ⇒ ∃xR(x)
∃xP (x) ⇒ ∀xR(x) Ec ∧ P (c) ⇒ (Ed → R(d))
⇒ ∀x∃yP (x, y) ⇒ Ec → ∃yP (c, y)
⇒ ∃x∀yP (x, y) ⇒ ∃x

(
Ef(x) → P (x, f(x))

)
.

Once all the systems have been defined we will see that

S #LJE Ss.

Furthermore, we will see that for the first counterexample in (2):

'#LJ ∀x(Ax ∨ B) ⇒ (∀xAx ∨ B) and ΣL '#LJE ∀x(Ax ∨ B) ⇒ ((Ec → Ac) ∨ B).

This shows that although the sequent is a counterexample for the completeness
of Skolemization, it no longer is so for eSkolemization. The same holds for the
second sequent in (2).

The guiding idea behind eSkolemization is the following. In classical logic,
terms range over the same domain as quantifiers. For intuitionistic logic this is
no longer the case: by the definition of Kripke models (the interpretation of)
terms have to be elements of the domain at the root of a model, while quantifiers
might range over objects that only exist at a later stage. The following example
illustrates this.
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Consider the second sequent S = ¬¬∃xPx ⇒ ∃x¬¬Px in (2) and its Skolem-
ization and eSkolemization

SS = ¬¬Pc ⇒ ∃x¬¬Px Ss = ¬¬(∃c ∧ Pc) ⇒ ∃x¬¬Px.

A counter model K to S is given by a two node Kripke model k ! l with
respective domains Dk = {0} and Dl = {0, 1}, and where we force P (1) only at
l and P (0) nowhere. Then

k " ¬¬∃xPx k '" ∃x¬¬Px.

Since the interpretation of c has to be an element of every domain, it can only be
interpreted as 0. This shows the difference between the range of the quantifier
and that of the constant: c can only be 0, while ∃ ranges over 0 and 1. And
indeed we have K '" S but K " SS , because K " ¬Pc, and therefore

k " ¬¬Pc → ∃x¬¬Px.

In the presence of the existence predicate the situation changes. As we will
see, in this setting we can assume that Kripke models have constant domains.
Quantifiers will range over existing objects only, and not every element will exist
at the root, but every element that will ever occur in the model has already a
name in the root. Therefore, terms and quantifiers range over the same domain.

Given this the (partial) completeness proof for eSkolemization will be seman-
tical: given a counter model K to S we will construct a counter model K ′ to
Ss. We will illustrate the construction of such a counter model via the example
above. Let the set of nodes of K and K ′ be the same, The domains at k and
l are the union of all domains, i.e. D′

k = D′
l = {0, 1} (constant domains!). The

interpretation of c is 1 and the interpretation of P is as in K. Define

k '" E1 l " E1.

It does not matter where we force E0 and where not in the model. Note that

k " ¬¬(Ec ∧ Pc) k '" ∃x¬¬Px.

The latter follows because k '" E1 ∧ P1 and k '" E0 ∧ P0. Hence K ′ '" Ss, as
desired.

This example roughly illustrates how we will proceed in the completeness
proof for eSkolemization in Theorems 8.1 and 8.13. One subtlety still has to
be addressed. As the example shows, it is essential that some terms might not
exist at every node in the model, i.e. that k '" Ed for some d in the domain of
k. This should in particular be possible for terms in which Skolem functions
occur. For the original sequent, however, we can assume that all its terms exist.
This is where the set ΣL comes into play. Our original sequents will be in the
language L and we will assume that all terms in L exist:

ΣL = {⇒ Et | t a term in L}.

Given this set of axioms, LJE and LJ are the same for formulas in L (Theo-
rem 4.8). The essential point is that we do not assume the existence of terms
containing Skolem functions, i.e. of terms in L′. This allows the kind of counter
models as constructed in the example above.
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The discussion above indicates how we want to use the existence predicate.
This simple idea is what underlies the main results in the paper, which despite
this simplicity turn out to have rather complicated proofs. Although not in
the setting of Skolemization, logics containing an existence predicate have been
studied before, and e.g. [21] provides many arguments in favor of this logic over
IQC, see Section 5 for more on this.

3 The Gentzen calculus LJE

In this section we define the system LJE, an analogue of LJ for intuitionistic
predicate logic extended by the existence predicate that covers the intuition
that Et means t exists . Such a system was first introduced by Scott in [21], but
then in a Hilbert style formulation, and called IQCE. The Gentzen calculus for
this system was first introduced by the authors in [1].

Given an existence predicate, terms, including variables, typically range over
existing as well as non-existing elements, while the quantifiers range over existing
objects only. Proofs are assumed to be trees. We assume that in a proof bound
variables and eigenvariables are all different.

The system LJE

Ax Γ, P ⇒ P (P atomic) L⊥ Γ,⊥ ⇒ C

Γ, A, B ⇒ C
L∧ Γ, A ∧ B ⇒ C

Γ ⇒ A Γ ⇒ BR∧ Γ ⇒ A ∧B

Γ, A ⇒ C Γ, B ⇒ C
L∨ Γ, A ∨B ⇒ C

Γ ⇒ AiR∨ i = 0, 1
Γ ⇒ A0 ∨ A1

Γ, A → B ⇒ A Γ, B ⇒ C
L→ Γ, A → B ⇒ C

Γ, A ⇒ B
R→ Γ ⇒ A → B

Γ, ∀xAx, At ⇒ C Γ, ∀xAx ⇒ Et
L∀ Γ, ∀xAx ⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay, Ey ⇒ C
L∃ ∗

Γ, ∃xA[x/y] ⇒ C
Γ ⇒ At Γ ⇒ EtR∃ Γ ⇒ ∃xAx

Γ ⇒ A Γ, A ⇒ C
Cut Γ ⇒ C

Here (∗) denotes the condition that y does not occur free in Γ and C.
We write LJE # S if the sequent S is derivable in LJE. For a set of sequents

S, we say that S is derivable from S in LJE, and write S #LJE S, if S is derivable
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in LJE extended by axioms S . We define

LJE(S) ≡def {S ∈ SL′ | S #LJE S}.

In the system LJE no existence of any term is assumed. This implies e.g.
that we cannot derive ⇒ ∃xEx, or ∀xPx ⇒ Pt, but can derive ∀xPx, Et ⇒ Pt.
For ⇒ ∃xEx, note that we can derive it from (⇒ Et). Recall that our final aim
is that terms in L exist while the other terms in general do not. Therefore, we
define the following sets of sequents

ΣL ≡def {Γ ⇒ Et | t ∈ TL, Γ a multiset in L′}.

Note that for all sequents Γ ⇒ Et in ΣL, t is a closed term, and that because
of the assumptions on L, ΣL contains at least one sequent. We define

LJE(ΣL) ≡def {S ∈ SL′ | ΣL #LJE S}.

We sometimes write # for #LJE when it is clear from the context, and we often
write #L for #LJE(ΣL), the L indicating that we assume the terms in L to exist.

Example 3.1
'#LJE⇒ ∃xEx #LJE⇒ ∀xEx.

#L⇒ ∃xEx ∧ ∀xEx.

In Proposition 4.8 the relation between LJ and LJE is explained.
It is easy to see that

Lemma 3.2 LJE # A ⇒ As. Thus also

#L S ⇒ #L Ss.

Remark 3.3 It is now simple to see that the examples (2) are counterexamples
to the completeness of Skolemization but not so for eSkolemization:

'#LJ ¬¬∃xAx ⇒ ∃x¬¬Ax,

#LJ ¬¬Ac ⇒ ∃x¬¬Ax '#L ¬¬(Ec → Ac) ⇒ ∃x¬¬Ax.

'#LJ ∀x(Ax ∨ B) ⇒ (∀xAx ∨B),

#LJ ∀x(Ax ∨ B) ⇒ (Ac ∨ B) '#L ∀x(Ax ∨ B) ⇒ ((Ec → Ac) ∨ B).

4 Properties of LJE

4.1 Uniqueness

Observe that given another predicate E′ that satisfies the same rules of LJE as
E, it follows that

#L Et ⇒ E′t and #L E′t ⇒ Et.

We namely have that #L (⇒ ∀xEx ∧ ∀xE′x), and also #L (∀xEx, E′t ⇒ Et)
and #L (∀xE′x, Et ⇒ E′t). Finally, two cuts do the trick. This shows that the
existence predicate E is unique up to provable equivalence.
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4.2 Cut elimination

In this section we recall some results from [1] that show that LJE and LJE(ΣL)
have a restricted form of cut elimination and have weakening and contraction.
Some of these results we will need later on, the others are recalled to show that
the systems we consider are well-behaved. The proofs of these results are more
or less straightforward, where the ECut theorem, which shows that the systems
allow some partial cut-elimination, is the most involved, as usual.

Lemma 4.3 (Substitution Lemma)
For L ∈ {LJE(ΣL), LJE}:
If P is a proof in L of a sequent S in L′ in which y occurs free, and if t is a term
in L′ that does not contain eigenvariables or bound variables of P , then P [t/y]
is a proof of S[t/y] in L.

Lemma 4.4 ([1]) (Weakening Lemma)
For L ∈ {LJE(ΣL), LJE}: L # Γ ⇒ C implies L # Γ, A ⇒ C.

