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Abstract. We study the modal properties of intuitionistic modal logics that belong to
the provability logic or the preservativity logic of Heyting Arithmetic. We describe the !-
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Keywords: Intuitionistic modal logic, provability logic, preservativity logic, Heyting Arith-

metic, Beth definability, fixed points.

1. Introduction

In this paper1 we study some intuitionistic modal logics that arise from a
specific mathematical interpretation of the modal operations. The modali-
ties we consider are ! and ", and their interpretation is given by

!ϕ “ϕ is provable in HA”, i.e. HA ! ϕ
ϕ " ψ “for all σ ∈ Σ1: HA ! σ → ϕ implies HA ! σ → ψ”,

where HA is Heyting Arithmetic, the constructive counterpart of PA, i.e. it
is a theory in intuitionistic predicate logic IQC that has as axioms the non-
logical axioms of PA, and Σ1 is the first level of the arithmetical hierarchy.
All the logics we consider are part of the provability or preservativity logic of
HA. This means that all these logics consist of propositional schemes that HA
proves about the provability predicate !HA or the preservativity predicate
"HA of HA. In particular, the theorems of these logics are (constructively)
valid schemes. Note that provability logic is part of preservativity logic, as

HA ! !HAϕ ≡ % "HA ϕ.

Preservativity logic was introduced by Visser[2002] as a constructive alter-
native for interpretability logic, to which it is equivalent for many classical

1A shorter version of which was published as Iemhoff et al.[2004].
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theories, in particular for PA. No axiomatization is known for the preser-
vativity logic of HA, but over the last few years at least part of the logic
has been axiomatized2. It is a logic in the language of preservativity logic,
L!, i.e. the language of propositional logic extended with one binary modal
operator ". L" is the language of provability logic, i.e. the language of
propositional logic extended with one modal operator !. As mentioned
above, in preservativity logic we can define !A as % " A. In this paper we
consider the following principles of the preservativity logic of HA (" and !
bind stronger than ∧, ∨, that bind stronger than →).

IPC intuitionistic propositional logic
P1 A " B ∧ B " C → A " C
P2 A " B ∧ A " C → A " (B ∧ C)
Dp A " B → (A ∨ C) " (B ∨ C)
Mp A " B → (!C → A) " (!C → B)
Wp A ∧ !B " B → A " B

K !(A → B) → (!A → !B)
4p A " !A 4 !A → !!A
Lp (!A → A) " A L !(!A → A) → !A

Le !(A ∨ B) → !(A ∨ !B)
Rules:
Pres A → B / A " B Nec A / !A
MP A (A → B) / B

iP− denotes the logic given by IPC, the principles P1, P2, and the rules
Pres and MP . iP is the logic iP− extended by Dp and is called the basic
preservativity logic for reasons explained in the next section. By iP4 we
denote the logic iP extended by the principle 4p. Similarly for the other
preservativity principles Lp,Mp,Wp. iK denotes the logic given by IPC, K,
and the rules Nec and MP . The logic iK extended by the principle 4 is
denoted by iK4. Similarly for L,Le. Conform tradition, iKL is denoted by
iL. iLLe denotes iL extended by Le. iPX denotes an arbitrary extension
of iP . Lemma 1.1 below shows that all provability principles can be derived
from the preservativity principles.

Readers familiar with provability logic will note that at the right side the
non-logical axioms K, 4, L of the provability logic GL of PA are listed. This
in contrast to Dp and Le, that do not belong to the preservativity logic

2Visser[2002] Iemhoff[2003]
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of PA. Since it is difficult to think of a natural classical interpretation of
! or " for which these principles would hold, they are not likely to ap-
pear in classical modal logic. On the classical side, the modal study of the
provability logic of PA has been a useful tool, as it was shown in Solovay
[1976] that for a formula A(p1, . . . , pn) not derivable in GL one can con-
struct, on the basis of a countermodel of A, arithmetical formulas ϕi such
that PA (! A(ϕ1, . . . , ϕn), (where ! in A are interpreted as the provability
predicate of PA). An analogous result holds for the interpretability (preser-
vativity) logic of PA. Although it is open whether similar results hold for
HA, the modal study of the principles above is interesting for two main rea-
sons. First, these principles express principles of HA. Therefore, knowledge
about them is likely to provide insights in HA, and might help in the search
for a complete axiomatization of the provability and preservativity logic of
HA. In fact, modal results have lead to new principles of these logics before.
Second, as mentioned above, some of these principles do not belong to the
logics regularly studied in intuitionistic modal logic. We think that therefore
the modal study of these principles might be a valuable addition to the field.

In Iemhoff[2003] modal completeness results were presented for all logics
given by some or all of these principles, except for iPW and iPL. In this
paper we continue the modal study of these logics by investigating the re-
lation between the preservativity and provability logics (Section 3), and by
presenting fixed point theorems for both iPL and iL (Section 4). From the
latter it follows that both the fixed point theorem and the Beth property hold
for any extension of these logics in the appropriate language. In particular,
it follows that they hold for the provability and preservativity logic of HA.
The proof of the fixed point theorem for iPL also provides another proof
of the fixed point theorem for the interpretability logic IL. Furthermore,
we present a correspondence theorem for iPW and explain the connection
of this principle to iPL. It is not difficult to show that Wp is derivable in
iPLM , so in view of the preservativity logic of HA it does not add anything
new. However, this principle came up in Zhou [2003] in relation to the open
problem of frame completeness for iPL, where it plays an interesting role.
This will be explained in more detail in Section 3.4 on Wp.

!-fragments

The first part (Section 3) on the relation between preservativity and prov-
ability logics, needs a little more explanation. The !-fragment of a preser-
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vativity logic iPX in L! is defined to be

iPX" := {A in L" | iPX ! A}.

Here we ask ourselves what the !-fragment of a given preservativity logic is.
An obvious relation between ! and " is given by the following lemma3.

lemma 1.1. iP− ! !(A → B) → A " B and iP− ! A " B → (!A → !B).

Now the guiding idea behind the description of the !-fragments is the trans-
lation ◦ on formulas that inductively replaces all occurrences of A " B by
!A → !B. All preservativity principles except Dp,Mp and Wp are deriv-
able in iL under this translation4. For Wp, it is explained in Section 3.4.
why its translation under ◦ does not belong to the provability logic of HA.
For Dp and Mp, the translation of which under ◦ does not belong to the
provability logic of HA either5, it turns out that there are rules that some-
how cover the effect of Dp and Mp on the !-fragment of the preservativity
logics that contain them. These are the rules

DR !A → !B / !(A ∨ C) → !(B ∨ C)
MoR !A → !B / !(!C → A) → !(!C → B).

We show that for all preservativity logics considered in this paper, these rules
determine the !-fragment of a preservativity logic in the following way.

theorem 1.2. (Numbers indicate the sections where the equality is proved.)

iP"
3.3= iK

3.3= iK + DR

iP4"
3.1= iLe

3.1.1= iK4 + DR

iPL"
3.2= iLLe

3.2.1= iL + DR

iPM"
3.3= iK

3.3= iK + DR + MoR

iPW"
3.4= iLLe

3.4= iL + DR

In particular, if X is one of 4p, Lp or empty, then iPX" = iKX◦ + DR.
For X = Mp, iPX" = iK + DR + MoR = iK. Wp is an exception of this
regularity, as iPW" (= iKW ◦ + DR (Section 3.4).

