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Abstract

We present a basis for the admissible rules of intuitionistic proposi-
tional logic. Thereby a conjecture by de Jongh and Visser is proved.
We also present a proof system for the admissible rules, and give se-
mantic criteria for admissibility.

1 Introduction

The admissible rules of a theory are the rules under which the theory is
closed. It is well-known that, in contrast to classical propositional logic,
intuitionistic propositional logic IPC, has admissible rules which are not
derivable. Probably the first nonderivable admissible rule known for this
logic is the rule -4 — (BV C)/(-A — B)V (nA — C) stated by Harrop
(1960). Extensions of this rule which are as well admissible but not derivable
followed [Mints 76] [Citkin 77] but the question whether there were other
admissible rules for IPC than the ones known remained open.

In 1975 Friedman posed the problem whether it is decidable if a rule is
an admissible rule for IPC or not. In 1984 this question was answered by
Rybakov in the affirmative. Moreover, Rybakov showed that the admissible
rules of IPC do not have a finite basis. Informally speaking this means that
there is no finite set of admissible rules which in some sense ‘generates’ all
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the admissible rules of IPC. However, this does not exclude the possibility
that there is a representation of the admissible rules via a simple infinite
basis or in some other clarifying way.

Some years ago de Jongh and Visser isolated a nice r.e. set of rules
which they conjectured to be a basis for the admissible rules of IPC. Here
we prove this conjecture. Furthermore we present a proof system for the
admissible rules. We also give semantic criteria for admissibility which are
rather similar to the ones found by Rybakov (1997). Since Visser (1998)
proved that the admissible rules of IPC are the same as the propositional
admissible rules of Heyting Arithmetic HA this provides us with a proof
system and a basis for the propositional admissible rules of HA as well.

One of the results we use (Proposition 3.7) is not much more than a
reformulation of some (very interesting) results by Ghilardi. Therefore, we
devote one Section (3.6) to the recapitulation of the theorems from [Ghilardi]
that we use in this paper.

I thank Dick de Jongh and Albert Visser for introducing me to the sub-
ject and for helpful discussions. I also thank Lev Beklemishev for stimulating
discussions we had during my stay at the University of Miinster, November
1998. Finally I thank Vladimir Rybakov for his interest in the results and
for the related questions he posed to me.

2 Preliminaries

2.1 Admissible rules

In this section we will define the notions studied in this paper. We will
define what an admissible rule is and what a basis for the admissible rules
is. Since we will only work in the context of intuitionistic propositional logic
we will not define these notions in full generality. So, we will define in fact
what a propositional admissible rule is and what a basis for the propositional
admissible rules is. Once these definitions have been given it is easy to see
how they can be generalized in many ways. For a general setting and for
interesting results about admissible rules in the context of other logics see
[Rybakov 97] and [Visser 98].

For the rest of the paper we fix a language for intuitionistic proposi-
tional logic, with variables pg, p1, ... Unless explicitly stated otherwise, for-
mulas are meant to be propositional formulas in this language. The letters
A,B,C,D,E, F will always range over formulas and p, ¢, r, s,t over propo-
sitional variables. We write - for derivability in IPC.



An L-substitution o is a map which assigns to every propositional vari-
able a formula in the language L. For a propositional formula 4, we write
o(A) for the result of applying o to A, i.e. for the result of substituting o(p;)
for p; in A. When L is our fixed language of propositional logic mentioned
above, we say ‘substitution’ instead of ‘L-substitution’.

A rule is an expression of the form

Ay ..o Ay
I .
We sometimes write Aj,...,A,/B for this expression. We say that an
expression
A AL
B

is a substitution instance of such a rule when there is a substitution ¢ such
that 0(A4;) = A! and o(B) = B'.