Lemma 4.5 ([1]) (Contraction Lemma)
For L ∈ {LJE(ΣL), LJE}: L # Γ, A, A ⇒ C implies L # Γ, A ⇒ C.

Theorem 4.6 ([1]) (ECut theorem)
For L ∈ {LJE(ΣL), LJE}: Every sequent in L′ provable in L has a proof in L in
which the only cuts are instances of the ECut rule:

Γ ⇒ Et ∈ ΣL Γ, Et ⇒ C
ECut: Γ ⇒ C

In particular, LJE has cut-elimination.

Corollary 4.7 ([1]) LJE(ΣL) is consistent.

The cut elimination theorem allows us to proof the following correspondence
between LJ and LJE(ΣL).

Proposition 4.8 ([1]) For all closed sequents S in L:

#LJ S if and only if #L S.

Corollary 4.9 For all sequents S ∈ M:

#LJ S if and only if #L Ss.

(The definition of M is given in Section 2.3.)

Proof The direction from left to right follows from Lemma 3.2 and the proposi-
tion above. For the direction from right to left, assume #L Ss. It is not difficult
to see that replacing all expression of the form Et in Ss by 2, yields a formula
S′ that is equivalent to SS and derivable in LJ. Hence #LJ S. !
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4.10 Decidability and interpolation

Proposition 4.11 For quantifier free closed sequents the relations #LJE and #L

are decidable.

Proof Show, using the theorem on ECuts above, with induction to the depth
of a proof, that when ti are terms that do not occur in a quantifier free sequent
Γ ⇒ C unless as an element of Γ, then

#L Et1, . . . , Etn, Γ ⇒ C implies #L Et2, . . . , Etn, Γ ⇒ C,

and similarly for LJE. !

Recall that we say that a single conclusion Gentzen calculus L has interpo-
lation if whenever L # Γ1, Γ2 ⇒ C, there exists an I in the common language of
Γ1 and Γ2 ∪ {C} such that

Γ1 #L I and I, Γ2 #L C.

In the context of existence logics, the common language of two multisets Γ1 and
Γ2 consists of all variables, 2, ⊥ and E, and all predicates and non-variable
terms that occur both in Γ1 and Γ2.

We say that a Gentzen calculus L satisfies the Beth definability property if
whenever A(R) is a formula with R an n-ary relation symbol in a language L,
and R′, R′′ are two relation symbols not in L such that

L # A(R′) ∧A(R′′) ⇒ ∀x̄(R′x̄ ↔ R′′x̄),

then there is a formula S in L such that

L # ∀x̄(Sx̄ ↔ Rx̄).

Theorem 4.12 [2] LJE and LJE(ΣL) have interpolation.

Theorem 4.13 [2] LJE and LJE(ΣL) satisfy the Beth definability property.

5 IQCE and IQCE+

As remarked above, given an existence predicate, in our systems variables typi-
cally range over existing as well as non-existing elements, while quantifiers range
over existing objects only. As to the choice of the domain for the variables, there
have been different approaches. Scott in [21] introduces a system IQCE for the
predicate language with the distinguished predicate E, in which variables range
over all objects, like in LJE and LJE(ΣL). On the other hand, Beeson in [5]
discusses a system in which variables range over existing objects only.

The formulation of the system IQCE in [21], where logic with an existence
predicate was first introduced, was in Hilbert style, where the axioms and rules
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for the quantifiers are the following:

∀xAx ∧ Et → At

...
B ∧ Ey → Ay

*
B → ∀xAx

...
Ay ∧Ey → B

*∃xAx → B

At ∧ Et → ∃xAx

Here the ∗ are the usual side conditions on the eigenvariable y. The system that
Scott considered also contained equality, but as our systems don’t we do not
discuss it here.

The following formulation of IQCE in natural deduction style first appeared
in [31], it can be found also in [29]. We call the system NDE (Natural Deduction
Existence). It consists of the axioms and connective rules of the standard natural
deduction formulation of IQC, where the quantifier rules are replaced by the
following rules:

[Ey]
...

Ay
∀I *∀xAx

...
∀xAx

...
Et∀E

At

...
At

...
Et∃I ∃xAx

...
∃xAx

[Ay][Ey]
...
C∃E *C

Again, the ∗ are the usual side conditions on the eigenvariable y. It is easy to
see that the following holds.

Fact 5.1 ∀A ∈ FL′: #IQCE A if and only if #NDE A if and only if #LJE⇒ A.

Existence logic in which terms range over all objects while quantifiers and vari-
ables only range over existing objects is denoted by IQCE+ and has e.g. been
used by Beeson in [5]. The logic is the result of leaving out Ey in the two
rules for the quantifiers in IQCE given above and adding Ex as axioms for all
variables x. A formulation in natural deduction style is obtained from NDE by
replacing the ∀I and ∃E by their standard formulations for IQC and adding Ex
as axioms for all variables x. We call the system NDE+. There are some details
concerning substitutions that we skip here, and only state:

Fact 5.2 ∀A ∈ FL:
#IQCE+ A iff #NDE+ A iff {Γ ⇒ Ex | x a variable, Γ a multiset} #LJE⇒ A.

Unterhalt in [31] thoroughly studied the Kripke semantics of these logics and
proved respectively completeness and strong completeness for the systems IQCE
and IQCE+. In Section 6 our semantics is introduced, and Section 7 discusses
his and our completeness results.
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6 Semantics

Here we introduce the semantics we are going to use. It consists of Kripke
models equipped with a notion of forcing, called existence forcing and denoted
by "e, that slightly deviates from standard forcing and for which LJE(ΣL) is
sound and complete, as we will show in the next section. The reason that we
have to use a nonstandard notion of forcing is that we have to incorporate the
different interpretation of the quantifiers in LJE and LJE(ΣL).

In [31] Unterhalt proved strong completeness for IQCE+ and IQCE with re-
spect to standard forcing, as explained in [29]. These results are different from
ours since we work with a nonstandard forcing method and with a different
proof system.

A classical existence structure for L′
D is a pair (D, Ik) such that D is a set

and Ik is a map from L′
D such that

Ik(E) is a nonempty unary predicate on D,

for every n-ary predicate P in L′, Ik(P ) is an n-ary predicate on D,

for every n-ary function f in L′
D, Ik(f) is an n-ary function from D to D

(constants are considered as 0-ary functions),

Ik(a) = a for every constant a ∈ D.

For any closed L′
D-term t, Ik(t) denotes the interpretation of t under Ik in D,

which is defined as usual. Ik(t1, . . . , tn) is short for Ik(t1), . . . , Ik(tn). Ik is
extended to an interpretation of all formulas in L′

D as usual. For L′
D-sentences

A, let (D, Ik) |= A denote that A holds in the structure (D, Ik), which is defined
as usual for classical structures. Note that the interpretation of any closed term
in L′

D is an element of and the same in all domains.
A frame is a pair (W, !) where W is a nonempty set and ! is a partial

order on W with a root k0. A Kripke existence model on a frame F = (W, !)
is a triple K = (F, D, I), where D is a nonempty set called the domain, and
I is a collection {Ik | k ∈ W}, such that the (D, Ik) are classical existence
structures for L′

D that satisfy the persistency requirements: for all k, l ∈ W , for
all predicates P (x̄) in L and for all closed L′

D-terms t̄,

k ! l ⇒
(
(D, Ik) |= P (t̄) ⇒ (D, Il) |= P (t̄)

)
,

k ! l ⇒ Ik(t̄) = Il(t̄).

In particular, Ik(t) = Ik0(t) for all k and all closed terms t in L′
D. Therefore,

we sometimes write I(t) instead of Ik(t). Note that our Kripke models have
constant domains! We can do so because the notion of forcing defined below
restricts the range of quantifiers to existing objects, which may be a different
set from node to node. A similar approach to Kripke semantics with constant
domains can be found in [14]. It is not related to the existence predicate, or to
proof system, but provides a correspondence between Kripke models and Kripke
models with constant domains using one distinguished predicate that more or
less plays the role of the existence predicate in our setting.

Given a Kripke existence model K = (D, !, I), the existence forcing relation
is defined as follows, and denoted by "e. For our purposes it suffices to define
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the forcing relation K, k "e A at node k inductively only for sentences in L′
D.

When K is clear from the context we write k "e A for K, k "e A. For predicates
P (x̄) in L′ (including E) and closed L′

D-terms t, we put

K, k "e P (t̄) ≡def (D, Ik) |= P (t̄).

We extend K, k "e A to all sentences in L′
D in the usual way for connectives,

but differently for the quantifiers:

k '"e ⊥

k "e A ∧ B iff k "e A and k "e B

k "e A ∨ B iff k "e A or k "e B

k "e A → B iff ∀k′ # k : k′ "e A ⇒ k′ "e B

k "e ∃xA(x) iff ∃d ∈ D k "e Ed ∧ A(d)

k "e ∀xA(x) iff ∀d ∈ D : k "e Ed → A(d).

Note that the upwards persistency requirement for sentences A is fulfilled:

k ! l ∧ k "e A ⇒ l "e A.

Also note that

k "e ∀xA(x) ⇔ ∀l # k∀d ∈ D l "e Ed → Ad.