3Iemhoff[2003]
4Iemhoff[2003]
5Iemhoff[2001]
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In all these cases the general method to prove these equalities is similar. As
an example, we explain the way in which the equalities on the second line
iP4" = iLe = iK4 + DR are proved. First it is shown that iP4" = iLe,
essentially by proving completeness of iLe and iP4 with respect to the same
class of frames. As iLe ⊆ iK4 + DR, this gives

iP4" = iLe ⊆ iK4 + DR.

It remains to prove that

iK4 + DR ⊆ iP4".

Since by Lemma 1.1 it follows that iP4" ! 4, it suffices to show that DR is
admissible for iP4". This is shown via proving that the rule BP (Box Pres)

!A → !B / A " B,

is admissible for iPX, i.e. iPX+BP = iPX, and then applying the following
lemma.

lemma 1.3. If the rule BP is admissible for iPX, then DR is admissible
for iPX, and whence for iPX". If in addition iPX ! Mp, then both DR
and MoR are admissible for iPX, and whence for iPX".

Proof. We show the first part of the lemma, as the second part is similar.
Suppose iPX ! !A → !B. By the admissibility of BP this implies that
iPX ! A"B. Since iP derives Dp, so does iPX. Whence iPX ! (A∨B)"
(B ∨ C). Lemma 1.1 gives iPX ! !(A ∨ C) → !(B ∨ C).

All the other equalities are proved in a similar manner. However, the applied
techniques differ with the logic. In some cases modal completeness results
are used, but for iPL, for which such a result is not available, other methods
had to be found.

2. Preliminaries and Tools

2.1. Semantics for Preservativity Logic

definition 2.1. A frame F (for preservativity logic) is a triple 〈W,R, ≤〉,
where W is a nonempty set of possible worlds, points or nodes, ≤ is a partial
order and R is a binary relation satisfying

(≤ ◦R) ⊆ R.
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A model M is a quadruple 〈W,R, ≤,#〉 where 〈W,R, ≤〉 is a frame and #
is a forcing relation between points in W and propositional letters which
satisfies the following condition:

• (persistence) If x # p and x ≤ y, then y # p.

Next we model the whole language by extending the forcing relation # to
relate points to complex formulae by interpreting the connectives in IPC in
the usual manner:

M,w # A ∧ B ≡def M,w # A and M,w # B;
M,w # A ∨ B ≡def M,w # A or M,w # B;
M,w # A → B ≡def ∀v ≥ w(M,v # A implies M,v # B);
M,w # % for any w;
M,w (# ⊥ for any w.

Define ¬A as A → ⊥. From the above third and fifth clauses and the
definition of ¬A as A → ⊥, it is easy to deduce that M,w # ¬A iff ∀v ≥
w(M,v (# A). The most important and characteristic clause is the following
one for " formulas:

M,w # A " B ≡def for any v such that wRv, if M,v # A, then M,v # B.

It follows immediately that M,w # !A iff for any v such that wRv, M,v #
A. Also it is easy to check that

• (persistence for all formulas) for any formula A in L!, if M,w # A
and w ≤ v, then M,v # A.

As a matter of fact, given the persistence for propositional letters, the con-
dition that (≤ ◦ R) ⊆ R is a necessary and sufficient condition to guar-
antee persistence for all formulas6, which is different from the condition
(≤ ◦ R) ⊆ (R ◦ ≤) for intuitionistic modal logic (sometimes we write R ◦ ≤
as R̄).

lemma 2.2. Let 〈W,R, ≤〉 be a frame such that W is a non-empty set, ≤ is
a partial order and (≤ ◦R) (⊆ R. Then there is a formula A of L! and a
forcing relation # such that in 〈W,R, ≤,#〉 for some x, y ∈ W , x ≤ y and
x # A but y (# A.

6Zhou[2003]
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Proof. Since not (≤ ◦R) ⊆ R, there are two worlds x, y ∈ W such that
x(≤ ◦R)y but not xRy. That is to say, there is a world u ∈ W such that
x ≤ uRy. Define z # p iff y ≤ z; z # q iff z (≤ y; z (# r for any other
propositional letter r.
It is easy to check that # is a forcing relation, i.e. it satisfies that for any
propositional letter t, if x ≤ y and x # t, then y # t. On one hand, u (# p"q.
For uRy, y # p, y (# q and hence u (# p " q. On the other hand, x # p " q.
To see this we shall show that if xRz and z # p, then z # q. Since xRz,
z (= y. Moreover, y ≤ z, for z # p. Therefore y < z. This implies that z (≤ y
and hence z # q. So we get that x ≤ u, x # p " q but u (# p " q.

A is valid in a model M if for any w ∈ W M,w # A. A is valid in a frame
F if A is valid on any model M = 〈F,#〉 on the frame.

theorem 2.3. iP ! A iff A is valid on all frames iff A is valid on all finite
frames. 7

As we can easily see, iP stands in the same position in preservativity logic
as iK does in normal modal logics. In this sense, it is the basic preservativity
logic.

2.2. Semantics for Intuitionistic Provability Logic

The semantics for L" should be part of the semantics for L! because we
define !A to be % " A. Although, given the persistence for propositional
letters, the condition that (≤ ◦R) ⊆ (R◦ ≤) is a sufficient and necessary
condition that guarantee the persistence for all formulas in L" (in fact (≤
◦R) ⊆ R implies (≤ ◦R) ⊆ (R◦ ≤)), it is well justified8 to define frames
for intuitionistic provability logics in the following simpler way, which is the
same as that of frames for preservativity logics.

definition 2.4. A frame F (for intuitionistic provability logic) is a triple
〈W,R, ≤〉 where W is a nonempty set of possible worlds, points or nodes, ≤
is a partial order and R is a binary relation satisfying

(≤ ◦R) ⊆ R.

7Proposition 4.1.1 in Iemhoff [2001].
8For details, see Bozic and Došen [1983] or Zhou [2003].
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However, for L" we can impose extra conditions on frames that we cannot
require of frames for preservativity logic. All intuitionistic modal logics iT
that we will consider below are complete with respect to some class of frames
satisfying additionally:

• (brilliancy) (R◦ ≤) ⊆ R.

In particular, iK is complete w.r.t the class of finite brilliant frames. More-
over, all the notions and propositions above can be adapted into intuitionistic
modal logic automatically. We will not go into details about that.

2.3. Some Useful Facts

In the following we achieve some basic propositions in preservativity logics
that will be very useful to other sections in this paper. First we establish
the connection between the natural rule for preservativity logic: preservation
rule and the more-often-used rule: necessitation rule.

theorem 2.5. In any preservativity logic iT containing all theorems in iP−,
the preservation rule and the necessitation rule are equivalent.9

Proof. Assume that A → B/A " B is admissible in iT and iT ! A. Then
iT ! % → A because IPC ! A → (% → A). By the preservation rule, we
get that iT ! %"A, i.e iT ! !A. Now for the other direction. Assume that
the necessitation rule is admissible in iT and iT ! A → B. By applying the
necessitation rule, we get that iT ! !(A → B). It follows from Lemma 1.1
that iT ! A " B.

