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Abstract

This paper contains a detailed account of the notion of admissibility in the set-
ting of consequence relations. It is proved that the two notions of admissibility
used in the literature coincide, and it provides an extension to multi-conclusion
consequence relations that is more general than the one usually encountered in
the literature on admissibility. The notion of a rule scheme is introduced to cover
rules with side conditions, and it is shown that what is generally understood un-
der the extension of a consequence relation by a rule can be extended naturally
to rule schemes. It is shown that such extensions correctly capture the intuitive
idea of extending a logic by a rule.
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1 Introduction

In this paper our aim is to provide a framework in which to reason about the admis-
sibility of rules of inference. In most papers on admissibility consequence relations are
taken as the fundamental notion via which to represent logics or theories, and in this
paper we provide arguments that support this choice. None of these arguments are
very deep or completely new, but we feel it is worthwhile to present them in detail
because in the literature they remain mostly implicit.

One of the incentives to spell out the details of what in most papers is discussed
only briefly (and for good reasons) is the phenomenon, as pointed out in [10], that
admissibility is defined in two ways in the literature, in what we will call the full and
the strict way. Given a theory or logic L and a rule R:

(full) R is admissible in L if L extended by R has the same theorems as L.

(strict)R is admissible in L if under all substitutions, whenever all premisses of R
become theorems of L, then so does the conclusion.

In talks and informal expositions on admissibility the first definition is often used, while
the second one seems to be preferred in formal settings. Informally, it is quite easy to
argue that the two definitions are equivalent, but if one wishes to make this precise,
several issues appear that need to be addressed. For example, in the full definition of
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admissibility one has to describe what it means to extend a theory or logic by a rule.
If the theory is given to us via a proof system, this might be quite straightforward, but
if the theory is characterized in another way, say via a set of models or algebras, it is
less clear what is meant. In this paper we describe what this means in detail, in a way
that is applicable in many settings.

As is common in the literature on admissible rules, we choose consequence relations as
our general framework. Since Tarski, consequence relations are traditionally used in
the literature to capture the notion of consequence in a very general way, abstracting
away from particular theories and particular syntax [19, 21]. We describe the notion
of a rule scheme (a rule with a set of substitutions) that captures, we think, what is
generally meant by a rule of inference in a mathematical or logical context. Then we
define what it means to extend a consequence relation by a set of rule schemes, which is
a slight generalization of a similar notion that occurs at many places in the literature.
And we show in Proposition 3.8 (a reformulation of a theorem in [16]) that in this way,
derivations in the extension indeed are derivations that consist of inferences that either
belong to the original consequence relation or are instances of the rules added in the
extension. Thus supporting the claim that this is the correct way to define what it
means to extend a consequence relation by a rule (scheme). Substitutions, as required
for the strict definition of admissibility, are described in Section 2.7.

Finally, we address another issue in this paper, namely the analogue of the above
definitions for multi–conclusion consequence relations. Such relations are useful in the
setting of admissibility because they allow one to express the disjunction property,
which is the property that if A ∨B is a theorem, then so is one of the disjuncts. This
property, satisfied by many constructive theories including intuitionistic logic, can be
expressed via admissibility, provided admissibility is defined in one of the following two
ways.

(dp-full) R is admissible in L if L extended by R has the same theorems as L.

(dp-strict) R is admissible in L if under all substitutions, whenever all premisses of R
become theorems of L, then so does at least one formula in the conclusion.

Because in this way, {A ∨ B}/{A,B} is admissible in a logic if and only if the logic
has the disjunction property.

In this paper we consider the following generalizations of the above notions that, we
think, are the genuine analogues, in a multi–conclusion setting, of the single–conclusion
notions.

(full) R is admissible in L if L extended by R has the same multi–conclusion theorems
as L.

(strict)R = Γ/∆ is admissible in L if under all substitutions σ and for all finite sets
Σ, whenever σA,Σ is a multi–conclusion theorem of L for all A ∈ Γ, then so is
σ∆,Σ.

At first sight, one might guess that the strict view would be

R is admissible in L if under all substitutions, whenever all expressions in the
premiss of R become theorems of L, then the conclusion becomes a multi–conclusion
theorem of L.

But in Proposition 4.1 it is shown that the full and strict definition above are equivalent,
and Remark 4.6 explains why the alternative is not. Thus explaining our choice of the
strict view.
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In many papers on admissibility, the dp-full or dp-strict view is taken as the defini-
tion of admissibility. In Section 5 we explain how this choice naturally fits into our
framework. Whether there are other reasonable strict definitions of admissibility in
a multi–conclusion setting is an issue that we leave open for speculation and further
research.

Several observations in Section 3 also occur in one way or another in the book on
multiple–conclusion logic by Shoesmith and Smiley [16]. But as our approach differs in
some respects from the one in that book, we have included proofs also of the theorems
covered there. Metcalfe in [10] studies similar problems as the ones addressed in this
paper, but then in an algebraic context. He also distinguishes the strict and full view,
though using different terminology, and proves that in an algebraic setting these notions
do not always coincide for multi–conclusion rules.

I benefited from discussions with Curtis Franks (whose questions were the incentive
for this paper) and Emil Jeřábek. I thank George Metcalfe, Jonas Rogger and Laura
Schnüriger for reading an earlier version of this paper and discussing it with me during
a much enjoyed visit to Bern. I thank two anonymous referees for their just criti-
cisms. Support by the Netherlands Organisation for Scientific Research under grant
639.032.918 is gratefully acknowledged.

2 Consequence relations

When Tarski spoke in Paris at the International Congress of Scientific Philosophy in
1935 on logical consequence [19], he tried to characterize in all generality what it means
for a sentence A to logically follow from a set of sentences Γ. He arrived at the definition
that this is so if and only if every model of the sentences in Γ is a model of A. This led
to the introduction and study of consequence relations, which are relations between
sets of expressions and expressions, that satisfy reflexivity, transitivity and weakening.
The Polish School has been particularly active in the area of consequence relations,
which is no coincidence given Tarski’s Polish background. See [21] for an overview of
its results.

Consequence relations play a central role in this paper, as we assume all the theories
or logics that we consider to be given by a consequence relation. This is no great
restriction as they cover almost all reasonable theories. As said in the introduction,
in this paper we want to define in detail what it means that a rule of inference is
admissible in a certain theory. As this has more to do with consequence relations in
general and the way in which they can be extended by rules, results about particular
logics will be only discussed as illustration of the general theory. For an overview of
the area of admissible rules, the reader is referred to the literature, in particular to
Rybakov’s monograph [13]. For a brief overview of the main results in this area on
intermediate and modal logics, see [7].

We start by defining what a consequence relation is. To maintain a certain level of
generality we assume that there is a language L, which is a set of symbols, and that
there is a set of expressions FL in this language. In this way consequence relations can
be about regular formulas as well as other expressions, such as sequents or clauses. In
a setting where expressions are usually called formulas, we will do so too.