As all forcing and Kripke models in this paper will be existence forcing and
Kripke existence models, we leave out the word existence most of the time. For
sentences A in L′

D we say that A is forced in K, K "e A, if for all nodes k,
K, k "e A. For a formula A(x̄), K "e A(x̄) if K "e A[ā/x̄] for all ā ∈ D. We
call K an L-model when

∀t ∈ TL : K "e Et.

We say that A is L-forced , written "e
L A, when K "e A for all L-models K.

6.1 The forcing of infinite sequents

In the next section we will define an analogue of LJE fitted to deal with infinite
sequents, i.e. sequents Γ ⇒ ∆ in which Γ and ∆ may be infinite. Therefore, we
define here already the notion of forcing for sequents that are possibly infinite.
We write k "e Γ meaning that k "e A for all A ∈ Γ.

We say that a sequent S = (Γ ⇒ ∆) in L′
D in which all free variables are

among x̄, is forced at K and write K "e S, when for all ā ∈ D and all k:
k "e B[ā/x̄] for some B ∈ ∆ or k '"e A[ā/x̄] for some A ∈ Γ. A sequent
S = (Γ ⇒ ∆) is forced , written "e S, when K "e S for all models K. We say
that S is L-forced , written "e

L S, when K "e S for all L-models K. We say
that a collection of sequents S (L-)forces S, S "e S, when for all (L-)models
K, if K "e S′ for all S′ ∈ S, then K "e S.

Note that for finite sequents (Γ ⇒ ∆)

K "e (Γ ⇒ ∆) iff K "e (
∧

Γ →
∨

∆),

and thus
"e

L Γ ⇒ ∆ iff "e
L (

∧
Γ →

∨
∆).
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7 Soundness and completeness

In this section we show that LJE(ΣL) is sound and complete with respect to "e.
The proof uses a Gentzen calculus LJE∞ that is an alternative of LJE for infinite
sequents which succedent can contain more than one formula. The proof follows
the pattern of the completeness proof for LJ as given in [27]. This method is
similar to that of Beth tableaux. The idea will be explained below.

7.1 An alternative Gentzen calculus

LJE∞ is similar to LJE, but has structural rules. Because of this, in L→ and L∀
the principal formula does not have to occur in the hypotheses. For soundness,
in the rules R∀ and R→ the antecedent may still contain only one formula, like
in LJE.

Important In this section sequents are possibly infinite.

The system LJE∞

Ax Γ, P ⇒ P, ∆ (P atomic) L⊥ Γ,⊥ ⇒ ∆

Γ ⇒ ∆LW Γ, A ⇒ ∆
Γ ⇒ ∆RW Γ ⇒ A, ∆

Γ, A, A ⇒ ∆
LC Γ, A ⇒ ∆

Γ ⇒ A, A, ∆
RC Γ ⇒ A, ∆

Γ, A, B ⇒ ∆
L∧ Γ, A ∧B ⇒ ∆

Γ ⇒ A, ∆ Γ ⇒ B, ∆
R∧ Γ ⇒ A ∧ B, ∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆
L∨ Γ, A ∨ B ⇒ ∆

Γ ⇒ A, B, ∆
R∨ Γ ⇒ A ∨ B, ∆

Γ ⇒ A, ∆ Γ, B ⇒ ∆
L→ Γ, A → B ⇒ ∆

Γ, A ⇒ B
R→ Γ ⇒ A → B

Γ, At ⇒ ∆ Γ ⇒ Et, ∆
L∀ Γ, ∀xAx ⇒ ∆

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ay, Ey ⇒ ∆
L∃ ∗

Γ, ∃xA[x/y] ⇒ ∆
Γ ⇒ At, ∆ Γ ⇒ Et, ∆

R∃ Γ ⇒ ∃xAx, ∆

Γ ⇒ A Γ, A ⇒ ∆
Cut Γ ⇒ ∆
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We write LJE∞(ΣL) for the system obtained from LJE∞ by adding the sequents
ΣL as axioms. We say that LJE∞ derives Γ ⇒ ∆, #LJE∞ Γ ⇒ ∆, when there
are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that #LJE∞ (Γ′ ⇒ ∆′). We say that a set
of finite sequents S derives a sequent S in LJE∞, when there are finite Γ′ ⊆ Γ
and ∆′ ⊆ ∆ such that Γ′ ⇒ ∆′ is derivable in the system LJE∞ to which the
sequents in S are added as axioms. We have similar notions for LJE∞(ΣL). We
often write #∞

L for LJE∞(ΣL) #.
We leave it to the reader to verify that the following holds, using the fact

that LJE has weakening and contraction (Lemma’s 4.4 and 4.5):

Lemma 7.2 For finite Γ and ∆: #∞
L Γ ⇒ ∆ if and only if #L Γ ⇒ ∆.

7.3 Soundness

Theorem 7.4 For all sets of finite closed sequents S and all closed sequents S
in L′:

S #∞
L S implies S "e

L S.

Proof We only consider the case that S is empty and that S is a sequent with
at most one formula in the succedent and leave the other cases to the reader.
For a smooth induction we prove that all axioms of LJE∞(ΣL) are L-forced,
and that for all its rules, if the hypotheses of the rule are L-forced, then so is
the conclusion. The case of the axioms is simple and so are most of the rules.
We treat the axiom ΣL and the rules R∀ and R∃. Let K be an L-model. Recall
that we write k "e Γ meaning that k "e A for all A ∈ Γ.

Consider a sequent Γ ⇒ Et in ΣL. Hence t is a closed term in TL. Let x̄
be all the free variables that occur in Γ. By assumption on L-models it follows
that K "e (Γ ⇒ Et)[ā/x̄] for all ā ∈ D.

For R∀ suppose "e Π, Ey ⇒ Ay and y not free in Π. Consider k in K,
suppose that the free variables in Π and Ay are among x̄y, let ā ∈ D, and
assume k "e Π[ā/x̄]. We have to show that

∀d ∈ D : k "e (Ed → Ad)[ā/x̄].

Therefore, consider l # k and d ∈ D such that l "e Ed. We have to show that
l "e Ad[ā/x̄]. As the side condition on R∀ implies that y does no occur free in Π,
we have l "e (Π∧Ey)[ād/x̄y]. As "e Π, Ey ⇒ Ay, this implies l "e Ay[ād/x̄y],
that is, l "e Ad[ā/x̄].

For R∃ suppose "e Π ⇒ At, "e Π ⇒ Et, and let all free variables of Π and
At be among x̄, pick ā ∈ D and assume k "e Π[ā/x̄]. We have to show that

∃d ∈ D : k "e (Ed ∧ Ad)[ā/x̄].

Since "e Π ⇒ Et and k "e Π[ā/x̄], this gives k "e Et[ā/x̄]. Similarly, k "e

At[ā/x̄]. Let d = t[ā/x̄]. Then we have k "e (Ed ∧ Ad)[ā/x̄], as desired. !
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7.5 Completeness

As mentioned above, the completeness proof given follows the pattern of the
completeness proof for LJ as given in [27]. The idea is that if a sequent is
underivable we apply the inference rules in the reversed order as long as possible,
resulting is a so-called reduction tree with at least one branch along which all
sequents are underivable. This branch will be a node in the Kripke model, the
model that we obtain by repeating this process, and that will refute the sequent
we started with. We first have to introduce the notion of a reduction tree, a
notion similar to that of a Beth tableau.

Definition 7.6 Given a (possibly infinite) sequent S, the reduction tree for S
is inductively defined as follows. Recall that we assumed that L contains at
least one constant and no variables, and that L′ has an infinite set of variables.
Furthermore, we assume that at every stage of the construction we have in-
finitely many fresh variables of L′ available, i.e. variables that do not occur in
the sequents constructed so far.

The construction of the reduction tree for S = (Γ ⇒ ∆) consists of repeated
application of steps 0,1, 2, . . . , 8 which correspond to inference rules of LJE∞

without the structural rules, R∀ and R→. We leave it to the reader to check that
at every stage of the construction we deal with countably infinite sequents only,
i.e. with sequents for which the antecedent and succedent contain countably
infinite many formulas only.

Step n = 0: write S at the bottom of the tree.
Step n > 0: if every leave is an axiom of LJE or a sequent in ΣL, then stop. If

this is not the case, then this stage is defined according to n ≡ 0, 1, . . . , 8 mod 9.
Let Π ⇒ Λ be any leave of the tree defined at stage n− 1.

n ≡ 0: L∧ reduction. Let α be a set such that {Ai0 ∧ Ai1 | i ∈ α} con-
sists exactly of all formulas in Π with outermost logical symbol ∧ to which no
reduction has yet been applied. Then above Π ⇒ Λ write the sequent

Π, {Ai0, Ai1 | i ∈ α} ⇒ Λ.

n ≡ 1: R∧ reduction. Let α be a set such that {Ai0 ∧ Ai1 | i ∈ α} con-
sists exactly of all formulas in Λ with outermost logical symbol ∧ to which no
reduction has yet been applied. Then above Π ⇒ Λ write all sequents of the
form

Π ⇒ {Aif(i) | i ∈ α}, Λ

for any map f : α → {0, 1}.
n ≡ 2: L∨ reduction. Defined in a similar way as R∧ reduction.
n ≡ 3: R∨ reduction. Defined in a similar way as L∧ reduction.
n ≡ 4: L→ reduction. Let α be a set such that {Ai → Bi | i ∈ α}

consists exactly of all formulas in Π with outermost logical symbol → to which
no reduction has yet been applied. Then for all f : α → {0, 1}, write above
Π ⇒ Λ the sequent

Π, {Bi | f(i) = 1} ⇒ {Ai | f(i) = 0}, Λ.

n ≡ 5: L∀ reduction. Let α be a set such that {∀xiAi(xi) | i ∈ α} consists
exactly of all formulas in Π with outermost logical symbol ∀. Let T consists of

17



all terms t for which Et occurs in Π. Above Π ⇒ Λ write the sequent

Π, {Ai(t) | i ∈ α, t ∈ T } ⇒ Λ.