Let T' be some theory in a language L . We say that a rule A/B is an
admissible rule of T, and write A 7B, if

for all L-substitutions o: if T+ o(A) then T F o(B).
In this case we also say that A admissibly derives B in T. We write bk for
~ipc.
2.1.1 Bases

For a set of rules R and a set of formulas A, we say that B is derivable
i T by the set of rules R from assumptions A when there is a sequence
of formulas (By,...,By,), where B, = B, such that for every i < n either
B; € A or there are B;,,... ,B;, with i; <1 such that either

Fr (Bil/\.../\Bim)—)B

or

is a substitution instance of some rule in R.
We call a set of rules R a basis (in T') for some other set of rules R’ O R
if for every rule



in R, B is derivable in T by the rules R from the assumptions Ay,... , A,.
Given T, we say that a set R of admissible rules of T is a basis for the
admissible rules of T when R is a basis for the set of admissible rules of 7.

2.1.2 Subbases

If a theory T has the so-called Disjunction Property;
DP iftTHFAVBthenTHAorTHB

then it follows that if A ~7B and C r~D, then also AV C 1BV D.
However the rule (AV C)/(BV D) does not have to be derivable from the
rules A/B and C//D in T'. Therefore, in the context of theories which possess
the Disjunction Property, the notion of a basis for the admissible rules seems
too restrictive. This accounts for the notion of a subbasis for the admissible
rules, introduced below. That is, for theories with the Disjunction Property,
we think that the right notion of a basis (for the admissible rules), is in fact
that what we will call a subbasis here: a set R of admissible rules of T is
a subbasis for the admissible rules of T if the following is a basis for the
admissible rules of T": the collection of rules of the form

AVp
BvVp

where the rule A/B is in R and p does not occur in 4 or B.

2.2 Kripke models

In this paper we will use Kripke models for intuitionistic propositional logic
in many ways. Therefore, we fix some notation and terminology concerning
Kripke models in advance. Most of the notions introduced here are standard,
so that the reader who is familiar with Kripke models can skip this section
and consult it later when necessary. The only exception is the notion of a
tight predecessor of a set of nodes, terminology invented to simplify talking
about the special kind of Kripke models we will use later on.

A Kripke model K is a triple (W, <, 1), where W is a set, < is a partial
order on W and IF is the so-called forcing relation defined as usual, see for
example [Troelstra,Van Dalen 88]. If no confusion is possible we use the
same symbols < and I for the partial order and forcing relation of different
models.

For two nodes w, v we say that w s below v when w < v. In this case we
also say that v is above w. We write w < v or w > v if w # v, and w < v



or w = v respectively. If w < v we call v a successor of w and we call w a
predecessor of v. We call a model rooted when it contains a node which is
below all other nodes in the model.

We say that K' = (W', Z/,IF) is a submodel of K = (W, Z,IF) if W' is a
subset of W, and ', =" are the restrictions of the corresponding relations
of K to W'. We say that K’ is a finite submodel when W' is finite. We
write K, for K" if W = {z € W | w < x}. A submodel of the form K,
is called the submodel generated by w. Note that submodels are completely
characterized by their domain. Therefore, we will from now on notationally
confuse a submodel with its domain.

For Kripke models K7, ... , K, we denote by (3>, K;)’ the Kripke model
which is the result of attaching one new node, say b, below all nodes in
Ki,...,K,, at which no propositional variable is valid.

We repeat from [Ghilardi] the following definitions. We say that two
rooted Kripke models are variants of each other when they have the same
domain and partial order, and their forcing relations only possibly differ at
the roots. A class of Kripke models is called stable if for every model K
in the class and every node w of K, K, is in the class as well. A class of
rooted Kripke models has the eztension property when for every finite set of
Kripke models K7, ... , K, in this class there is a variant of (}; K;)" which
is in this class as well. When K is a class of Kripke models we say that A is
valid in K, notation K |= A, when A is valid in every model of K.

2.2.1 Tight predecessors

Consider a Kripke model K = (W, %, k), some node u in K and a set U of
nodes in K. We say that u is a tight predecessor of U, if

VeeU(u g x) AVe =uldy € Uy <X o).

In the sequel we will actually only consider tight predecessors of finite sets
of nodes. We often write ‘a tight predecessor of wy,... ,u, instead of ‘a
tight predecessor of {u1,... ,up} .

Observe that a set does not necessarily have a tight predecessor but that
every node in a Kripke model is a tight predecessor of some set, namely, of
the set of all its successors.