In the case of propositional logic, the language, Lp, consists of infinitely many propo-
sitional variables p, q, r, . . . , parentheses ( and ), the connectives ¬,→,∧,∨ and the
constants > and ⊥. The set of expressions FLp

is the set of propositional formulas in
language Lp, defined as usual. The language, Ls, for sequents in propositional logic
consists of Lp extended with ⇒, the braces { and } and the comma. FLs

consists of
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the sequents in Lp, that is, of all expressions Γ⇒ ∆, where Γ and ∆ are finite sets of
formulas in Lp. The language, Lf , of predicate or first-order logic consists of predicates
and functions, for every arity infinitely many, infinitely many variables, parentheses (
and ), the connectives ¬,→,∧,∨, constants > and ⊥ and quantifiers ∃, ∀. The set of
expressions FLf

is the set of first-order formulas in language Lf , defined as usual.

2.1 Multi–conclusion consequence relations

Multi–conclusion consequence relations are relations ` between sets of expressions. We
write Γ ` ∆ if the pair (Γ,∆) belongs to the relation. We also write Γ/∆ for the pair
(Γ,∆), and A,Γ or Γ, A for {A} ∪ Γ, and Γ,Π for Γ ∪ Π. A finitary multi–conclusion
consequence relation (mcr) is a relation ` between finite sets of expressions that satisfies
for all finite sets of expressions Γ,Γ′,∆,∆′ and expressions A:

reflexivity {A} ` {A},

weakening if Γ ` ∆, then Γ′,Γ ` ∆,∆′,

transitivity if Γ ` ∆, A and Γ′, A ` ∆′, then Γ′,Γ ` ∆,∆′.

For the first and third property we use Scott’s terminology from [14], where multi–
conclusion consequence relations of this form are introduced for the first time. The
second property is called monotonic in Scott’s paper. In Shoesmith and Smiley’s [16]
the first two properties are called overlap and dilution, respectively. Transitivity, which
clearly is not equal to what is usually called transitive in the setting of relations, is a
form of the Cut rule, which is why we sometimes refer to it as such.

A finitary single–conclusion consequence relation (scr) is a relation between finite sets
of expressions and expressions satisfying the single–conclusion variants of the three
properties above, where Γ ` {A} is replaced by Γ ` A:

reflexivity {A} ` A,

weakening if Γ ` A, then Γ′,Γ ` A,

transitivity if Γ ` C and Γ′, C ` A, then Γ′,Γ ` A.

Although most logics we discuss can be represented via a single–conclusion consequence
relation, the multi–conclusion analogue allows us to express certain properties more
naturally, such as the disjunction property discussed below. We often omit the word
“finitary” in what follows, and when we speak about “consequence relations” we refer to
both multi–conclusion and single–conclusion ones. Given a mcr `, its single–conclusion
fragment `s is defined as

Γ s̀ A ≡def Γ ` {A}.

The minimal single–conclusion and multi–conclusion consequence relations m̀ and m̀m

are defined as follows.

Γ m̀ A ≡def A ∈ Γ Γ m̀m ∆ ≡def Γ ∩∆ 6= ∅.

A is a theorem if ∅ ` A, which we write as ` A. The set of all theorems of a consequence
relation is denoted by Th(`) (called the logical system of the consequence relation in
[21], page 46). ∆ is a multi–conclusion theorem if ` ∆, which is short for ∅ ` ∆. The
set of all multi–conclusion theorems is denoted by Thm(`).

In [4] the following observations about the multi–conclusion analogue of single–conclusion
consequence relations can be found. In order to cover languages without conjunction or
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disjunction we use
∧

and
∨

, which are defined as follows, also in the case the language
contains conjunction and disjunction.

Γ `
∧

∆,Σ ≡def ∀A ∈ ∆ : Γ ` A,Σ Π,
∨

Γ ` Σ ≡def ∀A ∈ Γ : Π, A ` Σ

In case the language contains conjunction we express the conjunction of a set of for-
mulas Γ as

∧
A∈ΓA to distinguish it from the use of

∧
above, and similarly for dis-

junction. A single–conclusion consequence relation ` can have several multi–conclusion
analogues, meaning multi–conclusion consequence relations that have ` as their single–
conclusion fragment. The minimal and maximal one are:

Γ `min ∆ ≡def ∃A ∈ ∆ (Γ ` A)

Γ `max ∆ ≡def ∀Π∀A(Π `min

∧
Γ and Π,

∨
∆ `minA⇒ Π `minA).

The following lemma is but a slight reformulation of Theorem 2 in Došen’s [4].

Lemma 2.2 `min and `max are multi–conclusion consequence relations and for any
mcr `′ such that `′s = ` : `min ⊆ `′ ⊆ `max.

Proof For the first statement we only show that `max is transitive. Therefore suppose
that Γ `max A,∆ and Γ′, A `max ∆′ and consider a finite set of formulas Π and formula
B such that Π `min

∧
(Γ∪Γ′) and Π,

∨
(∆∪∆′) `min B. We have to show that Π `min B.

Observe that for Π′ being Π ∪ {A} we have Π′ `min

∧
(Γ′ ∪ {A}) and Π′,

∨
∆′ `min B.

Thus from Γ′, A `max ∆′ follows Π′ `min B, which implies Π,
∨

(∆ ∪ {A}) `min B.
Combining this with Π `min

∧
Γ and Γ `max A,∆ gives Π `min B.

For the second statement, we first prove `min ⊆ `′ . If Γ `min ∆, then Γ ` A for some
A ∈ ∆. And as the single–conclusion fragments of `′ and ` are equal, this gives Γ `′s A.
Hence Γ `′ ∆ by weakening.

To prove that `′ ⊆ `max , assume that Γ `′ ∆ for some Γ and ∆. To prove that
Γ `max ∆, consider arbitrary Π, B such that Π `min

∧
Γ and Π,

∨
∆ `min B. We have

to show that Π `min B. From Π `min

∧
Γ it follows that Π `′ ∆, which combined with

Π,
∨

∆ `′ B gives Π `′ B. Hence Π `min B. a

2.3 The consequence relation of a logic

The following straightforward examples illustrate the way in which logics can be pre-
sented via consequence relations, showing that certain representations are far more
natural than others.

Example 2.4 Let L be a logic with set of theorems Th( L). Then

Γ ` A ≡def A ∈ Γ ∪ Th( L)

defines a single–conclusion consequence relation of which the set of theorems is Th( L).
There are other consequence relations that have Th( L) as the set of their theorems,
such as

{A1, . . . , An} ` A ≡def A1 → A2 → . . .→ An → A ∈ Th( L) ∅ ` A ≡def A ∈ Th( L).

This is a consequence relation under some mild conditions on the logic. The same
holds for the following consequence relation.

Γ ` A ≡def

{
A ∈ Th( L) if Γ = ∅
∃A′ ∈ Γ : A′ → A ∈ Th( L) if Γ 6= ∅.
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Example 2.5 Many logics are given by a semantics such that

Γ ` A ≡def in every model in which all formulas in Γ hold, A holds

defines a consequence relation. Examples are the Kripke model semantics for modal
and intermediate logics.