Note that if {Et | t ∈ TL} ⊆ Π we can always carry out this step, since there is
at least one constant in L, which implies there is at least one expression of the
form Et in {Et | t ∈ TL}, and thus in Π.

n ≡ 6: L∃ reduction. Let α be a set such that {∃xiAi(xi) | i ∈ α} consists
exactly of all formulas in Π with outermost logical symbol ∃ to which no re-
duction has yet been applied. Introduce fresh variables {yi | i ∈ α} of L′, and
above Π ⇒ Λ write the sequent

Π, {Ai(yi), Eyi | i ∈ α} ⇒ Λ.

n ≡ 7: R∃ reduction. Defined in a similar way as L∀ reduction. Let α be
a set such that {∃xiAi(xi) | i ∈ α} consists exactly of all formulas in Λ with
outermost logical symbol ∃. Let T consists of all terms t for which Et occurs in
Π. Above Π ⇒ Λ write the sequent

Π ⇒ {Ai(t) | i ∈ α, t ∈ T }, Λ.

n ≡ 8: if Π ⇒ Λ is an axiom of LJE∞ or a sequent in ΣL, then stop. If this
is not the case write the same sequent Π ⇒ Λ above it and proceed to n + 1.

This completes the definition of reduction trees.

The following lemma (7.8), is non-trivial and crucial in the completeness
proof. It is an analogue of a lemma in [27] for LJ, and its main ingredient is the
following generalization of König’s Lemma.

Proposition 7.7 (A generalized König’s Lemma, Takeuti [27]) Let X be any
set. Let ∗(·) be a property on partial functions f : X → {0, 1}. If

1. ∗(f) holds if and only if there is a finite subset Z ⊆ X such that ∗(f ↑ Z)
(here f ↑ Z is the restriction of f to Z), and

2. ∗(f) holds for all total functions f on X ,

then there exists a finite set X ′ ⊆ X such that ∗(f) for any f with X ′ ⊆ dom(f)
(dom(f) is the domain of f).

Proof For completeness sake we repeat Takeuti’s proof from [27]. Let Y be
the product of |X | times {0, 1}. Give {0, 1} the discrete topology and Y the
product topology. Since {0, 1} is compact, so is Y by Tychonoff’s theorem. For
maps f and g call g an extension of f , when dom(f) ⊆ dom(g) and f and g are
equal on dom(f). For every f with finite domain, let

Nf ≡def {g | g is total and an extension of f}.

Furthermore, let

C ≡def {Nf | dom(f) is finite and ∗(f)}.
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C is an open cover of Y . Therefore, C has a finite subcover, say Nf1 , . . . ,Nfn .
Let

X ′ = dom(f1) ∪ . . . ∪ dom(fn).

Then X ′ satisfies the theorem: assume X ′ ⊆ dom(f). Let g be a total extension
of f . Then ∗(g) by 2. Also, there exists an i ≤ n such that g ∈ Nfi . Thus g is
an extension of both f and fi. Since dom(fi) ⊆ dom(f) it follows that f is an
extension of fi. Therefore, ∗(f) by 1. !

Lemma 7.8 If a sequent S is not provable in LJE∞(ΣL), then its reduction
tree has a branch along which all sequents are underivable in LJE∞(ΣL).

Proof In this proof provable will always mean provable in LJE∞(ΣL), # stands
for LJE∞(ΣL) #. We prove the lemma by proving the following: if in a reduction
tree, Γβ ⇒ ∆β (β = 1, 2 . . . , α) are all the immediate successors of Γ ⇒ ∆, then
if all these successors are provable, then so is Γ ⇒ ∆. Recall that a sequent
Π ⇒ Λ is provable when there are finite Π′ ⊆ Π and Λ′ ⊆ Λ such that Π′ ⇒ Λ′

is provable.
We distinguish by cases according to the rule that is applied to Γ ⇒ ∆

resulting in the immediate successors Γβ ⇒ ∆β .
L∧ reduction: then Γ ⇒ ∆ has one upper sequent, which is of the form

Γ, {Ai0, Ai1 | i ∈ α} ⇒ ∆, where Ai0 ∧ Ai1 are all the formulas in Γ with
outermost logical symbol ∧ to which no reduction has been applied yet. By
assumption there are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ and Bi ∈ {Ai0, Ai1} for i ≤ n
such that # Γ′, B1, . . . , Bn ⇒ ∆′. Hence # Γ′, {Ai0, Ai1 | i ≤ n} ⇒ ∆′, which
again implies # Γ′, {Ai0 ∧ Ai1 | i ≤ n} ⇒ ∆′. Thus # Γ ⇒ ∆.

R∧ reduction: then Γ ⇒ ∆ has immediate successors Γ ⇒ {Aif(i) | i ∈ α}, ∆
for any map f : α → {0, 1}, where {Ai0 ∧ Ai1 | i ∈ α} consists exactly of
all formulas in ∆ with outermost logical symbol ∧. By assumption for all
f : α → {0, 1} there are finite Γ′ ⊆ Γ, ∆′ ⊆ ∆ and nf ∈ ω such that we have
# Γ′ ⇒ {Aif(i) | i ≤ nf}, ∆′. Now we are going to use the generalized König’s
Lemma. We define a property ∗(·) on the partial functions f : α → {0, 1} as
follows (dom(f) denotes the domain of f):

∗(f) ≡ ∃m∃a1 . . . am ∈ dom(f )∃ finite Γ′ ⊆ Γ, ∆′ ⊆ ∆ :
# Γ′ ⇒ {Aif(ai) | i ≤ m}, ∆′.

Then conditions 1. and 2. of the generalized König’s Lemma 7.7 are satisfied.
Hence there is a finite subset β ⊆ α such that ∗(f) whenever β ⊆ dom(f). Let
F be the collection of f for which dom(f) = β. Thus for all f ∈ F there are
finite Γf ⊆ Γ and ∆f ⊆ ∆ such that

# Γf ⇒ {Aif(i) | i ∈ β}, ∆f .

Hence by weakening and repeated application of R∧, one obtains

# {Γf | f ∈ F} ⇒ {Ai0 ∧ Ai1 | i ∈ β}, {∆f | f ∈ F}.

This implies that # Γ ⇒ ∆.
The case R∨ is similar to L∧, and L∨ and L→ are similar to R∧.
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L∃ reduction: then Γ ⇒ ∆ has immediate successor

Γ, {Ai(yi), Eyi | i ∈ α} ⇒ ∆,

where {∃xiAi(xi) | i ∈ α} consists exactly of all formulas in ∆ with outermost
logical symbol ∃. By assumption there are finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ and n ∈ ω
such that

# Γ′, {Ai(yi), Eyi | i ≤ n} ⇒ ∆′.

Applications of L∃ imply that then Γ ⇒ ∆ is provable too.
The cases R∃ and L∀ are similar. This proves the lemma. !

Theorem 7.9 For all sets of finite closed sequents S and all closed sequents S
in L′:

S "e
L S implies S #∞

L S.

Proof We treat the case that S is empty and leave the other case to the reader.
The proof we give is similar to the elegant completeness proof for LJ in [27]. In
the proof we will write # for #LJE∞(ΣL). Let S = (Γ ⇒ ∆) be a closed sequent
and assume that '# S. We will construct a L-model K such that K '"e S in the
following way. It will be defined in ω many steps using reduction trees, which
will be the nodes of K. We assume that L′ contains infinitely many variables
that do not occur in S. The nodes in the model will be triples of numbers, a
reduction tree and a branch in the tree along which all sequents are unprovable.

Step 0: Let T0 be the reduction tree for Γ, {Et | t ∈ TL} ⇒ ∆. Since
'# Γ ⇒ ∆ , also

'# Γ, {Et | t ∈ TL} ⇒ ∆.

By Lemma 7.8 there is a branch b0 in T0 containing only unprovable sequents.
Let (0, T0, b0) be a node (the root) in K and proceed to the next step.

Step i+1. For any reduction tree T with branch b along which all sequents are
unprovable constructed at step i, we consider Π and Λ, which are the respective
unions of the formulas in the antecedents and succedents along b. Note that thus
'# Π ⇒ Λ. Let k range over all formulas in Λ with outermost logical symbol →
or ∀. We proceed in the following way.