By Lemma 1.1, we immediately get the following two corollaries:

corollary 2.6. The following two forms of the Mp principle are equivalent
over iP−:

1. A " B → (!C → A) " (!C → B)

2. (A ∧ !C) " B → A " (!C → B).

corollary 2.7. The following two forms of W are equivalent over iP−:

1. A ∧ !B " B → A " B

9This theorem is, in fact, implicit in Lemma 3.1.2 in Iemhoff [2001].
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2. A " B → (!B → A) " B

We will use the following substitution lemmas in our section on the fixed
point theorems.

lemma 2.8. (a) T ! $(A ↔ B) → (F [A/p] ↔ F [B/p]), for T = iP4 or
T = iK4,
(b) If p occurs only modalized in F , i.e. only under ! or ", then
T ! !(A ↔ B) → (F [A/p] ↔ F [B/p]), for T = iP4 or T = iK4.

Proof. We can prove (a) directly by induction on the complexity of F , and
(b) by induction from (a).

The following lemma, the proof of which we leave to the reader, shows that
the principle 4 is a very basic principle in intuitionistic provability logic.

lemma 2.9. For T = iL or T = iLe, T ! !A → !!A for any formula A
in L".

3. Conservation Results

As you will see, the rule !A → !B/A " B plays a dominant role in the
following sections. This rule is discussed in Section 5.2 of Iemhoff [2001]
where a short proof sketch is given for the admissibility of the rule for iPH.
We will give detailed proofs of the admissibility of this rule in many other
logics, which may impose an impression that we repeat the same proofs.
This is not the case though. Every time we show the admissibility for a
different logic, you will find some additional new ideas in the proof.
We will divide the presentation of this section into several parts according
to the results which we have previously mentioned.

3.1. Conservation of iP4 over iLe

A notational convention: Given a frame M , [z) := {w| there is a sequence of
w0S0w1 · · ·wn = w for some worlds w0, w1, · · · , wn in M where Si ∈ {R, ≤}}.
Thus [z) stands for the subframe generated by z. The same notation applies
to models.

theorem 3.1. 10

10Propostions 4.2.1, 4.2.2, 4.4.1 in Iemhoff [2001].
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1. In L", 4 corresponds to semi-transitivity: (R ◦ R) ⊆ (R◦ ≤).

2. In L", !iK4 A iff A is valid on all finite transitive frames.

3. The principle 4p corresponds to gatheringness: if wRvRu, then v ≤ u.

4. !iP4 A iff A is valid on all finite gathering frames.

5. On finite frames Le corresponds to the Le-property: ∀wv(wRv →
∃x(wRx ≤ v ∧ ∀u(vRu → x ≤ u))).

6. !iLe A iff A is valid on all finite brilliant Le-frames.

7. In L", !iLLe A iff A is valid on all finite transitive conversely well-
founded brilliant Le-frames.

For the sake of completeness, we will repeat the conservation of iP4 over
iLe in Iemhoff [2001] to give a more transparent presentation. Besides, we
need again the procedure (used in Lemma 3.3) transforming Le-frames to
gathering frames again in the proofs of Lemmas 3.11 and 3.34.

lemma 3.2. Let M := 〈W,R, ≤,#〉 and N := 〈W,R′, ≤,#〉 be two finite
models. If R′ ⊆ R ⊆ (R′◦ ≤), then M,w # B iff N,w # B for any formula
B in L" and any world w ∈ W .

lemma 3.3. Let M := 〈W,R, ≤,#〉 be a finite Le brilliant model. Then there
is a finite gathering model N = 〈W,R′, ≤,#〉 such that R′ ⊆ R ⊆ (R′◦ ≤).

Proof. Assume that M := 〈W,R, ≤,#〉 is a finite Le brilliant model. De-
fine:

wR′v ≡def wRv and ∀u(vRu → v ≤ u) and N := 〈W,R′, ≤,#〉.

S(x) denotes the property: ∀u(xRu → x ≤ u). Assume that wRv. We need
to find an x such that wR′x ≤ v. That is to say, wRx ≤ v and S(x). By
the Le-property, there is a successor x1 of w which is below both v and all
its own successors. If x1 = v, then we have found such an x. If x1 (= v, then
there is another successor x2 of w which is below both x1 and all its own
successors. If x2 = x1, then we have found such an x. If not, we will repeat
the same argument as above. Thus, we will get a sequence x1x2 · · · . Since
the frame is finite, there are two nodes xn−1 = xn for some n; xn is the x
that we are looking for.

lemma 3.4. !iP4 !(A ∨ B) → !(A ∨ !B).
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Proof. Observe that, by 4p and Dp, !iP4 (A ∨ B) " (A ∨ !B), and apply
Lemma 1.1.

theorem 3.5. !iLe A iff A is valid on all finite gathering frames.

Proof. The right-to-left direction follows from the fact that Le is derivable
in iP4 (Lemma 3.4). We just need to show the other direction. Suppose
that (!iLe A. Then by the completeness of iLe, we know that there is a world
b in some finite brilliant Le model M = 〈W,R, ≤,#〉 such that M, b (# A.
According to Lemma 3.3, there is another new finite gathering model N =
〈W,R′, ≤,#〉 such that R′ ⊆ R ⊆ (R′◦ ≤). From Lemma 3.2, it follows that
N, b (# A.

corollary 3.6. (Conservation) !iP4 A iff !iLe A, for all A in L".

3.1.1. iLe is equivalent to the logic iK4 with DR

lemma 3.7. Let M be a model on a gathering frame and x, y be two worlds
in this model such that xRy. If y # A, then, for any z ∈ [y), z # $A.

Proof. First one observation: for any z ∈ [y), y ≤ z. This follows imme-
diately from the fact that M is on a gathering frame. So z # A. Take any
successor w of z, w # A because w ∈ [y). So z # !A and hence z # $A.

lemma 3.8. !iP4 A " B iff !iP4 (!A → !B).

Proof. The direction from left to right follows from Lemma 1.1. We prove
the other direction by contraposition. Suppose that iP4 (! A " B. From
the completeness of iP4, it follows that A " B is false at a point w of some
finite gathering model M . Then there is a point v such that wRv, v # A
and v (# B. Now we define from the original one a new model M ′, which
is, in fact, a submodel of the old one. Take W ′ := {w} ∪ [v), R′ = R %W ′,
≤′=≤%W ′, and x # p iff x #′ p for any propositional variable p, for all
x ∈ W ′. Observe that M ′ has a gathering frame. Note that, for any x ∈ [v)
and for any formula B in L!, M ′, x # B iff M,x # B.

It is clear that M ′, w (# !B because wR′v and M ′, v (# B. By the
above lemma, we get that M ′, w # !A because R′[w] ⊆ [v) and for any
x ∈ [v), x # A. So M ′, w # !A but M ′, w (# !B, which implies that
M ′, w (# !A → !B. Therefore (!iP4 !A → !B.
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theorem 3.9. iLe is equivalent to the logic iK4 with the extra rule DR.
Whence iP4" = iLe = iK4 + DR.