Example 2.6 There are two ways in which consequence relations can capture a (multi–
conclusion) sequent calculus G. First, as the definition of a consequence relation `G on
finite sets of formulas, given by

Γ `G ∆ ≡def (Γ⇒ ∆) is derivable in G.

For standard sequent calculi, such as G3 for classical propositional logic [20], `G3 indeed
is a multi–conclusion consequence relation. The transitivity of `G3 follows from the cut-
elimination theorem for G3.

Second, as a consequence relation between finite sets of sequents and sequents, where
for sequents S0, . . . , Sn the single–conclusion relation `G is defined as

S1, . . . , Sn `GS0 ≡def S0 follows from S1, . . . , Sn in G.

Note that transitivity, or cut, on the level of the consequence relation is different from
the cut rule on the level of sequents: (S and S′ are finite sets of sequents)

S ` S S, S′ ` S′

S, S′ ` S′
transitivity

Γ⇒ ∆, A Γ′, A⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
cut.

Since `G is a consequence relation, it satisfies transitivity. But the following statement
in general does not hold.

(Γ⇒ A,∆), (Γ′, A⇒ ∆′) `G (Γ,Γ′ ⇒ ∆,∆′)

If G is G3, for example, the statement is equivalent to the derivability of the Cut rule,
well-known to be admissible but not derivable. The admissibility of the Cut Rule in
G3 is the statement that the consequence relations `G3 and `G3+Cut have the same
theorems.

Suppose a logic L is given to us not as a consequence relation but in another way, for
example by a class of models or algebras. What does it mean to say that a consequence
relation represents the logic? That depends very much on the application one has in
mind. But let us say that a (single- or multi–conclusion) consequence relation ` covers
a logic if Th(`) equals the set of theorems of the logic, which we denote by Th( L).

Clearly, there are many consequence relations that cover a single logic L. The small-
est such single–conclusion consequence relation ` has already been discussed in the
examples above:

Γ ` A ≡def A ∈ Γ ∪ Th( L).

What the greatest consequence relation is that covers L we shall see in Section 4
(Corollary 4.5).

For logics L being extensions of IPC or IQC (including extensions in a richer language,
such as modal logics), we single out one particular single–conclusion consequence rela-
tion, denoted by `L, that covers L as follows (

∧
∅ equals >):

Γ`LA ≡def (
∧
B∈Γ

B → A) ∈ Th( L).
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Similarly, we define one particular multi–conclusion consequence relation, also denoted
by `L, that covers L:

Γ`L∆ ≡def (
∧
B∈Γ

B →
∨

C∈∆

C) ∈ Th( L).

One could define these specific consequence relations for any logic containing implica-
tion, disjunction, and conjunction, but as we prefer to not address, in this note, the
delicacies that arise in the setting of substructural logics, we define `L here only for
the logics L mentioned above.

2.7 Substitutions

Since we will be mostly interested in rules closed under certain substitutions, we need
to explain which substitutions we consider. If one would wish to present the matter
as formal as possible one should introduce two languages, the meta-language Lm, also
called the schematic language, and the object-language Lo, where all elements of the
meta-language belong to the object language except possibly the meta-variables. We
use the word meta to distinguish the variables from the regular variables that may
occur in the object language. Substitutions are then maps from formulas in the meta-
language to formulas in the object-language that commute with all non-meta-variable
symbols and are the identity on constants, if any are present. In this way every logic
comes with a notion of meta-language and object-language and corresponding set of
substitutions Sub.

In the case of pure propositional or predicate logic the two languages are often mixed
and considered as one. For example, substitutions in propositional logic are often
considered to be maps on formulas commuting with the connectives. In this paper
we will do so too where possible. So when talking about propositional or predicate
logic, Lm = Lo and the atoms, respectively the atomic formulas, have a double role in
that they are treated as meta-variables (in the meta-language) as well as atoms (in the
object-language).

In predicate logic, there is a subtlety concerning regular variables, as illustrated by the
rule for the introduction of the universal quantifier:

....
A(y)

∀xA(x)
(y is not free in A(x)).

Here A(x) is a meta-variable and we have to indicate what formulas may be substituted
for it. Clearly, there have to be some restrictions. For example, if B(x) is substituted
for A(x), then B(y) should be substituted for A(y), and so on. However, for this
exposition the actual choice is not relevant, and therefore will not be discussed any
further.

In order to be able to express side condition such as “y is not free in A(x)” we introduce
a generalization of rules, called rule schemes, in Section 3.1.

A consequence relation is structural (uniform in [1] and closed under substitution in
[16]) if it satisfies

structurality if Γ ` ∆, then σΓ ` σ∆ for all σ ∈ Sub.

Typically, schematic systems are structural consequence relations, such as Gentzen
calculi, Hilbert systems or natural deduction.
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3 Rules and derivations

3.1 Rules and schemes

A multi–conclusion rule is an ordered pair of finite sets of expressions, written Γ/∆ or

Γ
∆
,

for finite sets of expressions Γ and ∆. It is sharp if |∆| ≤ 1. If no confusion is possible
we write A/B for {A}/{B}. A single–conclusion rule is an ordered pair consisting of
a finite set of expressions and an expression, written Γ/A or

Γ
A
.

Γ is the assumption(s) or premiss of rule Γ/∆ and ∆ is its conclusion. For R = Γ/∆,
σR is short for σΓ/σ∆, and similarly for sets of rules.

Given a multi–conclusion consequence relation `, rules Γ/∆ such that Γ ` ∆ are the
rules of the consequence relation and Ru` denotes the set of rules of `. The rules of a
single–conclusion consequence relation are defined in a similar way, replacing ∆ by A.

Sometimes rules come with restrictions, such as the following atomic contraction rule
and the universal quantifier rule in sequent calculi.

Π, P, P ⇒ Σ

Π, P ⇒ Σ
(P is atomic)

Γ⇒ A(y),∆

Γ⇒ ∀xA(x),∆
(y is not free in Γ,∆)

To capture these rules in our setting we use the notion of a rule scheme, which is a pair
(R,S) consisting of a rule R and a set of substitutions S ⊆ Sub. Like rules and sets of
rules, rule schemes and sets of rule schemes will be denoted by R and R respectively,
trusting that it will always be clear from the context whether the symbol refers to rules
or schemes. Also, a rule R is sometimes considered as a rule scheme (R, {id}), where
id is the identity substitution.

The following definitions apply to single–conclusion as well as multi–conclusion rule
schemes, where in the fist case one should read A for ∆. For σ ∈ S, a rule σR is called
an instance of the rule scheme (R,S), as well as an instance of the rule R. We define
the set of rules that are instances of a rule scheme in R as follows:

RuR ≡def ∪(R,S)∈R{σR | σ ∈ S}.

Given a set R of rule schemes, the extension `R of a consequence relation ` by these
rule schemes is defined to be the smallest consequence relation extending ` for which
Γ ` ∆ holds for all Γ/∆ in RuR. When all rule schemes in R have the same set of
substitutions S we sometimes write `R′

S for `R, where R′ is the set of rules that occur
in the schemes in R. In case of a single rule scheme (R,S) we write `RS for `{(R,S)}.