If k is a formula of the form A → B. Then construct the reduction tree Tk

for Π, A ⇒ B. Note that '# Π, A ⇒ B. Thus by Lemma 7.8 there is a branch bk

in Tk containing only unprovable sequents. We add the node (i + 1, Tk, bk) to
the model, let it be an immediate successor of (i, T, b), and proceed to the next
step i + 2.

If k is a formula ∀xA(x). Then construct the reduction tree Tk for Π, Ey ⇒
A(y), where y is a variable in L that has not yet occurred in the construction
of K. Observe that if Π, Ey ⇒ A(y) is derivable, then so is Π ⇒ ∀xAx, since y
does not occur in Π. Thus '# Π, Ey ⇒ A(y), and whence by Lemma 7.8 there
is a branch bk in Tk containing only unprovable sequents. We add the node
(i + 1, Tk, bk) to the model, let it be an immediate successor of (i, T, b), and
proceed to the next step i + 2.

Nodes constructed at different moments are different: if at stage i treating
the A’s leads in some cases to the same reduction trees T with branch b of
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unprovable sequents, then we assume that we add extra labels to (i, T, b) to
account for the different occurrences of A at that step.

This process is continued ω times. Let W be the union of all triples that have
been constructed, and let ! be the reflexive transitive closure of the immediate
successor relation constructed at the stages. Define D to be the set of all terms
appearing in the construction. Given a node k = (i, T, b), let Πk and Λk be
the respective unions of the formulas in the antecedents and succedents along
b. Then define an interpretation I as follows:

Ik(R) ≡def {d̄ ∈ D | R(d̄) ∈ Πk},

and Ik is the identity on function symbols: Ik(f)(ā) = f(ā) ∈ D. Since L
contains at least one constant c, it also implies that Ik(E) is nonempty. Note
that K = ((W, !), D, I) indeed is a Kripke existence model. The fact that we
started with the sequent Γ, {Et | t ∈ TL} ⇒ ∆ implies that Et ∈ Πk for all k
and all terms t in L. Hence K "e Et for all terms t ∈ TL, and thus K is an
L-model. It is not difficult to show by formula induction that we have

A ∈ Πk ⇒ k "e A

A ∈ Λk ⇒ k '"e A.

We treat the case A = B → C and leave the other cases to the reader. This
will complete the theorem.

First assume B → C ∈ Πk. We have to show that k "e B → C. Therefore,
consider l # k such that l "e B. Thus by the induction hypothesis B ∈ Πl.
By the construction of the reduction tree, C ∈ Πl or B ∈ Λl. Since B '∈ Λl,
otherwise the branch would be derivable, it follows that C ∈ Πl, and thus l "e C.

Second, assume B → C ∈ Λk. By the construction of the model, there is a
node l # k such that B ∈ Πl and C ∈ Λl. This implies that l "e B and l '"e C.
Hence k '"e B → C. !

By Lemma 7.2 and the theorem it follows that :

Corollary 7.10 For all sets of finite closed sequents S and all closed sequents
S in L′:

S #L S if and only if S "e
L S.

Corollary 7.11 For all sets of finite closed sequents S and all closed sequents
S in L′: S #L S if and only if K "e S for all L-models K based on frames that
are well-founded trees that force S.

Proof Immediate from Lemma 7.2 and the proof of Theorem 7.9. !

8 ESkolemization

In this section we prove that in LJE(ΣL) eSkolemization is sound and complete
for all closed sequents in which all strong quantifiers are existential. Then
follows the main theorem of the paper, Theorem 8.13, which is an extension
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of Theorem 8.1 in that it shows that eSkolemization is sound and complete
for all closed sequents in which all strong quantifiers are almost existential or
that belong to M (definition of M in Section 2.3). The definition of almost
existential quantifiers is given below.

Theorem 8.1 Let ∃xB(x, ȳ) be a formula that occurs negatively in a closed
sequent S in L, is not in the scope of strong quantifiers, and where ȳ are the
variables of the weak quantifiers in the scope of which B occurs. If S′ is the
result of replacing in S the formula ∃xB(x, ȳ) by Ef(ȳ) ∧ B

(
f(ȳ), ȳ

)
, where f

is a fresh function symbol not in L, then

#L S if and only if #L S′.

Proof The direction from left to right follows from Lemma 3.2. For the direction
from right to left it is more convenient to work with sentences instead of closed
sequents. Therefore, let A′ be the result of replacing a negative occurrence of
∃xB(x, ȳ) in a sentence A that does not occur in the scope of strong quantifiers,
by a formula Ef(ȳ)∧B

(
f(ȳ), ȳ

)
, where f is a fresh function symbol from L′\L

not occurring in A and ȳ are the variables of the weak quantifiers in the scope
of which B occurs. Arguing by contradiction, assume '"e

L⇒ A. We show that
'"e

L⇒ A′. By Corollary 7.11 we can pick a well-founded tree model K that
refutes A. Let 0 be an element in D such that E0 is forced at the root r of K.

Some notation: in this proof, L stands for the language of A. Thus it is the
language of A′ without f . V denotes the set of variables in L′. Let G be the
set of all function symbols (including constants) in L. So all g ∈ G are distinct
from f and G is finite. g and gi range over elements in G. Recall that for a
sequence d̄ and a set X , d̄ ∈ X means that all elements of d̄ belong to X , and
d̄ '∈ X means that some d ∈ d̄ does not belong to D.

Case 1. We first treat the case that all functions in L and f have arity
1, and after that comment on the general case. Thus a formula ∃xB(x, y) is
replaced by Efy∧B(fy, y) in going from A to A′. Some notation: we will need
so many brackets that we often write fd for f(d) and gfd for g(f(d)), etc.

Let us first sketch the idea of the proof. Keep also in mind the informal
discussion on constructing counter models in Section 2.4. The aim is to construct
a counter model K ′ to A′. K ′ will have the same set of nodes as K but a bigger
domain D′ ⊇ D, which we construct inductively in steps i. To this end we will
use a partial function

ε : K × (D′ ∪ V) → (D ∪ V).

We write ε(k, d) ↓ if ε(k, d) is an element in D∪V and ε(k, d) ↑ otherwise, i.e. if
ε(k, d) is undefined. The idea is that at K ′, k the element d′ ∈ D′ corresponds
to the element ε(k, d′) ∈ D at K, k. At every step we consider the nodes in
K and ε(k, d) for some d ∈ Di ⊆ D′, where i is already defined. If K, k "e

∃xB(x, ε(k, d)) we choose a witness ε(k, fd) in D such that

K, k "e Eε(k, fd) ∧ B(ε(k, fd), ε(k, d)).

This ε(k, fd) will then correspond to fd in D′, i.e. we extend the domain Di

with these elements fd. Thus for these fd, ε(k, fd) ↓. If K, k '"e ∃xB(x, ε(k, d))
we do not need an element in D to which fd corresponds, and we put ε(k, fd) ↑.

22



Of course we also have to extend the interpretations of the function symbols in
G to the new domain. That is, we have to define the interpretation I ′k(g) of g in
K ′ for the new elements fd. To this end we just add for g = g1 . . . gm, elements
g(fd) to Di and let I ′k be the identity on them, i.e. I ′k(g)(fd) = g(fd). We put
ε(k, gd) = Ik(g)(ε(k, d)) if ε(k, d) ↓ and ε(k, gd) ↑ otherwise.

Our aim is for the final model K ′ to satisfy

K ′, k "e E(fd) ∧ B(fd, d) ⇔ K, k "e ∃xB(x, ε(k, d)). (9)

We will obtain this in the following way. For the d̄ such that ε(k, di) ↓ for all
di ∈ d̄, for all predicates P including E we define

∀d̄ ∈ D′ : K ′, k "e P (d̄) ⇔ K, k "e P (ε(k, d̄)), (10)

In particular, if K, k "e ∃xB(x, ε(k, d)) we put K ′, k "e E(fd). We cannot
extend this to all d, as for some we might have ε(k, d) ↑. However, we will put
K ′, k '"e Ed for all these d, and therefore they play no role in the evaluation
of the quantifiers in K ′. As we will see, this then will make K ′ into a counter
model of A′.

Two final remarks before the formal proof starts. First, the reason for the
partiality of ε is that if we would require that all elements in D′ correspond
to an element of D, then (10) would violate the upwards persistency in K ′.
Namely, suppose k ! l and k ! l′, and suppose k does not force and l and l′ do
force ∃xB(x, d) in K. Suppose K, l " B(e, d) and K, l′ " B(e′, d). Thus we put
ε(l, fd) = e and ε(l′, fd) = e′, and we also have to associate an element of D to
ε(k, d): it may be e, e′ or another element in D. In case e '= e′ this would cause
problems as then ε(k, d) cannot be equal to both; say ε(k, d) '= e. Then in case
we would have defined forcing in K ′ as in (10) we might have K, k " Pε(k, d)
and K, l '" Pε(l, d). Therefore, we would have

K ′, k " Pd K ′, l '" Pd,

which would make P not upwards persistent in K ′.
Second, in the example treated in Section 2.4 we interpreted the Skolem

constant c as an element in the domain D. Thus we did not extend D by c as
we do in the proof sketch above. The reason is that in general we cannot always
let c or fd be an element of D, as the example above illustrates.

Now we start with the formal proof. The domain D′ of K ′ is inductively
defined as follows.