Proof. First we prove that iLe is contained in iK4 + DR. We only need
to show that Le is derivable in the latter logic. Since iK4 + DR ! !A →
!!A, we can get Le immediately by just applying DR. For the other
direction, recall11 that the principle 4 is derivable in iLe. Whence it remains
to show that DR is admissible for iLe, which is the same as showing that
it is admissible for iP4", by Corollary 3.6. That DR is admissible for iP4"
follows from the previous lemma, by applying Lemma 1.3.

3.2. Conservation of iPL over iLLe

lemma 3.10. The principle Lp corresponds to gatheringness plus converse
well-foundedness of the modal relation. Similarly, L corresponds to semi-
transitivity plus well-foundedness.12

lemma 3.11. iLLe ! A iff A is valid on all finite gathering conversely well-
founded frames.

Proof. First the easier left-to-right direction. It suffices to show that both
Le and L are valid on all finite gathering conversely well-founded frames.
Firstly, Le is valid on all finite gathering frames and hence on all finite gath-
ering conversely well-founded frames. Secondly, L is valid on all finite gath-
ering conversely well-founded frames. For L corresponds to semi-transitivity
plus converse well-foundedness, and gatheringness implies semi-transitivity.

Next we show the more difficult direction. Suppose that iLLe (! A where
A is a formula in L". According to Theorem 3.1, there is a point b in
some model M = 〈W, ≤, R,#〉 which is finite transitive conversely well-
founded brilliant Le-model such that M, b (# A. Define wR′v iff wRv and
∀u(vRu → v ≤ u). By the same argument as that in Lemma 3.3, we get that
R′ ⊆ R ⊆ (R′◦ ≤). Set M ′ = 〈W,R′, ≤,#〉. It is easy to see that M ′ is on a
finite gathering frame, as we impose this property through the definition of
R′.

Finally, M ′ is conversely well-founded. Suppose not. Then there is a
loop: w0R′w1R′ · · ·R′wnR′w0. According to the definition of R′, w0Rw1R
· · ·RwnRw0, which is impossible because R is conversely well-founded. So
M ′ is on a finite gathering well-founded frame. It follows immediately from

11Lemma 2.9
12Iemhoff [2001].
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the above Lemma 3.2 that M ′, b (# A. Since M ′ is on a finite gathering con-
versely well-founded frame, A is not valid on all finite gathering conversely
well-founded frames.

theorem 3.12. (Conservation) iLLe is the L"-fragment of iPL.

Proof. Suppose that iLLe (! A. Then A is not valid on all gathering
conversely well founded frames. It follows from the above correspondence
result that iPL (! A. On the other hand, it is easy to see that iLLe is
contained in iPL. For both L and Le are derivable in iPL.

3.2.1. iLLe is Equivalent to iL with the Extra Rule DR

In the following paragraphs we are mainly concerned with the proof of

iPL ! !A → !B ⇔ iPL ! A " B,

which immediately implies that iLLe is equivalent to iL with the extra rule
DR.

lemma 3.13. iP4 ! !((!C → C) " C) → (!C → C) " C.

Proof. First note that iP ! !(A " B) → (!A " !B) by Lemma 1.1.
Reason inside iP4:

!((!C → C) " C) → !(!C → C) " !C
!((!C → C) " C) → (!C → C) " !C
!((!C → C) " C) → (!C → C) " (!C ∧ (!C → C))
!((!C → C) " C) → (!C → C) " C.

corollary 3.14. iP4 ! ! $ L ↔ $L ↔ !L where L is (!C → C) " C.

lemma 3.15. (Detour Lemma) iPL ! A iff there exist C1, C2, · · · , Cn such
that iP4 ! !((!C1 → C1) " C1) ∧ · · · ∧ !((!Cn → Cn) " Cn) → A.

Proof. Let C range over expressions ((!C1 → C1) " C1) ∧ · · · ∧ (!Cn →
Cn) " Cn)). Then the above proposition can be put in the following simpler
way:

iPL ! A iff there exists C such that iP4 ! !C → A.
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The direction from right to left is obvious. We just show the other direction.
Assume that iPL ! A. Let s1s2 · · · sn be a proof of A in iPL, i.e. sn = A and
for all i ≤ n, si is an axiom of iPL, or there are j, h < i such that sj sh / si

is an instance of Modus Ponens, or sj / sh is an instance of the rule Pres.
Let (!C1 → C1)" C1), · · · , ((!Cn → Cn)" Cn) be the instances of the Löb
principle occurring in the sequence and C denote their conjunction. Define
s′i := !C → si. With induction to i we show that for all i, iP4 ! s′i. This
proves that iP4 ! !C → A.

1. If si is an instance of axiom of iP , then s′i is a theorem of iP and hence
of iP4 because, in fact, si → (!C → si) is a tautology;

2. If si is an instance of Lp, it is easy to see that s′i is a theorem of iP4
by of the following reasoning:

iP4 ! !C → $C

⇒ iP4 ! $C → si

⇒ iP4 ! !C → si

⇒ iP4 ! s′i;

3. If there are sj and sk(j, k < i) such that sj ≡ sk → si, then s′j ≡
!C → (sk → si) ≡ ((!C → sk) → (!C → si)) ≡ s′k → s′i, and as
iP4 ! s′j ∧ s′k by IH, iP4 ! s′i follows;

4. If there are B,D and sj(j < i) such that sj ≡ B → D and si ≡ B "D,
then s′j ≡ !C → (B → D) and s′i ≡ !C → (B " D). Now we show
that we can get s′i in iP4. The following is the argument:

iP4 ! s′j by IH

⇒ iP4 ! !C → (B → D)

⇒ iP4 ! !!C → !(B → D)

⇒ iP4 ! !C → !(B → D)

⇒ iP4 ! !C → (B " D)

lemma 3.16. If iP4 ! !C → (!A → !B), then iP4 ! !C → (A " B), for
all formulas C.

Proof. The proof is similar to the one of Lemma 3.8.
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theorem 3.17. iPL ! !A → !B iff iPL ! A " B

Proof. Assume that iPL ! !A → !B. Then, according to Lemma 3.15,
there are some instances of L: (!C1 → C1) " C1, · · · , (!Cn → Cn) " Cn

(C denotes their conjunction) such that iP4 ! !C → (!A → !B). By
Lemma 3.16, we get that iP4 ! !C → (A " B). This implies, according to
Lemma 3.15, that iPL ! A " B.

corollary 3.18. iLLe is equivalent to the logic iL with the extra rule DR.
Whence iPL" = iLLe = iL + DR.

Proof. The previous theorem, Theorem 3.12 and Lemma 1.3.

In fact, we can show the admissibility of DR in iLLe without that of !A →
!B/A " B in iPL. The proof strategy here is similar to the above though.
First we give a similar detour lemma:

lemma 3.19. For any formula A in L", !iLLe A iff !iLe !C → A where C
is the conjunction of some instances of Löb’s principle L.

Proof. Here we only mention that, for any instance C of Löb’s provability
principle, !iLLe !C ↔ $C.

theorem 3.20. DR is admissible in iLLe.