Similar to the definition for consequence relations in Section 2.3, a set of rules R is
said to cover a logic L if the smallest consequence relation containing R covers L, that
is, if Th(`Rm ) = Th( L), where m̀ is defined in Section 2.1. Naturally, a consequence
relation ` covers a set of rules R is then defined to mean that Th(`) = Th(`Rm ).

3.2 Derivations

Given a set R of rules (schemes), a sequence of expressions A1, . . . , An is a single–
conclusion derivation of Γ/A in R if An = A and for all Ai 6∈ Γ there are i1, . . . , im < i

8



such that Ai1 , . . . , Aim/Ai belongs to RuR. In this case we also say that rule Γ/A is
derivable in R, that A follows from Γ or that Γ derives A in R. A single–conclusion
derivation of Γ/∆ is a single–conclusion derivation of Γ/A, for some A ∈ ∆. (In
[16] (p.25) the word deducible instead of derivable is used.) Observe that the definition
applies to sets R of single–conclusion as well as multi–conclusion rules. What is single–
conclusion derivable from R is determined by its “‘single–conclusion fragment”, which
means by the rules in R that have a single expression (or singleton set) as conclusion.

Most of Section 3.1 is dedicated to proving (Propositions 3.7 and 3.8) that extending a
(singular) consequence relation by a set of (sharp) rule schemes is the same as allowing
these rules in derivations: Γ`R∆ if and only if Γ/∆ has a derivation in Ru` ∪ RuR.

For multi–conclusion rules that are not sharp, the analogue of a derivation uses trees
[16]. Here a tree T is a labelled tree in the usual sense that contains at least two nodes
and has a root. In order to have a closer resemblance to standard proofs, trees are
considered upside down, so with the root (the assumptions) at the top, above all other
nodes, and the conclusions at the bottom. Every node k has a label lb(k), which is
a set that is empty or consists of a single expression, except the root, which has a
set of expressions or the empty set as label. The leaves of T are the nodes with no
successors, where k is a successor of l if k is below l. It is an immediate successor of
l if it is immediately below l. k is predecessor of l if l is a successor of k. The set of
leaves is denoted by lf(T ), and lb(T ) denotes the union of the labels at the leaves of
T . For a node k, k↑ denotes the set consisting of k and all its predecessors, and lb↑(k)
is the union of the labels at k and its predecessors.

Given a set R of rule schemes, a tree T with root r is a multi–conclusion derivation of
Γ/∆ in R if T is finite, lb(r) ⊆ Γ, lb(T ) ⊆ ∆ and for every node k whose immediate
successors are k1, . . . , kn, there is a set Γ′ ⊆ lb↑(k) such that Γ′/lb(k1) ∪ · · · ∪ lb(kn)
belongs to RuR.

The definition of a multi–conclusion derivation is slightly awkward because of the
different reading of assumption (conjunctive) and conclusion (disjunctive) of a rule.
This problem would disappear once assumptions consisting of several sets are allowed,
but this level of generality is not needed for our purposes.

As for single–conclusion rules, we show in Proposition 3.9 that extending a conse-
quence relation by a set of multi–conclusion rules is the same as allowing these rules in
derivations: Γ`R∆ if and only if Γ/∆ has a multi–conclusion derivation in Ru`∪RuR.

When we speak of derivations we mean single–conclusion derivations. Multi–conclusion
derivations will always be indicated by their full name, so that no confusion can arise.

3.3 Example

Suppose that R consists of the rule schemes

{(A→ B)→ C ∨D}
{(A→ B)→ C, (A→ B)→ D, (A→ B)→ A)}

A
B

(if `IPC A→ B).

The second rule scheme is in fact a set of rule schemes, one for each implication
(A → B) that holds in intuitionistic logic. The following is a derivation of the Scott
rule (¬¬A→ A)→ A ∨ ¬A/{¬A,¬¬A} in R.

(¬¬A→ A)→ A ∨ ¬A

(¬¬A→ A)→ A (¬¬A→ A)→ ¬A (¬¬A→ A)→ ¬¬A

¬¬A ¬A ¬¬A
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In agreement with what has been stated above, the above tree has its root at the
top, and nodes are depicted by their labels. Thus in this picture the root has three
successors, which each have one successor. In Section 4.7 (Example 4.9) the special
role that R plays in intuitionistic logic will be discussed.

The following example from [16] (Figure 3.4) is a multi–conclusion derivation of B
from ¬¬B in a set of multi–conclusion rules that contains the rules {A,¬A}/∅ and
∅/{A,¬A}.

¬¬B

B ¬B

∅

In Proposition 3.9 below we need the following lemma, which proves the admissibility
of cut for multi–conclusion derivations.

Lemma 3.4 If Γ/∆, A and Γ′, A/∆′ have multi–conclusion derivations in Ru` ∪RuR,
then Γ,Γ′/∆,∆′ has a multi–conclusion derivation in Ru` ∪ RuR.

Proof Suppose that Γ/∆, A and Γ′, A/∆′ have respective multi–conclusion derivations
T1 and T2 in Ru` ∪ RuR. We have to show that Γ,Γ′/∆,∆′ has a multi–conclusion
derivation in Ru` ∪ RuR. Let ri be the root of Ti. If A is not an element of lb(T1),
then T1 is a multi–conclusion derivation of Γ,Γ′/∆,∆′. And if A does not belong to
lb(r2), then T2 is a multi–conclusion derivation of Γ,Γ′/∆,∆′. Therefore suppose that
A ∈ lb(T1)∩ lb(r2). Now let T be the tree obtained by glueing the root of T2 to all the
leaves of T1 with label {A}, and let the label of this node remain {A}. All other labels
remain as they were, except for the root, which receives label Γ ∪ Γ′ in T . It is not
difficult to see that T is a multi–conclusion derivation of Γ,Γ′/∆,∆′ in Ru` ∪ RuR. a

3.5 Derivations and consequence relations

We show that in case the underlying multi–conclusion consequence relation is singular1,
meaning that

Γ ` ∆⇒ ∃A ∈ ∆ (Γ ` A), (1)

for any set R of single–conclusion rule schemes, the consequence relation `R captures
precisely the idea of adding the rule schemes R to the consequence relation: Γ`R∆ if
and only if Γ/∆ has a single–conclusion derivation in Ru`∪RuR. That is, Γ`R∆ if and
only if some A ∈ ∆ can be derived from Γ using only inferences that are instances of
the rule schemes in Ru` and R. We will see in Proposition 3.8 that a similar statement
holds for single–conclusion consequence relations.

If (1) holds for empty Γ, ` is said to be saturated. For a logic L that contains disjunction
and a consequence relation ` that covers it: if ` ∆ is equivalent to `

∨
∆, then ` is

saturated if and only if L has the disjunction property. Thus the multi–conclusion
consequence relation `IPC as defined in Section 2.3 is saturated but not singular.