D0 ≡def D ∪ {g1 . . . gn(d) | d ∈ D, gj ∈ G}
Di+1 ≡def {f(d), g1 . . . gnf(d) | d ∈ Di, gj ∈ G}
D′ ≡def

⋃
i Di.

We define the following sets and the partial function ε(k, d) : K × (D′ ∪ V) →
(D ∪ V) simultaneously in an inductive way. We start by stipulating

∀d ∈ D ∪ V : ε(k, d) = d ∧ ε(k, g1 . . . gm(d)) = Ik(g1) . . . Ik(gm)(d).

(Recall that V is the set of variables in L′.) We write ε(k, d) ↑ if ε(k, d) is not
defined, and ε(k, d) ↓ otherwise. Next we give for a given Di such that ε(k, d) is
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defined for all d ∈ Di, the definitions of ε(k, d) for all d ∈ Di+1, i.e. for ε(k, fd)
and ε(k, g1 . . . gnfd). Define for d ∈ Di

Xd = {k ∈ K | ε(k, d) ↓, K, k "e ∃xB(x, ε(k, d)),
∀l ≺ k

(
K, l '"e ∃xB(x, ε(k, d))

)
},

Zd = {k | ε(k, d) ↓, K, k "e ∃xB(x, ε(k, d))}.

Note that for all k such that ε(k, d) ↓, either k ∈ Zd, or K, k "e ¬∃xB(x, ε(k, d)),
or there exists at least one l # k such that l ∈ Xd. For k ∈ Zd we define

kd = smallest l ! k s.t. l ∈ Zd

Note that kd is well-defined because K is a well-founded tree. Observe that
l # k ∈ Zd implies K, l "e ∃xB(x, ε(k, d)). That is not the same as l ∈ Zd,
i.e. K, l "e ∃xB(x, ε(l, d)). However, we will see that the latter follows from the
former in the next claim.

Now for all nodes k ∈ Xd choose an element ε(k, fd) ∈ D such that

K, k "e Eε(k, fd) ∧ B(ε(k, fd), ε(k, d)).

We extend this definition to all nodes k and all elements in Di+1 via

ε(k, fd) =






ε(k, fd) if k ∈ Xd

ε(kd, fd) if k ∈ Zd

↑ if k '∈ Zd

ε(k, g1 . . . gmfd) =
{

Ik(g1) . . . Ik(gm)(ε(k, fd)) if ε(k, fd) ↓
↑ if ε(k, fd) ↑

Here the gi range over elements in G. Define

Uk ≡def D0 ∪ {fd, g1 . . . gnf(d) | k ∈ Zd, gi ∈ G} =
= D0 ∪ {fd, g1 . . . gnf(d) | gi ∈ G, ε(k, d) ↓, K, k " ∃xB(x, ε(k, d))}.

Claim 8.2

k ∈ Zd ∧ l # k ⇒ (11)
ε(k, d) ↓ ∧ ε(l, d) ↓ ∧ ε(k, d) = ε(l, d) ∧ l ∈ Zd ∧ kd = ld.

∀k∀d ∈ Uk∀l # k : Uk ⊆ Ul ∧ ε(k, d) ↓ ∧ ε(l, d) ↓ ∧ ε(k, d) = ε(l, d). (12)

Proof of Claim We first show that (11) implies (12). For an expression e =
g1 . . . gnfd or e = fd, where gi ∈ G, assume l # k, e ∈ Uk. Hence k ∈ Zd. Thus
ε(k, d) ↓, ε(l, d) ↓, ε(k, d) = ε(l, d) and l ∈ Zd by (11). Therefore, e ∈ Ul, which
shows that Uk ⊆ Ul. The definition of ε implies that ε(k, fd) ↓, ε(l, fd) ↓, and
ε(k, fd) = ε(l, fd). Therefore, also ε(k, e) ↓, ε(l, e) ↓ and ε(k, e) = ε(l, e). This
proves (12).

To show (11), assume l # k ∈ Zd. It is easy to see that ε(l, d) ↓ and
ε(k, d) = ε(l, d) imply l ∈ Zd and kd = ld. Therefore, we only have to show that
ε(l, d) ↓ and ε(k, d) = ε(l, d). We use induction on the i such that d ∈ Di. For
D0 the claim clearly holds. For the induction step, first consider fd such that
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k ∈ Zfd. Hence ε(k, fd) ↓. Observe that whence k ∈ Zd. By the induction
hypothesis ε(l, d) ↓, ε(k, d) = ε(l, d), l ∈ Zd and kd = ld. Thus ε(k, fd) =
ε(kd, fd) = ε(ld, fd) = ε(l, fd) by the definition of ε. Hence also ε(l, fd) ↓.

Second, consider e = g1 . . . gnfd and assume k ∈ Ze. Whence ε(k, e) ↓, thus
ε(k, fd) ↓, and thus k ∈ Zd. Reasoning as in the case above, we conclude that
ε(k, fd) = ε(l, fd). Thus also ε(l, e) ↓ and ε(k, e) = ε(l, e) by the definition of ε.
This proves the claim.

Note that the claim implies that

k ∈ Zd ⇒ K, k "e Eε(k, fd) ∧B(ε(k, fd), ε(k, d)). (13)

Namely, read k for l and kd for k: since k # kd ∈ Zd it follows that ε(k, d) =
ε(kd, d). The definition of ε and k ∈ Zd imply that ε(k, fd) = ε(kd, fd). Since
K, kd "e Eε(kd, fd) ∧ B(ε(kd, fd), ε(kd, d)), this proves that (13) holds.

To define K ′ we start by defining the interpretations I ′k, which are defined
as the identity:

∀d ∈ D′ : I ′k(f)(d) ≡def f(d) ∀d ∈ D′ : I ′k(g)(d) ≡def g(d).

Note that the upwards persistency requirement on terms for the collection of I ′k
is satisfied.

We now define the interpretations I ′k on predicates P including E as follows.
For e = e1, . . . , en we let ε(k, ē) = ε(k, e1), . . . , ε(k, en).

I ′k(P ) ≡def {d̄ ∈ D′ | d̄ ∈ Uk, ε(k, d̄) ∈ Ik(P )},

in other words, we put

∀k∀d̄ ∈ Uk : K ′, k "e P (d̄) ≡def K, k "e P
(
ε(k, d̄)

)
,

∀k∀d̄ '∈ Uk : K ′, k '"e P (d̄).

What is important from the definition of the I ′k’s and what we will use often is
that

∀d ∈ D′ : K ′, k "e Ed ⇔ d ∈ Uk ∧ K, k "e Eε(k, d). (14)

Note that this implies that the interpretation of E in the root of K ′ is nonempty,
as it is so in K.

Claim 8.3 The upwards persistency requirement is fulfilled:

∀k∀l # k : K ′, k "e P (d̄) ⇒ K ′, l "e P (d̄).

Proof of Claim If d̄ '∈ Uk then the implication is immediately clear. Suppose
d̄ ∈ Uk and k ! l. Hence d̄ ∈ Ul by (12). Thus it suffices to show that

∀k∀l # k : K, k "e P
(
ε(k, d̄)

)
⇒ K, l "e P

(
ε(l, d̄)

)
,

which follows from the persistency of K and the fact that ε(k, d̄) = ε(l, d̄), which
follows from (12). This proves the claim.

Observe that here upwards persistency would not hold if we would have
defined

∀k∀d̄ ∈ D′ : K ′, k "e P (d̄) ≡def K, k "e P
(
ε(k, d̄)

)
.
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Namely, we then would not have that l ! k implies ε(k, d) = ε(l, d).
To finish the proof of the theorem we have to consider instances C(d̄) of

subformulas C(x̄) of A. Since we assume that all bound variables in a proof
are different, when we speak about an occurrence of the formula ∃xB(x, y) in
A, it can only be that one occurrence that is replaced in going from A to A′.
Thus also when C(z̄, y) is a subformula of A the y can only be the y that occurs
in ∃xB(x, y). For subformulas C(z̄, y) of A and for all ēc ∈ D′ ∪ V , we let
C(ē, c)f stand for the replacement in C(ē, c) of ∃xB(x, c) by E(fc) ∧ B(fc, c).
If C(ē, c) does not contain ∃xB(x, c), then C(ē, c)f = C(ē, c). Thus Af = A′.
For convenience we also write C(z̄, y) in case y does not occur or occurs bounded
in C. A few examples:

(∃xB(x, y) → Py)f = (Efy ∧ B(fy, y) → Py)
(
∃uB(u, v) ∧ ∃xB(x, c)

)f = ∃uB(u, v) ∧Efc ∧ B(fc, c)

∃y(¬∃xB(x, y))f = ∃y(¬(Efy ∧ B(fy, y)))
B(x, y)f = B(x, y).

Recall that for e = e1, . . . , en we defined ε(k, ē) = ε(k, e1), . . . , ε(k, en).

Claim 8.4 For every subformula C(z̄, y) of A:

∀k∀cē ∈ Uk : K ′, k "e C(ē, c)f ⇔ K, k "e C(ε(k, ē), ε(k, c)).