Proof. !iLLe !A → !B
⇒!iLe !C → (!A → !B) for some conjunction C of instances of L.
⇒!iLe !(C ∧ A) → !B
⇒!iLe !((C ∧ A) ∨ D) → !(B ∨ D) (by the admissibility of DR in iLe)
⇒!iLe !(C ∨ D) → (!(A ∨ D) → !(B ∨ D))
⇒!iLe !C → (!(A ∨ D) → !(B ∨ D))
⇒!iLLe !(A ∨ D) → !(B ∨ D).

3.3. Conservation of iPM over iK

Before proving that iK is the L"-fragment of iPM (Theorem 3.29), we show
the admissibility of !A → !B/A " B. Recall that R̄ is short for R◦ ≤.
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lemma 3.21. 13 (i) The principle Mp corresponds to the Mp property:
∀wvu(wRv ≤ u → ∃x(wRx ∧ v ≤ x ≤ u ∧ xR̄ ⊆ uR̄).
(ii) !iPM A iff A is valid on all finite Mp frames.

It is not easy to give a precise proof of the admissibility of rules in iPM ,
although the intuitive idea is not difficult. Probably the reason for that lies
in the fact that the Mp property is a property that states the existence of
certain nodes. Hence, in contrast to the situation for e.g. gathering models,
the Mp property is not inherited by submodels. In order to make certain
submodels into models that have the Mp property, we have to define some
notions to help with our formalization of the proof.

definition 3.22. A triple (w, v, u) in a frame is called a problem if it satisfies
wRv ≤ u. It is called an unsolved problem if it additionally satisfies:

there is no x such that wRx, v ≤ x ≤ u and xR̄ ⊆ uR̄.

Such an x is called a solution to the above problem. If such an x exists, then
the problem is called a solved problem. Let (w, v, u) and (w, v′, u) be two
problems. If v ≤ v′, then we denote (w, v, u) 6 (w, v′, u) and say (w, v, u) is
below (w, v′, u). If v < v′, then we denote (w, v, u) ≺ (w, v′, u). A problem
(w, v, u) is called a dispensable problem if there is another different problem
such that (w, v, u) ≺ (w, v′, u). A problem is called indispensable if it is not
dispensable. < [x] := {z|x < z}. A point w is called a minimal point in X
if there is no point v such that v < w. min[x] denotes the set of minimal
points in the set < [x].

lemma 3.23. The following propositions follows immediately from the above
definition:

1. If x ≤ y, then yR̄ ⊆ xR̄. Therefore, if x ≤ y and xR̄ ⊆ yR̄, then
yR̄ = xR̄.

2. Let (w, v, u) and (w, v′, u) be two problems. If (w, v, u) 6 (w, v′, u) and
x is a solution to the problem (w, v′, u), then x is also a solution to the
problem (w, v, u).

3. Let v ≤ v′. For all x, y, if both (x, v, y) and (x, v′, y) are problems,
then each solution to (x, v′, y) is also a solution to (x, v, y).

4. Any problem (w, v, v) is a solved problem.

13(i) Iemhoff [2001] (ii) Zhou [2003] .
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5. Let F be a frame. If there is no unsolved problem, then F satisfies the
Mp-property.

theorem 3.24. iPM ! A " B iff iPM ! (!A → !B).

Proof. One direction follows from Lemma 1.1. We show the other direc-
tion. Assume that iPM (! A " B. Then, according to the completeness
of iPM , A " B is falsified at some point w0 of some model M on some
finite frame satisfying the Mp-property. This implies that there is a v0 such
that w0Rv0,M, v0 # A but M,v0 (# B. In the following we will construct a
new Mp-model M ′ such that M ′ (# (!A → !B). Note that, if a problem
(x, y, z) is inside [v0), i.e x, y, z ∈ [v0), then it is easy to see that there is a
solution to this problem in [v0). This means that we don’t need to consider
the problems in [v0) because all of them are already solved in [v0).

First we define W0 := [v0) ∪ {w}, R0 := R %[v0) ∪{(w, v0)}; ≤0:=≤%[v0)

where w is a new world. Then enumerate all the elements in min[v0]:
u0, u1, · · · , un. The purpose of choosing minimal points is to just to make
the construction more efficient. At every stage we will add solution to some
indispensable unsolved problems. These solutions will be denoted by xσ,
where σ is a sequence of nodes in W0, used to keep track of the problem
to which xσ is a solution. Let ∗ denote concatenation of sequences, and let
σl denote the last element of σ, i.e. 〈y0, . . . , ym〉l = ym, and τ 6 σ denote
that τ is an initial segment of σ. Let TC(S) denote the reflexive transi-
tive closure of a relation S. At stage 0, we add for every unsolved problem
(w, v0, ui) (which is indispensable because the ui are minimal elements), a
new world x〈ui〉 to W0. We define the new frame F1 = 〈W1, R1, ≤1〉 via
W1 := W0 ∪ {x〈ui〉 | i ≤ n};R1 := R0 ∪ {(w, x〈ui〉), (x〈ui〉, z) | i ≤ n, (ui, z) ∈
R0}; ≤1:= TC(≤0 ∪ {(v0, x〈ui〉), (x〈ui〉, ui)|i ≤ n}). It is easy to see that
x〈ui〉R̄ = uiR̄ and that we can extend the forcing relation to the new nodes
by defining x〈ui〉 # p iff ui # p for all propositional letters. Note that in this
way persistency is satisfied.

Observe that in F1 all indispensable unsolved problems are of the form
(w, x〈ui〉, z), for some z ∈< [ui]. Namely, all the problems (w, v0, ui) and
(w, x〈ui〉, ui) have been solved by x〈ui〉, and all problems (w, v0, z) for z ∈<
[ui] have become dispensable in F1 through x〈ui〉. Therefore, we have only
to consider problems (w, x〈ui〉, z), for some z ∈< [ui]. At stage 1, we add for
every unsolved problem (w, x〈ui〉, u) with u ∈ min[ui], a solution x〈ui,u〉 to
W1, and proceed in the same way as before.
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In general, at stage i + 1, we consider the nodes xσ in Fi that are newly
added at stage i. For every such xσ and every problem (w, xσ , u) for u ∈
min[σl] we add a solution xσ∗u to Wi. We define the new frame Fi+1 =
〈Wi+1, Ri+1, ≤i+1〉 via
Wi+1 := Wi ∪ {x〈σ∗u〉 | xσ ∈ Wi\Wi−1, u ∈ min[σl]};
Ri+1 := Ri ∪ {(w, xσ∗u), (xσ∗u, z) | xσ ∈ Wi\Wi−1, u ∈ min[σl], (u, z) ∈ R0};
≤i+1:= TC(≤i ∪ {(xσ , xσ∗u), (xσ∗u, u)|xσ ∈ Wi\Wi−1, u ∈ min[σl]}). Again,
note that xσ∗uR̄ = uR̄ and that by extending the forcing relation to the new
nodes via xσ∗u # p iff u # p, persistency is satisfied.
To see that the procedure terminates, observe that for every xσ that is added
at some stage in the construction, σ is of the form 〈ui, y1, . . . , ym〉, for some
nodes ui < y1 < . . . < ym in W0. Since W0 is finite, termination follows.
Let i + 1 be a stage at which there are no more unsolved indispensable
problems. Consider Mi. As explained in the previous lemma, Mi satisfies
the Mp-property. It remains to show that Mi, w # !A and Mi, w (# !B, as
according to the soundness of iPM , this gives (!iPM !A → !B.
It is not difficult to prove with induction to i that for all formulas C,

1. for all xσ∗u ∈ Wi, Mi, u # C iff Mi, xσ∗u # C.