Given a relation X between finite sets of expressions, the weakening closure and cut

1I thank one of the referees for suggesting this name.
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closure of X are defined respectively as follows:

wc(X) ≡def {(Γ ∪ Γ′,∆ ∪∆′) | (Γ,∆) ∈ X,Γ′ and ∆′ finite sets of expressions}
cc0(X) ≡def X

cci+1(X) ≡def cci(X) ∪ {(Γ ∪ Γ′,∆ ∪∆′) | for some A: (Γ,∆ ∪ {A}) ∈ cci(X)

and (Γ′ ∪ {A},∆′) ∈ cci(X)}
cc(X) ≡def

⋃
i cci(X).

Proposition 3.6 `R = cc(wc(Ru` ∪ RuR)).

Proof Denote Ru` ∪RuR by X. We prove the proposition by showing that cc(wc(X))
is a consequence relation. Since it clearly is contained in `R, the minimality condition
on `R implies that `R is actually equal to cc(wc(X)).

To show that cc(wc(X)) is a consequence relation, it suffices to show that it is closed
under weakening and cut, that is, that cc(wc(cc(wc(X)))) = cc(wc(X)). Because of
the definition of cut closure, it suffices to show that wc(cc(wc(X))) = cc(wc(X)). This
follows if for all i, wc(cci(wc(X))) = cci(wc(X)), the proof of which is straightforward.
a

Proposition 3.7 For any singular multi–conclusion consequence relation ` and any
setR of sharp multi–conclusion rule schemes: Γ`R∆ if and only if Γ/∆ has a derivation
in Ru` ∪ RuR.

Proof For the direction from right to left it suffices to show that for any derivation
A1, . . . , Am of Γ/∆ in Ru` ∪ RuR, for all i we have Γ`RAi, a proof that is left to the
reader. For the other direction we use the equivalence from Proposition 3.6 stating that
`R is equal to cc(wc(Ru` ∪RuR)). The rules in Ru` ∪RuR clearly have a derivation in
Ru` ∪ RuR because the rules in R are sharp and ` is saturated. Therefore it suffices
to show that if all rules in X have a derivation in Ru` ∪ RuR, then so do all rules in
wc(X) and cci(X) for all i.

We only show that if all rules in cci(X) have a derivation in Ru` ∪RuR, then so do all
rules in cci+1(X), and leave the rest of the proof to the reader. Consider rules Γ/∆, A
and Γ′, A/∆′ in cci(X) with respective derivations A1, . . . , Am and B1, . . . , Bn. We
show that there exists a derivation of Γ,Γ′/∆,∆′ in Ru` ∪ RuR. If Am 6= A, then
A1, . . . , Am is a derivation of Γ,Γ′/∆,∆′. And if for no i ≤ n, Bi equals A, then
B1, . . . , Bn is a derivation of Γ,Γ′/∆,∆′.

Therefore suppose that A = Am and that A occurs in B1, . . . , Bn−1. We show that
A1, . . . , Am, B1, . . . , Bn is a derivation of Γ,Γ′/∆,∆′ in Ru`∪RuR. Consider a C 6∈ Γ∪
Γ′ in the derivation. If C is Ai, then it follows immediately that there are i1, . . . , ik < i
such that Ai1 , . . . , Aik/C is in Ru` ∪ RuR, as A1, . . . , Am is a derivation. If C = Bi,
then either C 6= A or C = A. In the first case C 6∈ Γ′ ∪ {A}, and as B1, . . . , Bn is a
derivation, there are i1, . . . , ik < i such that Bi1 , . . . , Bik/C is in Ru` ∪ RuR. In the
second case, Am/C is in Ru` because consequence relations are reflexive. a
The following theorem can be found in [16] (Theorem 1.13). The proof given there is
different from the one below, but both proofs are quite straightforward.

Proposition 3.8 For any single–conclusion consequence relation ` and any set R of
single–conclusion rule schemes: Γ`RA if and only if Γ/A has a derivation in Ru`∪RuR.

Proof For ` and R as in the proposition, the consequence relation `min is a singular
multi–conclusion consequence relation and Rmin = {Γ/{A} | Γ/A ∈ R} is a set of sharp
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multi–conclusion rules. Therefore by Proposition 3.7,

Γ `Rmin

min {A} if and only if Γ/{A} has a derivation in Ru`min ∪ RuRmin .

It is not hard to see that this implies what we have to show once we have established
that

Γ`RA ⇔ Γ `Rmin

min {A}. (2)

To prove (2) it suffices, by Lemma 3.6, to prove that

Γ`RA ⇔ Γ/{A} ∈ cc(wc(Ru`min ∪ RuRmin)).

Note that Γ/A ∈ Ru` ∪ RuR if and only if Γ/{A} ∈ Ru`min ∪ RuRmin .

⇒: Since cc(wc(Ru`min ∪ RuRmin)) is a consequence relation that contains Ru` ∪ RuR
and `R is by definition the smallest consequence relation containing Ru` ∪ RuR, this
inclusion follows.

⇐: Consider R = Γ/{A} ∈ cc(wc(Ru`min ∪ RuRmin)). We have to show that Γ`RA. If
R ∈ Ru`min ∪RuRmin , then Γ`RA follows by definition. Suppose R ∈ wc(Ru`min ∪RuRmin)
and let Γ′/∆ ∈ Ru`min ∪ RuRmin be such that Γ′ ⊆ Γ and ∆ ⊆ {A}. Since no rules in
cc(wc(Ru`min ∪RuRmin)) have an empty conclusion, ∆ = {A}. As just observed, Γ′ `RA.
Therefore Γ`RA as well. If R ∈ cc(wc(Ru`min ∪RuRmin)), let Γ1/{B} and Γ2∪{B}/{A}
be elements of wc(Ru`min ∪ RuRmin) such that Γ = (Γ1 ∪ Γ2). We just saw that then
Γ1 `RB and Γ2, B `RA. Hence Γ`RA also in this case. a
The following proposition is the analogue of Proposition 3.7 for multi–conclusion con-
sequence relations that are not singular. It occurs as Theorem 3.5 in [16], but the proof
here is different from the one provided there, due to the fact that consequence relations
are there defined in an equivalent but different way than in this note.

Proposition 3.9 For any multi–conclusion consequence relation ` and any set R of
multi–conclusion rule schemes: Γ`R∆ if and only if Γ/∆ has a multi–conclusion deriva-
tion in Ru` ∪ RuR.

Proof ⇐ First observe that any multi–conclusion derivation T in Ru` ∪ RuR of Γ/∆
is a multi–conclusion derivation in Ru` ∪ RuR of Γ/lb(T ) as well. As `R is closed
under weakening, it therefore suffices to show, for any multi–conclusion derivation T
of Γ/lb(T ) in Ru` ∪ RuR with root r, that Γ`Rlb(T ). We show this by proving for
every node k in T of depth ≥ 1 that Γ, lb↑(k)`Rlb(Tk), where Tk is the subtree of
T generated by k, so with root k. This will prove the desired, as lb↑(r) ⊆ Γ and
Tr = T . We use induction to the depth of k, which is the maximal distance to any of
its successors.