Proof of Claim With formula induction on C. Let cē ∈ Uk. Observe that
every subformula C(x̄, y) of A is a formula in L. Therefore, if C is a predicate,
then it does not contain ∃xB(x, y), whence C(ē, c)f = C(ē, c) = P (ē, c) for some
predicate P . We have to show that

K ′, k "e P (ē, c) ⇔ K, k "e P
(
ε(k, ē), ε(k, c)

)
,

which follows directly from the definition of "e in K ′. The cases for the con-
nectives follow by induction since (·)f commutes with the connectives. In case
of implication, use Uk ⊆ Ul for k ! l (12). We treat the quantifiers.

∀: Suppose C(z̄, y) = ∀uD(u, z̄, y), where y might possibly be u. Hence
Cf (ē, y) = ∀u

(
D(u, ē, y)f

)
Thus we have to show:

∀a ∈ D′ : K ′, k "e Ea → D(a, ē, c)f ⇔ ∀a ∈ D : K, k "e Ea → D(a, ε(k, ēc)).

⇒: Suppose the left side of ⇔ holds, and consider an element a ∈ D such
that K, k "e Ea. By (14) and the fact that D ⊆ Uk, K ′, k "e Ea. Thus
K ′, k "e D(a, ē, c)f . Whence by the induction hypothesis, K, k "e D(ε(k, aēc)).
Since a ∈ D, ε(k, a) = a. Therefore, K, k "e D(a, ε(k, c̄)), and we are done.

⇐: Suppose the right side of ⇔ holds and pick an a ∈ D′ such that K ′, k "e

Ea. By (14), it follows that a ∈ Uk and K, k "e E ε(k, a). Since ε(k, a) ∈ D
and the right side of ⇔ holds, K, k "e D(ε(k, a), ε(k, ēc)). Therefore, K ′, k "e

D(a, ē, c))f by the induction hypothesis, and we are done.
∃: Suppose C(z̄, y) = ∃uD(u, z̄, y). There are three possibilities: u = y,

u = x or u '= x and u '= y. The case u = y, and u '= x and u '= y, are the same.
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We start with this case. Hence C(ē, y)f = ∃u
(
D(u, ē, y)f

)
, where u is possibly

equal to y. Thus we have to show that for all k

∃a ∈ D′ : K ′, k "e Ea ∧ D(a, ē, c)f ⇔ ∃a ∈ D : K, k "e Ea ∧D(a, ε(k, ēc)).

⇒: Suppose the left side of ⇔ holds, and consider an element a ∈ D′ such that
K ′, k′ "e Ea∧D(a, ē, c)f . By (14), it follows that a ∈ Uk and K, k "e Eε(k, a).
By the induction hypothesis we then also have K, k "e D(ε(k, a), ε(k, ēc)), and
we are done.

⇐: Suppose the right side of ⇔ holds and pick an a ∈ D such that K, k "e

Ea ∧ D(a, ε(k, ēc)). By (14) and the fact that D ⊆ Uk, it follows that K ′, k "e

Ea. And since a ∈ D, ε(k, a) = a. Hence K ′, k "e D(a, ē, c))f by the induction
hypothesis, and we are done.

The final case u = x: C(z̄, y) = ∃xB(x, y) and C(c)f = E(fc) ∧ B(fc, c).
We have to show that

K ′, k "e E(fc) ∧B(fc, c) ⇔ K, k "e ∃xB(x, ε(k, c)).

⇒: Suppose K ′, k "e E(fc) ∧ B(fc, c). By (14) also K, k "e Eε(k, fc) and
f(c) ∈ Uk. Hence K, k "e B(ε(k, fc), ε(k, c)) by the induction hypothesis, as
Bf (fc, c) = B(fc, c). Since ε(k, fc) ∈ D this implies K, k "e ∃xB(x, ε(k, c)).

⇐: Only here the trick in the construction of f is used. Suppose K, k "e

∃xB(x, ε(k, c)). Observe that c ∈ Uk implies ε(k, c) ↓ by (12). Hence k ∈ Zc.
Thus by (13),

K, k "e Eε(k, fc) ∧B(ε(k, fc), ε(k, c)).

Also, since k ∈ Zc, f(c) ∈ Uk. Observe that
(
Efc∧B(fc, c)

)f = Efc∧B(fc, c)
Therefore, K ′, k "e E(fc) ∧ B(fc, c) by the induction hypothesis. This proves
the claim.

It follows from the last claim that

K ′, k "e A′ ⇔ K, k "e A.

Therefore, K ′ '"e A′, as desired. This completes Case 1. of the proof.
Case 2. We will not treat this part of the proof in all detail, but just mention

the main differences. In this case f and the functions in G may have any arity
≥ 0. Thus a formula ∃xB(x, ȳ) is replaced by B(f ȳ, ȳ) in going from A to A′,
where ȳ are the variables of all the weak quantifiers in the scope of which B
occurs. Note that B contains no other free variables as it is not in the scope
of another strong quantifier by assumption. Assume f has arity s and gi ∈ G
has arity si. Thus ȳ has length s. For any set X , we write Xs for the set of
sequences of elements in X of length s. Again, we will often write fd̄ for f(d̄)
and g(fd̄) for g(f(d̄)), etc. When we write gi(d̄) we implicitly assume that the
length of d̄ is si, and similarly for f . ε(k, d̄) = ε(k, d1), . . . , ε(k, dn). We write
ε(k, d̄) ↓ if ε(k, d) ↓ for all d ∈ d̄, and ε(k, d̄) ↑ otherwise. d ∈ ē means that d
occurs in some element of ē.

To define the Di we need an auxiliary operation. Given a set X , XG =
⋃

Xi

is the closure of X under the functions in G:

X0 ≡def X ∪ {g(d̄) | d̄ ∈ X, g ∈ G}
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X̄ i+1 ≡def Xi ∪ {g(d̄) | d̄ ∈ Xi, g ∈ G}.

Then we define

D0 ≡def DG

Di+1 ≡def (
⋃

j≤i Dj ∪ {f(d̄) | d̄ ∈
⋃

j≤i Dj})G

D′ ≡def

⋃
i Di.

Again, we define the following sets and partial function ε : K × (D′ ∪ V) →
(D ∪ V) simultaneously in an inductive way. They are only slight variations
of the definitions above, fit to deal with arities other than 1. We start by
stipulating

∀d ∈ D ∪ V : ε(k, d) = d and ∀ g(d̄) ∈ DG : ε(k, g(d̄)) = Ik(g)(ε(k, d̄)).

Given the definition of ε for Di, we show how to extend it to Di+1. Consider a
d̄ ∈ Ds

i such that at least one element of d̄ is not in
⋃

j<i Dj.

X d̄ = {k | k ∈ K, ε(k, d̄) ↓, K, k "e ∃xB(x, ε(k, d̄)),
∀l ≺ k

(
K, l '"e ∃xB(x, ε(k, d̄))

)
}

Z d̄ = {k | k ∈ K, ε(k, d̄) ↓, K, k "e ∃xB(x, ε(k, d̄))}

Note that the Z d̄ are only defined for sequences d̄ of length s. For k ∈ Z d̄ we
define

kd̄ = smallest l ! k s.t. l ∈ Z d̄

Now for all nodes k ∈ X d̄ we choose a node ε(k, f d̄) ∈ D such that

K, k "e Eε(k, f d̄)) ∧ B(ε(k, f d̄), ε(k, d̄)).

Then we extend this definition to all k via

ε(k, f d̄) =






ε(k, f d̄) if k ∈ X d̄

ε(kd̄, f d̄) if k ∈ Z d̄

↑ if k '∈ Z d̄

Then we define inductively for d̄ ∈ (
⋃

j≤i Dj ∪ {f(d̄) | d̄ ∈
⋃

j≤i Dj})G:

ε(k, gd̄) =
{

Ik(g)(ε(k, d̄)) if ε(k, d̄) ↓
↑ otherwise

Define

Uk ≡def

(
D0 ∪ {f(d̄) | k ∈ Z d̄}

)G =

=
(
D0 ∪ {f(d̄) | ε(k, d̄) ↓, K, k " ∃xB(x, ε(k, d̄))}

)G
.

Claim 8.5

k ∈ Z d̄ ∧ l # k ⇒ (15)

ε(k, d̄) ↓ ∧ ε(l, d̄) ↓ ∧ ε(k, d̄) = ε(l, d̄) ∧ l ∈ Z d̄ ∧ kd̄ = ld̄.

∀k∀d ∈ Uk∀l # k : Uk ⊆ Ul ∧ ε(k, d) ↓ ∧ ε(l, d) ↓ ∧ ε(k, d) = ε(l, d). (16)
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Proof of Claim The proof of (15) is analogues to the proof of (11) above; use
induction on i such that d̄ ∈ Di, with a subinduction on the number of symbols
in d̄. We only show that (15) implies (16). Assume (15) and d ∈ Uk and k ! l.
Let f(ē1), . . . , f(ēn) be all the terms of the form f(ē) in d that are not in the
scope of another term of the form f(ā). Observe that k ∈ Z ēi . Hence ε(k, ēi) ↓,
ε(l, ēi) ↓, ε(k, ēi) = ε(l, ei), kēi = lēi , and l ∈ Z ēi by (15). The definition of
ε implies ε(k, f ēi) ↓, ε(l, f ēi) ↓, and ε(k, f ēi) = ε(l, f ēi). Whence ε(k, d) ↓,
ε(l, d) ↓, and ε(k, d) = ε(l, d) by the definition of ε on elements of the form g(ē).
This proves (16), and thereby the claim.