2. for all nodes y ∈ [v0), Mi, y # C iff M,y # C.

We leave the proof to the reader. For the first part, use the fact that xσ∗uR̄ =
uR̄. For the last part, use the first part and the facts that no new nodes
are added above the ui, and that above v0 all new nodes are of the form xσ.
As observed above, for xσ∗u, u ∈ W0 and v0 ≤ u. Thus u # A, and whence
Mi, xσ∗u # A. Whence xσ # A, for all xσ ∈ Wi. As for w, wRiy implies
y = v0 or y is a new node xσ, it follows that Mi, w # !A. Mi, w (# !B
follows from the fact that Mi, v0 (# B.

We can extract a theorem from the above proof, which is very handy when
we deal with the admissibility of many other rules in iPM .

theorem 3.25. Let M = 〈W,R,≤, V 〉 be a finite Mp model and [v) be any
generated submodel by v. Then there is a new finite Mp model N = 〈W ′,
R′, ≤′, V ′〉 in which

1. [v) ⊆ W ′;

2. for any world x ∈ [v) and any formula E, M,x # E iff N,x # E;

3. there is a world w ∈ W ′ such that wR′v and, if wR′y and M,v # A,
then N, y # A.



Properties of Intuitionistic Provability Logics. . . 19

4. if M,v # A and M,v (# B, then there is a world w′ ∈ W ′ such that
w′R′v and N,w′ (# !A → !B.

By appealing to this theorem, we can easily show that iPM is also closed
under the inference rules: !A/A and !A → !B/ $ A → B.

theorem 3.26. The logic iK + DR + MoR is contained in iPM".

Proof. By Lemma 1.3 and Theorem 3.24.

There also is an interesting syntactic proof of iK+DR+MoR = iPM" that
uses the following translation on formulas which is related to the translation
◦ given in the introduction.

definition 3.27. The translation * from formulas in L! to those in L" is
inductively defined as follows:

• For p, % and ⊥, p∗ = p, %∗ = % and ⊥∗ = ⊥.

• For ◦ ∈ {∨, ∧, →}, (A ◦ B)∗ = A∗ ◦ B∗.

• (¬A)∗ = ¬A∗.

• (A " B)∗ = !(A∗ → B∗).

lemma 3.28. If iK ! X∗, then iPX" = iK, where X is in L!.

Proof. Clearly, iK ⊆ iPX". Thus it remains to show that iPX" ⊆ iK.
Assume that iPX" ! A. Of course we can consider A as a formula in L!
according to the fact that !A ≡ (% " A) in iP . It suffices to show that

if iPX ! A, then iK ! A∗ (∗)

because, for any formula B in L", B∗ = B.
Since iPX ! A, there is a finite sequence s1s2 · · · sn(= A) of formulas in L!
in which, for any si(1 ≤ i ≤ n),

1. either si is in the forms of P1, P2,Dp or X,

2. or there are some A1, A2, sj ∈ L" (j < i) such that si = A1 " A2 and
sj = A1 → A2,

3. or there are some sj, sk(j, k < i) such that sk = sj → si.
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The sequence s∗1s
∗
2 · · · s∗n(= A∗) of formulas in L" is a proof of A∗ in iK. We

treat the first case and leave the others to the reader. If si is an instance of
P1, P2,Dp or X, then it is easy to see that s∗i is a theorem of iK for the first
three, and it follows by assumption for X.

theorem 3.29. iPM" = iK = iK + DR + MoR.

theorem 3.30. iP" = iK.

3.4. Conservation of iPW Over iLLe

The usual method to prove completeness for L, like the proof method in the
proof of completeness for iL, breaks down for iPL. One of the problems is
that it is not possible in iPL to infer A " B from A ∧ !B " B 14. This
is how the principle Wp emerged. Trivially, Lp is derivable in IPW . We
do not know whether Wp is complete, but in the following we will give a
correspondence result for Wp and show that the !-fragment of iPW is iLLe.
Thus although iPW and iPL are distinct, their !-fragments are equal.

theorem 3.31. 15 Let F be a finite frame. F # (A ∧ !B) " B → A " B iff
F satisfies the following property:

∀wvu(wRvRu → ∃x(wRx ∧ v < x ≤ u)).

definition 3.32. Let 〈W,R〉 be a finite, transitive, gathering and conversely
well-founded (hence irreflexive) frame. An end point w is a world without a
w′ such that wRw′ or w ≤ w′. It is easy to see that for any w ∈ W , there
is a finite sequence s of wn, wn−1, · · · , w0 such that w = wnSnwn−1 · · ·S1w0

where si is either R or ≤ and w0 is an end point. We define the grade gs(w)
of w in this sequence inductively as follows:

1. gs(w0) := 0

2. If gs(wi−1) = k and Si is ≤, then gs(wi) := k; If gs(wi−1) = k and Si

is R, then gs(wi) := k + 1.

Of course, gs(wi) ≤ n for any i ≤ n. For each w ∈ W , we define the rank
r(w) of w as the greatest such gs(w) (we omit the subscript 〈W,R〉 here).
Note that, if wRv, then r(w) > r(v).

14Page 68 in Iemhoff [2001].
15Lemma 3.5.1 in Zhou [2003].
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theorem 3.33. iPW ! A implies that A is valid on all finite gathering,
transitive and conversely well-founded frames.

Proof. It suffices to show that Wp is valid on all finite gathering, transitive,
conversely well-founded frames. Given a model M on such a frame 〈W,R〉
and any w′, w, v ∈ W such that w′ ≤ wRv, assume that M,w # (A∧!B)"B
and M,v # A. We need to show that M,v # B. It suffices to show that
M,v # !B. Suppose that this is not the case: M,v (# !B.

Now consider the v-generated submodel M ′. Obviously, M ′, v (# !B,
M ′, v # A and M ′ is on a finite transitive, gathering and conversely well-
founded frame. Then there is a world v′ ∈ W ′ of least rank such that
M ′, v′ (# !B. This implies that, for any v′′ ∈ W ′ such that v′Rv′′, M ′, v′′ #
!B and hence M,v′′ # !B. Such a v′′ can always be found because every
end point makes all boxed formulas true. It is easy to check that wRv′′ by
transitivity and that M ′, v′′ # A (and hence M,v′′ # A) according to the
fact that M ′, v # A and v′′ ∈ [v). Since M,w # (A ∧ !B) " B, M,v′′ # B
and hence M ′, v′′ # B. So M ′, v′ # !B. We have arrived at a contradiction.
So M,v # !B and hence (A ∧ !B) " B is valid on any finite gathering,
transitive and conversely-well-founded frame.