If k has depth 1, then Tk consists of root k and leaves k1, . . . , kn, lb(Tk) =
⋃

i lb(ki)

and by definition Γ′ ⊆ lb↑(k) exists such that Γ′/
⋃

i lb(ki) belongs to Ru`∪RuR, which

clearly implies Γ, lb↑(k)`Rlb(Tk).

Suppose k has depth greater than 1 and immediate successors k1, . . . , km. Observe
that lb(Tk) =

⋃m
i=1 lb(Tki

) and k ↑= ki ↑ \{ki} for all i. The induction hypothesis

gives Γ, lb↑(ki)`Rlb(Tki
). Because Γ, lb↑(k)`Rlb(k1) ∪ · · · ∪ lb(km) by the definition

of T , this implies Γ, lb↑(k)`Rlb(Tk) by weakening in case all lb(ki) are empty. In case
some lb(ki) are not empty, one can use the transitivity of consequence relations to
obtain Γ, lb↑(k)`R

⋃m
i=1 lb(Tki

). Thus in both cases we have Γ, lb↑(k)`Rlb(Tk), which
is what had to be shown.

⇒ By Proposition 3.6 it suffices to show that any Γ/∆ in Ru` ∪ RuR has a multi–
conclusion derivation in Ru` ∪ RuR, and if all rules in X have a multi–conclusion
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derivation in Ru`∪RuR, then so do wc(X) and cci(X) for all i. We prove the first and
the last statement.

For the first statement, suppose that Γ/∆ belongs to Ru`∪RuR, where ∆ = {A1, . . . , An}
is not empty. Then the following tree is a multi–conclusion derivation of it.

Γ

{A1} . . . {An}

In case ∆ = ∅, the multi–conclusion derivation looks as follows.

Γ
∅

For the last statement it suffices to show that if Γ/∆, A and Γ′, A/∆′ have multi–
conclusion derivations in Ru` ∪ RuR, then so does Γ,Γ′/∆,∆′. This is exactly what is
proven in Lemma 3.4. a

3.10 Hilbert systems

In Section 2.3 we saw that for a consequence relation to cover a logic, the only require-
ment is that it has the same theorems as the logic. Sometimes a logic is given to us
in such a way that one wonders whether a closer connection between a consequence
relation and the logic exists. This is especially the case with Hilbert systems [20].

Hilbert systems are given as a set of axioms and rules, which in our terminology are
rule schemes, where the set of substitutions for every rule is the maximal one, Sub. For
example, a Hilbert system for the implication fragment of intuitionistic propositional
logic is given by the set R consisting of Modus Ponens and the  Lukasiewicz axioms

A→ (B → A) (A→ (B → C))→
(
(A→ B)→ (A→ C)

)
,

where Sub is the substitution set of every rule. A proof of A from Γ is then thought
of as a sequence of formulas in which every formula either is in Γ or follows via the
rules in R from formulas earlier in the sequence, which in our terminology (Section 3.2)
amounts to: Γ/A has a derivation in RuR. For example, the following sequence is a
proof of D → D from empty assumptions, where E abbreviates D → D.

(D → (E → D))→
(
(D → E)→ (D → D)

)
, D → (E → D),

(D → E)→ (D → D) , D → E , D → D.

We therefore say that a consequence relation ` faithfully covers the Hilbert system
given by R if Γ ` A holds exactly if Γ/A has a derivation in RuR. Recall that in
Section 3.1 ` is said to cover R if Th(`) = Th(`Rm ), where m̀ stands for the minimal
single–conclusion consequence relation defined in Section 2.1. The following corollary
of Proposition 3.8 shows that if a Hilbert system is given by R, then `Rm faithfully
covers it. The discussion below the corollary shows that not all coverings are faithful.

Corollary 3.11 For any set R of single–conclusion rule schemes: Γ `Rm A if and only
if Γ/A has a derivation in RuR.

Proof Because of Proposition 3.8 it suffices to show that a derivation in Ru
m̀
∪ RuR

is a derivation in RuR, a proof that we leave to the reader. a
In Section 2.3, for logics L being extensions of IPC or IQC (including extension in a
richer language, such as modal logics), the consequence relation `L is defined as Γ`LA
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if and only if (
∧

B∈ΓB → A) ∈ Th( L). Suppose that L is covered by the Hilbert system
R, then in general `L does not need to be equal to `Rm . For example, if R consists
only of the theorems of L, thus only of axioms, then Γ `Rm A will only hold if A ∈ Γ
or A ∈ Th( L), while Γ`LA will hold in many more cases, such as in A,B `LA ∧ B or
A`LA ∨ B. The following proposition shows that, if R contains Modus Ponens and
a rule for conjunction, `L ⊆ `Rm does in fact hold. Thus this holds in particular for
Hilbert systems containing these two rules.

Proposition 3.12 For any logic L that is an extension of IPC or IQC that is covered
by a set of rules R that contains the rule schemes ((B,C/B ∧ C),Sub) and Modus
Ponens ((B → C,B/C),Sub): `L ⊆ `Rm .

Proof Suppose for some Γ and A that Γ`LA, which means that (
∧

B∈ΓB)→ A belongs
to Th( L). Since L is covered by R, (

∧
B∈ΓB) → A is an element of Th(`Rm ). By the

first condition on R, Γ `Rm
∧

B∈ΓB. By the second condition and the transitivity of
consequence relations, Γ `Rm A follows. a

4 Derivability and admissibility

In this section we introduce the two notions, derivability and admissibility, that were
the motivation for spelling out the details of consequence relations in the previous
sections. Intuitively, derivable rules are the rules explicitly given by the consequence
relation, while admissible rules can be used in proofs without changing the theorems
that can be derived. Our definition of admissibility for multi–conclusion rules, accord-
ing to the full view given in the introduction, is more general than the one found in
the literature, which is usually the one based on the strict view.

Given a mcr `, a rule R = Γ/∆ is derivable if Γ ` ∆. Note that by Proposition 3.9 this
is equal to R having a multi–conclusion derivation in Ru`, as defined in Section 3.1. The
rule scheme (R,S) is derivable if for all σ ∈ S, σR is derivable. (R,S) is admissible,
written Γ |∼S∆, if Thm(`) = Thm(`RS ). A rule R = Γ/∆ is admissible, written
Γ |∼∆, if (R,Sub) is admissible, which means, if Thm(`) = Thm(`RSub). A set of
rules (schemes) is admissible if all of its members are. Similarly for single–conclusion
consequence relations. Thus we have defined:

Γ |∼∆ ≡def Thm(`) = Thm(`Γ/∆
Sub ).

Observe that for saturated consequence relations:

Γ |∼∆ ⇔ Th(`) = Th(`Γ/∆
Sub ). (3)

The analogues of the above definitions for single–conclusion consequence relations can
be obtained by replacing the set of expressions ∆ by a single expression A. Thus (3)
holds also in case ` is a scr.