Note that the claim implies

k ∈ Z d̄ ⇒ K, k "e E(k, f d̄) ∧ B(ε(k, f d̄), ε(k, d̄)). (17)

To define K ′ we define the interpretations I ′k for K ′ for terms and predicates
similarly as in Case 1:

∀d̄ ∈ D′ : I ′k(f)(d̄) ≡def f(d̄) ∀d̄ ∈ D′ : I ′k(g)(d̄) ≡def g(d̄).

I ′k(P ) ≡def {d̄ ∈ D′ | d̄ ∈ Uk, ε(k, d̄) ∈ Ik(P )},

in other words, we put

∀k∀d̄ ∈ Uk : K ′, k "e P (d̄) ≡def K, k "e P
(
ε(k, d̄)

)
,

∀k∀d̄ '∈ Uk : K ′, k '"e P (d̄).

It is not difficult to see that

∀d ∈ D′ : K ′, k "e Ed ⇔ d ∈ Uk ∧ K, k "e Eε(k, d). (18)

Claim 8.6 The upwards persistency requirement is fulfilled:

∀k∀l # k : K ′, k "e P (d̄) ⇒ K ′, l "e P (d̄).

Proof of Claim Analogues to the proof of Claim 8.3 above.
As in Case 1, for subformulas C(z̄, ȳ) of A and for all sequences ēc̄ ∈ D′ ∪V ,

we let C(ē, c̄)f stand for the replacement in C(ē, c̄) of ∃xB(x, c̄) by E(f c̄) ∧
B(f c̄, c̄). Thus Af = A′.

Claim 8.7 For every subformula C(z̄, ȳ) of A:

∀k∀c̄ē ∈ Uk : K ′, k "e Cf (ē, c̄) ⇔ K, k "e C(ε(k, ē), ε(k, c̄)).

Proof of Claim Analogues to the proof of Claim 8.4 above.
Given this definitions and claims, the proof proceeds in exactly the same

way as in Case 1. This completes the second case, and thereby the proof of the
theorem. !

Corollary 8.8 For each closed sequent S in L′ in which all strong quantifiers
are existential:

#L S if and only if #L Ss.

29



Proof Let S = S1, . . . , Sn = Ss be the Skolem sequence of S. Then Theorem 8.1
implies that #L Si if and only if #L Si+1, and we are done. !

Corollary 8.9 For all closed sequents S in L in which all strong quantifiers are
existential:

#LJ S if and only if #L Ss.

8.10 Extension of the main result

In this section we present an extension of the above result by extending the
class of sequents for which Theorem 8.1 applies. This class of formulas is not
syntactically defined, and therefore less useful. However, it contains a syntac-
tically decidable subclass that strictly extends the closed sequents in which all
strong quantifiers are existential: the class of closed sequents in which all strong
universal quantifiers are of the form ∀x¬¬Ax.

Definition 8.11 For a formula A that occurs in a sequent S, S[B/A]p (p for
positive) denotes the result of replacing every positive occurrence of A in S
by B. Note that we do not put restrictions on the possible occurrences of free
variables in A or S. We say that all strong quantifiers in S are almost existential
if for every subformula ∀xAx of S, it holds that

S[¬∃x¬Ax/∀xAx]p #L S.

Note that we always have

S #L S[¬∃x¬Ax/∀xAx]p.

Thus almost existential sequents are sequents that, as a formula, are equivalent
to a formula in which all strong quantifiers are existential.

Define

S∃ ≡def {S | S a closed sequent in L′ in which all strong quantifiers
are almost existential} ∪M.

Remark 8.12 S∃ contains all sequents in which all strong universal quantifiers
are of the form ∀x¬¬Ax. But other universal quantifiers might be allowed:
⊥ ⇒ ∀xAx does not belong to the mentioned classes but every quantifier in this
formula is almost existential.

Theorem 8.13

∀S ∈ S∃ : #L S if and only if #L Ss.

Proof The direction from left to right is clear. If S belong to M, the equivalence
follows from Corollary 4.9. Therefore, for the other direction we assume that
all strong quantifiers in S are almost existential and that #L Ss. Let S′ be
the result of replacing every strong quantifier ∀xBx in S by ¬∃x¬Bx. Then all
strong quantifiers in S′ are existential. Note that because

#L (Et → Bt) ⇒ ¬(Et ∧ ¬Bt)
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we have Ss #L (S′)s. Since by Corollary 8.8:

#L S′ if and only if #L (S′)s,

#L S follows. !

Corollary 8.14

∀S ∈ S∃ ∩ SL : #LJ S if and only if #L Ss.

Using the result in Section 4.10 we can conclude the following.

Corollary 8.15 For the fragment of sequents in S∃ without weak quantifiers,
derivability in #L is decidable.

8.16 No total Skolemization

In this section we give examples that show that eSkolemization cannot be sound
and complete for all sequents. Furthermore, we discuss some conditions that,
when satisfied by an alternative Skolemization method, imply that the method
cannot be complete.

Counterexamples showing that eSkolemization is not complete are e.g.

⇒ ∀x¬¬(Ax ∨ ¬Ax) ⇒ ¬¬∀x(Ax ∨ ¬Ax).

The first formula is derivable, the second one is not. Their eSkolemizations are
the derivable, and equivalent, sequents

⇒ (Ec → ¬¬(Ac ∨ ¬Ac)) ⇒ ¬¬(Ec → Ac ∨ ¬Ac).

Another example of the incompleteness of eSkolemization is given by the
double negation shift DNS

∀x¬¬Ax ⇒ ∀x¬¬Ax. (19)

The eSkolemization DNS s of DNS is

∀x¬¬Ax ⇒ ¬¬(Ec → Ac).

Now (⇒ DNSs) is derivable in LJE(ΣL) while (⇒ DNS) is not. This is no
coincidence, as the following theorem shows.

Proposition 8.17 If (·)∗ is a transformation on sequents that inductively re-
places strong quantifiers ∀xA(x) by Ef(ȳ) → A∗(f(ȳ)) and that commutes with
the connectives, then it cannot hold that for all S

#L S ⇔ #L S∗. (20)

Proof Let c denote f(ȳ). Let (·)∗ be as in the theorem. Then

(∀x¬¬A(x))∗ = (Ec → ¬¬A∗(c)) ≡ ¬¬(Ec → A∗(c)) = (¬¬∀xA(x))∗ .
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Since
'#L ∀x¬¬A(x) ⇒ ¬¬∀xA(x),

(20) implies that
'#L ∀x¬¬A(x) ⇒ (Ec → ¬¬A∗(c)).

Since
#L ∀x¬¬A(x) ⇒ ∀x¬¬A(x),

(20) implies also
#L ∀x¬¬A(x) ⇒ (Ec → ¬¬A∗(c)).

A contradiction. !

The following proposition is the analogue of the proposition above for LJ.

Proposition 8.18 If (·)∗ is a transformation on sequents that inductively re-
places strong quantifiers QxA(x) by A∗(f(ȳ)) and that commutes with the con-
nectives, then it cannot hold that for all A

LJ # S ⇔ LJ # S∗. (21)

Clearly, the above theorems imply that at least the two “natural” ways of
Skolemization, the standard one (·)S and the alternative one (·)s, cannot work.

The following is a slight strengthening of the above observations.

Proposition 8.19 Let (·)∗ be a transformation on sequents such that in LJ
(¬∃x¬Ax)∗ ⇒ (¬¬∀xAx)∗ is derivable. Then it cannot hold that for all S

LJ # S ⇔ LJ # S∗.

And similarly for LJE(ΣL) instead of LJ.

Proof The following observation suffices

LJ # ¬∃x¬Ax ⇒ ¬∃x¬Ax

LJ '# ¬∃x¬Ax ⇒ ¬¬∀xAx.

!

9 Corollaries for IQCE

By the equivalence between LJE and IQCE as discussed in Section 5, we obtain
the following corollaries for IQC. We let ΦL be the equivalent of ΣL fro formulas:

ΦL ≡def {Et | t ∈ TL}.

Define

F∃ ≡def {A | A a sentence in L′, all strong quantifiers in A are
almost existential} ∪ {A | ⇒ A belongs to M}.
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Corollary 9.1

∀A ∈ F∃ : ΦL #IQCE A if and only if ΦL #IQCE As.

Corollary 9.2

∀A ∈ F∃ ∩ FL : #IQC A if and only if ΦL #IQCE As.

Corollary 9.3 For the fragment of sentences S in F∃ without weak quantifiers,
ΦL #IQCE is decidable.

10 Questions

There are too many topics for further research to list them all, but among the
most important ones are the following.

• A syntactic proof of the (partial) completeness of eSkolemization.

• A full description of the class of formulas for which eSkolemization is sound
and complete.

• An alternative Skolemization method that is sound and complete in IQC
for all formulas.

• Extension of the results to intuitionistic logic plus equality. In [25, 19] it
is shown that in this case standard Skolemization is not even complete for
prenex formulas.

• Generalization of the results to other logics, e.g. minimal logic.
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