The converse of this lemma is not true. On the one hand, it is easy to
check that (A " B) → !(A " B) is valid on all transitive frames. On the
other hand, it is well-known that this formula is not arithmetically valid in
HA. Suppose that the converse were true. Then, according to the converse
proposition, iPW ! (A " B) → !(A " B), which is impossible because Wp
is a valid principle in HA whereas (A " B) → !(A " B) is not.

lemma 3.34. !iLLe A iff A is valid on all finite gathering transitive and
conversely well-founded frames.

Proof. In fact the lemma is not new, just an extension of Lemma 3.11.
We only need to show that transitivity is preserved in the new model N =
〈W,R′, ≤, V 〉. Assume that w, v, u ∈ W and wR′vR′u. We need to show
that wR′u. Since wR′vR′u, wRvRu and hence wRu because R is transitive.
It remains to show that, for any z such that uR′z, u ≤ z. This immediately
follows from the assumption that vR′u. So wR′u.

theorem 3.35. iPW" = iLLe = iL + DR.
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Proof. Since both L and Le are derivable in iPL, and iPW is a proper
extension of iPL, iLLe ⊆ iPW" is clear. For iPW" ⊆ iLLe, suppose
that (!iLLe A for some A in L". By the completeness of iLLe, we know
that A is not valid on some finite transitive gathering and conversely well-
founded frame. It follows from Lemma 3.33 that (!iPW A. This shows that
iPW" = iLLe. That iLLe = iL + DR follows from Corollary 3.18.

Note that in contrast to the principles treated before, iPW" (= iKW ◦+DR,
as (Wp)◦ = (!(A∧ !B) → !B) → (!A → !B). Using the completeneness
result for iLLe one can show that (Wp)◦ does not belong to iLLe, but one
can also show directly that Wp does not belong to the provability logic of HA,
and whence cannot be derivable from iLLe. For if so, (!!B → !B) → !B
would belong to the provability logic as well, because it is derivable from Wp.
But this principle is not even true, neither classically nor constructively, as
it constructively implies ¬¬(!!B ∨ !B).

4. Fixed Points and Beth Definability

In this section we will prove the fixed point theorems for iL and iPL and
point out connections with Beth’s Definability Theorem. Let us remind the
reader that fixed point theorems are of the form: for each formula A(p) in
which p occurs only modalized, there exists a unique B not containing p
such that B and A(B) are provably equivalent. The proof of the existence
of fixed points in iL is an adaptation of the well-known proof of that prop-
erty for GL; the proof of the existence of fixed points in iPL derives from
the one for IL, the basic interpretability logic (de Jongh-Visser [1991]). We
will give the main steps of the proof but not all the details where these
are sufficiently similar to the classical proofs. In the last subsection, we
will discuss the interderivability between fixed points and Beth definability
(Definition 4.21) in both intuitionistic provability and preservativity logics.
This extends the work of Areces et al.[2000] (see also Hoogland[2001], Ch. 5).

A notational convention: AB is the result of substitution of B for p in the
formula Ap.

theorem 4.1. (Uniqueness Theorem) Suppose that p occurs modalized in
A, then !L ($(p ↔ Ap) ∧ $(q ↔ Aq)) → (p ↔ q) where L ∈ {iL, iPL}.16

16See Smoryński[1985]. The proof there is intuitionistically acceptable. This is also the
case for Lemma 4.3, Corollary 4.4 and Theorem 4.5 below.
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Proofs of the existence of fixed points for a system usually consist of proving
the existence of fixed points for the basic formulas and proving an inductive
step. For the inductive step for iPL, we can borrow the following theorem17,
since its proof did not use classical logic. This means that for iL and iPL
we can confine ourselves to proving the basic cases.

theorem 4.2. Let U be any extension of iL or iPL satisfying:

FIX: Every formula Ap of the form !Bp or Bp " Cp has a fixed point.

Then, for every formula Ap with p modalized, there is a formula J such that
p does not occur in J and !U J ↔ AJ .

4.1. Fixed Point Theorem for iL

lemma 4.3. iL ! !A% ↔ !A!A% for all formulas A.

corollary 4.4. Let Ap := B!Cp. Then iL ! AB% ↔ AAB%.

Now an application of Theorem 4.2 suffices.

theorem 4.5. If in C the propositional letter p occurs exclusively under !,
then there is a formula D not containing p such that iL ! D ↔ CD.

4.2. Fixed Point Theorem for iPL

The following proof is similar to the one for interpretability logic in de
Jongh-Visser [1991]. To put it more precisely, the fixed point for the for-
mula A(p) " B(p) in iPL is a kind of mirror image of that for the formula
A(p) "i B(p) in IL. This is not surprising since classically A(p) " B(p) is
equivalent to ¬B(p)"i ¬A(p) in IL. Since the latter formula contains nega-
tions however the details of the intuitionistic proof ought not to be skipped.
The crucial point is Theorem 4.8 which reflects E2 of de Jongh-Visser [1991].

Define: A ≡ B :⇔ !iPL (A " B) ∧ (B " A).

lemma 4.6. A ≡ A ∧ !A ≡ !A → A.

lemma 4.7. If ! !B% → C, then ! B% ∧ !B% ↔ BC ∧ !BC.

17Theorem 2.4 in de Jongh-Visser[1991].
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Proof. For the left-to-right direction, reason in iPL:
!B% → C,
!B% → (% ↔ C)
!!B% → !(% ↔ C)
!B% → $(% ↔ C)
!B% → ($B% ↔ $BC)
$B% → $BC.

Now the other direction. Again reason in iPL:
!B% → $(% ↔ C) (∗)
!(!B% → $(% ↔ C))
BC ∧ !BC ∧ !(!B% → $(% ↔ C)) → (BC ∧ !(!B% → B%))
BC ∧ !BC ∧ !(!B% → $(% ↔ C)) → (BC ∧ !B%))
BC ∧ !BC → (BC ∧ !B%))
BC ∧ !BC → $(C ↔ %) (by (∗))
(BC ∧ !BC) → (B% ∧ !B%)

theorem 4.8. If ! !B% → C, then ! B% ≡ BC.

Proof. Follows immediately from Lemmas 4.6 and 4.7.

corollary 4.9. ! B% ≡ B(A!B% " B%)

Proof. Since ! A!B%"%, ! !B% → (A!B%"B%). It follows from the
above theorem that ! B% ≡ B(A!B% " B%).

lemma 4.10. ! !A!B% → (A!B% " B% ↔ !B%)

theorem 4.11. ! !A!B% → $(A!B% " B% ↔ !B%)

theorem 4.12. ! A!B%∧!A!B% ↔ A(A!B%"B%)∧!A(A!B%"B%)

Proof. For the left to right direction, reason in iPL as follows:
!A!B% → $(A!B% " B% ↔ !B%)
$(A!B% " B% ↔ !B%) → (A!B% ∧ !A!B% ↔ A(A!B% " B%) ∧

!A(A!B% " B%))
A!B% ∧ !A!B% → A(A!B% " B%) ∧ !A(A!B% " B%)

For the right to left direction, it suffices to show: ! !A(A!B% " B%) →
!A!B%. Reason in iPL:

!A!B% → $(A!B% " B% ↔ !B%)
A(A!B% " B%) → (!A!B% → A!B%)
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!A(A!B% " B%) → !(!A!B% → A!B%)
!A(A!B% " B%) → !A!B%

lemma 4.13. A!B% ≡ A(A!B% " B%).