It is clear that for structural consequence relations, derivable rules are admissible. The
converse, however, is not always the case. In case it is, the consequence relation is
called structurally complete: a single–conclusion consequence relation ` is structurally
complete [11] if all admissible single–conclusion rules (in the same language) are deriv-
able. It is hereditarily structurally complete if all extensions in the same language are
structurally complete. A multi–conclusion consequence relation ` is universally com-
plete [3] if all admissible multi–conclusion rules are derivable. Clearly, ` is structurally
complete if it coincides with |∼ . For single–conclusion consequence relations the con-
verse holds as well, and moreover, structural completeness is in that case equivalent to
having no proper extensions in the same language with the same theorems.
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Structural completeness depends very much on the particular consequence relation one
uses for a logic. That is, a logic can have two consequence relations that both cover
it, where the one is structurally complete, and the other is not. For example, as is
well–known, `CPC is structurally complete [11] and covers CPC. However, the minimal
consequence relation covering CPC,

Γ ` A ⇔ A ∈ Γ ∪ Th( CPC),

is certainly not structurally complete, as ¬¬A/A is admissible but nonderivable in it.
More will be said about classical logic in Section 5.

In contrast to structural completeness, admissibility solely depends on the (multi–
conclusion) theorems of a consequence relation, as can be seen from the definition as
well as Proposition 4.1 below. Using the developed terminology, the full and strict view
for single–conclusion consequence relations and single–conclusion rule schemes (R,S)
becomes:

(full) (R,S) is admissible in ` if Th(`) = Th(`RS ).

(strict) (R,S) is admissible in ` if under all substitutions in S, whenever all expressions
in the premiss of R become theorems of `, then so does the conclusion.

As mentioned in the introduction, the full definition of admissibility is the one most
often given when the notion is described informally. The strict definition, however, is
the one most used in technical settings. Corollary 4.2 states that they are the same.
First we prove the following proposition for the multi–conclusion setting. Recall the
definition of

∧
and

∨
in Section 2.1.

Proposition 4.1 For every consequence relation `:

Γ |∼S∆ ⇔ ∀σ ∈ S ∀Σ : `
∧
σΓ,Σ ⇒ ` σ∆,Σ.

Proof Let R = Γ/∆.

⇒ Suppose Γ |∼S∆, that is, Thm(`) = Thm(`RS ). If ` σA,Σ for all A ∈ Γ and some
σ ∈ S and some Σ, this means σA,Σ belongs to Thm(`) for all A ∈ Γ. Hence σ∆,Σ
belongs to Thm(`RS ), and therefore σ∆,Σ ∈ Thm(`), that is, ` σ∆,Σ.

⇐ Assuming the right side of the equivalence, we show that Thm(`) equals Thm(`RS ).
Therefore assume `RS Σ. By Proposition 3.9 there is a multi–conclusion derivation T
of ∅/Σ in Ru` ∪ Ru{(R,S)} = Ru` ∪ {σR | σ ∈ S}. Thus lb(T ), the labels of the leaves
of T , are contained in Σ and the label lb(r) at the root is empty.

For a node k, let lbs(k) be the union of the labels of the immediate successors of k.
First we prove that for all nodes k and all finite sets Π of expressions:

`
∧

lb↑(k),Π ⇒ ` lbs(k),Π. (4)

Note that because of the implicit universal quantifier at the left, the implcation above
implies that ` lbs(k) holds for all k for which lb↑(k) is empty.

To prove (4), assume that `
∧

lb↑(k),Π. By the definition of trees there is a Γ′ ⊆ lb↑(k)
such that Γ′/lbs(k) belongs to Ru` ∪ Ru{(R,S)}. If Γ′/lbs(k) belongs to Ru`, then

lb↑(k) ` lbs(k), and ` lbs(k),Π follows. If, on the other hand, Γ′/lbs(k) belongs to
Ru{(R,S)}, then Γ′ = σΓ and lbs(k) = σ∆ for some σ ∈ S. Hence `

∧
σΓ,Π, and thus

` σ∆,Π, that is, ` lbs(k),Π.
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Next we show with induction to the depth of a node that for all nodes k and all finite
sets Π of expressions:

`
∧

lb↑(k),Π ⇒ ` Σ,Π.

As lb↑(r) is empty, this will prove the desired. Assume `
∧

lb↑(k),Π. Thus ` lbs(k),Π
by (4). If k has depth 1, lbs(k) ⊆ lb(T ) ⊆ Σ and we are done.

If k has depth greater than 1, consider its immediate successors k1, . . . , kn. Thus
lbs(k) = lb(k1) ∪ · · · ∪ lb(kn) and lb↑(ki) = lb(ki) ∪ lb↑(k). Because ` lbs(k),Π and
`
∧

lb↑(k),Π we have `
∧

lb↑(k1),Π ∪ lb(k2) ∪ · · · ∪ lb(kn). The induction hypothesis
for k1 gives ` Σ ∪ lb(k2) ∪ · · · ∪ lb(kn) ∪ Π. The induction hypothesis for k2 gives
` Σ ∪ lb(k3) ∪ · · · ∪ lb(kn) ∪Π. And so on, proving that ` Σ,Π holds. a

Corollary 4.2 Every saturated consequence relation ` satisfies

Γ |∼S∆ ⇔ ∀σ ∈ S : `
∧
σΓ ⇒ (∃B ∈ ∆ ` σB).

Every single–conclusion consequence relation ` satisfies

Γ |∼SA ⇔ ∀σ ∈ S : `
∧
σΓ ⇒ ` σA.

The last proposition and corollary imply the following corollary, the proof of which is
straightforward.

Corollary 4.3 Both in the single–conclusion and the multi–conclusion context, |∼ is
a consequence relation. If the underlying consequence relation is structural, so is |∼ .

Corollary 4.4 For a saturated multi–conclusion consequence relation `, multi–conclusion
|∼ is the greatest multi–conclusion consequence relation in the same language with the
same multi–conclusion theorems as `. And the same when “multi” is replaced by
“single” and the word “saturated” is omitted.

Proof We show that for multi–conclusion consequence relations `, |∼ is the greatest
consequence relation such that Thm(`) = Thm( |∼ ). That Thm(`) is contained in
Thm( |∼ ) is clear. For the other direction, suppose |∼∆. By Proposition 4.1, ` ∆
follows, thus showing that Thm(`) ⊇ Thm( |∼ ). If Thm(`) = Thm(`′) for some
consequence relation `′, then for all rule schemes (R,S) derivable in `′, it follows that
Thm(`) = Thm(`RS ), and thus that R is admissible. Thus proving that `′ is contained
in |∼ . a

Corollary 4.5 For any logic L and any single–conclusion consequence relation ` that
covers L, |∼ is the greatest single–conclusion consequence relation in the same language
that covers L.

Remark 4.6 The full definition of admissibility for multi–conclusion rule schemes
(R,S) as given informally in the introduction becomes in our terminology:

(full) (R,S) is admissible in ` if Thm(`) = Thm(`RS ).