Proof. Obviously, ! A!B% ≡ A!B% ∧ !A!B% (from Lemma 4.6). It
follows from Theorem 4.12 that ! A!B% ∧ !A!B% ≡ A(A!B% " B%) ∧
!A(A!B% " B%). In addition, ! A(A!B% " B%) ≡ A(A!B% " B%) ∧
!(A(A!B% " B%)).

theorem 4.14. (Fixed Point Theorem for A(p) " B(p)) ! A!B% " B% ↔
A(A!B% " B%) " B(A!B% " B%).18

Proof. This is just a combination of Lemmas 4.9. and 4.13.

We may consider boxed formulas to be defined of course, but we can also
rely on the fact that the proof of fixed point theorem for such formulas in
iPL is the same as that in iL.

theorem 4.15. (The Fixed Point Theorem for !-formulas in L!) !iPL

!A% ↔ !A!A% for all formulas A in L!.

We can get a symmetric form of the fixed point for Ap " Bp.

theorem 4.16. ! A!B% " B% ↔ A!B% " B!B%

Proof. Since !iPL !B% → !B%, B% ≡ B!B%.

Since we have now proved FIX of Theorem 4.2 we can conclude

theorem 4.17. (Fixed Point Theorem) For every formula Ap with p modal-
ized, there is formula J such that p does not occur in J and !iPL J ↔ AJ .

Proof. It has to be checked that
!iPL !(A ↔ B) → (A " C ↔ B " C)
!iPL !(A ↔ B) → (C " A ↔ C " B).

But that is just the Substitution lemma (Lemma 2.8). So iPL satisfies FIX
in Theorem 4.2.

18Following de Jongh-Visser [1991] we can also get an interesting dual result: !iPL

(A" " B!A") ↔ A(B!A"" A") " B(B!A" " A").
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In iPW, we have a simpler form of fixed point for Ap " Bp.

theorem 4.18. In iPW , the fixed point of Ap " Bp is A% " B%.

Proof. Reason in iPW :
!B% → (!B% ↔ %)
!B% → $(!B% ↔ %)
!B% → (A% ↔ A!B%)

In other words, ! A!B% ∧ !B% ↔ A% ∧ !B%. Therefore we can proceed
in iPW as follows:

A!B% " B% ↔ (A!B% ∧ !B%) " B%
A!B% " B% ↔ (A% ∧ !B%) " B%
A!B% " B% ↔ A% " B%

However, in iPL, we can’t get such a simpler form. Consider the formula
p " q. Suppose that the fixed point for formulas Ap " Bp were A% " B%.
Then !q would be the fixed point of p " q, i.e. !iPL (!q " q) ↔ !q. It is
easy to see that one direction is correct: !iPL !q → (!q " q). But for the
other direction it is not difficult to construct a countermodel.
Actually the fixed point theorems for IL and ILW (de Jongh and Visser
[1991]) may be seen as a consequence of Theorems 4.17 and 4.18.

corollary 4.19. For every formula Ap with p modalized, there is formula
J such that: p does not occur in J , and !IL J ↔ AJ .

Proof. Just use the translation discussed at the start of this subsection
and note that the principle Dp (which, dually, is not available in IL) has
not been used in the above proof. Clearly ILW can be treated similarly.

4.3. Beth Definability and Fixed Points

In the following, we will show for a general class of intuitionistic modal logics
two theorems (Theorem 4.24 and Theorem 4.25) about the interderivability
of the Beth property (Definition 4.22) and the fixed point property (Defi-
nition 4.23). The theorem applies to logics in an extended language as e.g.
preservativity logics. The theorems and their proofs are an adaptation of
the corresponding theorems and proofs of Areces et al. [2000] concerning
interpretability logic.
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The essential difference lies in an adaptation of Maximova’s trick to obtain
the Beth property from the existence of fixed points. The problem is of
course that fixed points are there for formulas with p modalized only, and
Beth’s property is supposed to apply to all formulas. Maximova’s trick
(Maximova[1989]) that was applied in the proof in Areces et al.[2000] relies
on the fact that A(p̄, r) is equivalent to (A1(p̄, r)∧r)∨(A2(p̄, r)∧¬r) for some
A1, A2 with r modalized. But this presupposes the existence of a disjunctive
normal form unavailable in intuitionistic logic. However (skipping the p̄
from here onwards), A2 is not used in the proof and the role of A1 can
be taken over by the formula arising from the substitution of % for all the
nonmodalized occurrences of r. It is easy to see that, for A1 thus defined,
A1(r) is modalized in r and thus !iPL !(r ↔ r′) → (A1(r) ↔ A1(r′)). The
following straightforward lemma about the relation between A(r) and A1(r)
is all we need.

lemma 4.20. For any intuitionistic logic T with modal operators, if A1 arises
from A by the substitution of % for all nonmodalized occurrences of r, then

!T r → (A(r) ↔ A1(r)).

definition 4.21. (Beth Definability Property) A logic L has the Beth Prop-
erty iff for all formulas A(p̄, r) the following holds:

• If !L $A(p̄, r)∧$A(p̄, r′) → (r ↔ r′), then there exists a formula C(p̄)
such that !L $A(p̄, r) → (C(p̄) ↔ r).

definition 4.22. (Fixed Point Property) A logic L has the fixed point prop-
erty iff, for any formula A(p̄, r) which is modalized in r, there exists a formula
F (p̄) such that

• (existence) !L F (p̄) ↔ A(p̄, F (p̄))

• (uniqueness) !L $(r ↔ A(p̄, r)) ∧ $(r′ ↔ A(p̄, r′)) → (r ↔ r′).

We now state the theorems in a form that seems more perspicuous than
the formulation in Areces et al.[2000]. The properties we require in our for-
mulations for the logics L are clearly strong enough to ensure the properties
of Areces et al.[2000]. (This is because, just as in the classical case, over
iK4 the rule LR is equivalent to the axiom scheme of iL.)

theorem 4.23. (From Beth Definability to Fixed Points) Let L be an intu-
itionistic logic with modal operators that extends iL and obeys the substition
lemmas and for which the Beth theorem holds.
Then L has the fixed point property.
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Proof. It is easy to check that the proof for the classical case in Hoogland
[2001] is intuitionistically acceptable.

theorem 4.24. (From Fixed Points to Beth Definability) Let L be an intu-
itionistic logic with modal operators that extends iL and obeys the substition
lemmas and for which the fixed point theorem holds.
Then L has the Beth property.

Proof. Again, the proof is similar to that in Areces et al.[2000]. The only
difference is that we will not use Maksimova’s lemma (see in Hoogland [2001])
to reduce arbitrary formulas to ones that are “largely modalized” but apply
Lemma 4.20 directly.

We have shown the fixed point theorem for iL and iPL. Since any extension
L of iL or iPL will have the fixed point property, it should also have the
Beth property according to the above theorem.

corollary 4.25. Let T be an extension of iL or iPL (of course in the
appropriate language). Then T has the Beth property.
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