At first glance, the following might seem to be the correct analogue for the strict
definition.

(R,S) is admissible in ` if under all substitutions in S, whenever the premiss of R
becomes a multi–conclusion theorem of `, then so does the conclusion.
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However, this is not equivalent to the full definition. Here is an actual counter exam-
ple. Let R be {p}/{q} and S consist of the identity substitution, and let the multi–
conclusion consequence relation ` be the smallest one such that ` {p, q} holds. Then it
certainly holds that whenever the expressions in the premiss of R becomes a theorem
of `, then so does the conclusion, as p is no theorem of `. On the other hand, Thm(`)
is not equal to Thm(`RS ). Not even Th(`) is equal to Th(`RS ), as the former does not
contain q, while the latter does.

It follows from Proposition 4.1 that the strict analogue is:

(strict) (Γ/∆, S) is admissible in ` if for all σ ∈ S and all finite Σ, whenever σA,Σ ∈
Thm(`) for all A ∈ Γ, then σ∆,Σ ∈ Thm(`).

Indeed, under this strict notion the above counter example ceases to be so, as for
Σ = {q} and σ the identity, ` σp,Σ holds but ` σq,Σ does not.

4.7 Bases

Given consequence relations `⊆ `′, a set R of rules is a basis for `′ over ` if `R = `′.
In particular, R is a basis for `R over `. From the definition it follows that R is a
basis for the admissible rules of a given consequence relation ` iff the rules in R are
admissible in ` and all admissible rules of ` are derivable in `R:

|∼ = `R.

This notion allows one to describe |∼ without having to include redundancies. For
example, for intermediate or modal logics L, if the rule R = A/B is admissible, then
so is A ∧ C/B ∧ C, but we do not have to add the latter to the basis as it is derivable
in `RL :

A ∧ C `RL A A `RL B

A ∧ C `RL B

A ∧ C `RL C B,C `RL B ∧ C
B,A ∧ C `RL B ∧ C

A ∧ C `RL B ∧ C

Here we use that A ∧ C `LA and B,C `LB ∧ C hold, which is the case for all logics L
in which A ∧ C → A and B ∧ C → B ∧ C hold, by the definition of `L.

There always is a basis for the admissible rules of a consequence relation, namely
the set of all its admissible rules. Naturally, one often looks for bases with better
properties, such as finite ones or those consisting of the instances of one particular rule
scheme. Many intermediate and modal logics and fragments thereof are known to have
nonderivable admissible rules, and for several an explicit basis for the admissible rules
is known. We refer the reader to (the references in) [7, 13].

Example 4.8 No doubt the most famous admissible rule (for intermediate logics) is
the Kreisel–Putnam rule:

¬A→ B ∨ C
(¬A→ B) ∨ (¬A→ C)

KP

Prucnal [12] discovered the universal character of this rule, a result later strengthened
by Minari and Wroński [9] who showed the admissibility, in any intermediate logic, of
the stronger Harrop rule HR, which is the rule

A→ B ∨ C
(A→ B) ∨ (A→ C)

HR (A a Harrop formula)
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That not every instance of KP is derivable follows from the underivability of the corre-
sponding implication (¬A→ B ∨ C)→ (¬A→ B) ∨ (¬A→ C) in intuitionistic logic.
As negations are Harrop formulas, the same holds for HR.

Example 4.9 Interestingly, in modal and intermediate logics certain rule schemes
seem generic in that they cannot be admissible without being a basis. Intuitionistic
logic as well as many transitive modal logics such as K4, S4 and GL, have such bases
[6, 8]. What happens once such rules are not admissible is at present less clear. In [5]
it is shown that for intuitionistic logic, the basis consists of generalizations of a rule
that we have encountered before, in Section 3.1:

{(A→ B)→ C ∨D}
{(A→ B)→ C, (A→ B)→ D, (A→ B)→ A)}

We will not provide the argument, but it is not hard to see that this rule is admissible
in IPC. Hence so is the Scott rule (¬¬A→ A)→ A∨¬A/{¬A,¬¬A} from Section 3.1.

5 Singularity

In Section 2.3 we discussed a variety of ways in which a consequence relation can be
associated with a logic. From Lemma 2.2 it follows that if one starts with a logic
L covered by a single–conclusion consequence relation `, then the smallest multi–
conclusion consequence relation having the same theorems as L is

Γ `min ∆ ≡def ∃A ∈ ∆ (Γ ` A).

Clearly, this consequence relation is singular. And by Corollary 4.2 the strict view on
the corresponding notion of admissibility, |∼min, is equal to the dp–strict view from the
introduction:

Γ |∼min∆ ≡def ∀σ ∈ Sub : `min

∧
σΓ⇒ ∃B ∈ ∆ (`min σB ).

This is the reason that in most papers on admissibility the above notions are taken
as the definitions of derivability and admissibility outright. That is, given a single–
conclusion consequence relation `, one defines:

Γ/∆ is derivable ≡def ∃A ∈ ∆ (Γ ` A)

Γ/∆ is admissible ≡def ∀σ ∈ Sub : `
∧
σΓ⇒ ∃B ∈ ∆ (` σB ).

We call this the dp–view because using these definitions one can express the disjunction
property via admissibility: a logic has the disjunction property if and only if the rule
{A ∨B}/{A,B} is admissible.

In this paper we have chosen a more general approach because we wished to allow for
multi–conclusion consequence relations that are not of the form `min. But it captures
the usual approach once one agrees to consider `min as the natural multi–conclusion
consequence relation associated with a logic.

We already encountered multi–conclusion consequence relations not of the form `min.
For example, in Section 2.3 the multi–conclusion consequence relation `CPC is defined
as

Γ `CPC ∆ ≡def (
∧
A∈Γ

A→
∨

B∈∆

B) ∈ Th( CPC).
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Clearly, if one starts with a single–conclusion consequence relation ` that covers CPC,
then {p ∨ q} `min {p, q} does not hold. But {p ∨ q} `CPC {p, q} does. In fact, `CPC is
structurally complete. For suppose Γ |∼CPC∆. By Proposition 4.1 this implies that for
all substitutions that map atoms to > or ⊥, if Γ ⊆ Th(`CPC), then ∆ ∈ Thm(`CPC).
From this it follows that (

∧
A∈ΓA →

∨
B∈∆B) is a tautology. Therefore Γ/∆ is

derivable in `CPC.

All this shows that there are certain design choices to be made when defining admissi-
bility for multi–conclusion consequence relation. And, as often, what is best depends
on the context in which one wishes to use them.

References

[1] A. Avron, Simple Consequence Relations, Information and Computation 92(1), 1991
pp. 105–139.

[2] A. Avron, Two Types of Multiple-Conculsion Systems, Logic Journal of the IGPL 6,
1998 pp. 695–717.

[3] L. Cabrer and G. Metcalfe, Admissibility via Natural Dualities, Journal of Pure and
Applied Algebra, to appear. DOI:10.1016/j.jpaa.2015.02.015
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