3 Admissible rules.

The proof of our main theorem (Theorem 3.20) proceeds as follows. In the
first subsection we define a proof system, called AR, which derives expres-



sions of the form A > B, where A and B are propositional formulas. In
Section 3.12 we then show that AR is in fact a proof system for the admis-
sible rules: AR derives A > B iff A b B. The proof of this fact has two main
ingredients: In Section 3.3 we characterize AR in terms of Kripke models.
We define what an AR-model is and show that AR derives A > B if and only
if B is valid in all AR-models on which A is valid. Note that in the light
of Section 3.12 this is a semantical characterization of the admissible rules.
In Section 3.6 we derive a semantical characterization (in terms of classes
of finite Kripke models) of the admissible rules from results by Ghilardi,
from his beautiful paper [Ghilardi]. In Section 3.12 we show that these two
characterizations are ‘the same’, which leads to the result mentioned above.
Finally, in the last section we show how this provides us with a basis for the
admissible rules.

3.1 The system AR

As said, the system AR is a proof system which derives expressions of the
form A > B, called sequents, where A and B are propositional formulas.
To keep the definition of this system readable, we will use the following
abbreviation,

(A)(Bl, e ,Bn) = (A — Bl) V...V (A — Bn)

Furthermore, we adhere to some reading conventions as to omit parentheses
when possible. The negation binds stronger that A and V, which in turn
bind stronger than >, which binds stronger than —. So, for example the
expression (A -+ BV C)>D — E means (A — (BVC))>D)— E.

Azxiom schemes:

Vi (A—=rVs)Vtr (A)(rs,pi,....pn) Vt for A= N\",(pi = q)

I Ap>B where IPCF (A — B)
Rules:

Comni C>A C>B Cut A> B Bp>(C

on C>AANB U Ap>C

Note that V is not a scheme in the strict sense. It consists in fact of the
infinitely many schemes V;, which are



Vn (/\?Zl(pl — ql) —>rV S) Vit (A?:l(pl — Qi))(Tvsvplv' .. 7pn) Vi

De Jong and Visser observed that the rules corresponding to V,, (see Sec-
tion 3.18) are admissible and conjectured them to be a basis, see the Intro-
duction.

As noted before, if A C and B ~C then also AV B ~C. This property of

the admissible rules is not reflected in the rules of AR. That is, there is no
rule

A>C Bp>C
AVBp>C

Disj

However, it turns out that AR satisfies this rule. This is the next lemma,
which we will need in the completeness proof for AR to come.

Lemma 3.2 f ARFA>C and ARF B> C then ARFAV B> C.

Proof. It is easy to prove (with an induction to the length of derivation)
that ARF A B implies ARF AV C > BV C. Hence ARF A > B implies
ARFCV A>CV B too.

Now assume AR = A>(C and AR F Br>C'. From the previous observation
it follows that ARF AV B> CV B and ARFCV B> CVC. Clearly, also
AR CV C > C. Applying Cut (twice) gives the desired result. QED

3.3 Completeness of AR

We are going to characterize AR in terms of Kripke models. The Kripke
models we use have special properties, they are the so-called AR-models
defined as follows.

Definition 1 We call a Kripke model K an AR-model when it is a rooted
model in which every finite set of nodes {uy, ... ,u,} has a tight predecessor
u, i.e. a node u such that

U UL e Uy AVU = u(u; < U/, for some i € {1,...,n}).

(We write ‘x < y1,... .,y for ‘e Syt Ae Ly Ao A L)

We will prove that AR derives A > B if and only if B is valid in every
AR-model in which A is valid. The proof uses a lemma which we present
separately in advance. Before stating it, let us remind the reader that a set
of formulas « is called IPC-saturated if it is a consistent set such that for all
Aand B,ifx F AV B, then A € x or B € x. In particular, x is closed under
deduction in IPC.



Lemma 3.4 Let © be some set of formulae. Every IPC-saturated set  C
© can be extended to an IPC-saturated set y C © such that for no IPC-
saturated set ' it holds that y C v/ C ©.

Proof. Let x and © be as in the lemma. We construct a sequence yy C
y1 C ..., such that for all 7, *(y;) holds, where the property x(-) is defined
as

*(z) iff for all n, for all Ay,... A,: if 2 Ay V...V A,, then A; € O for
somei=1,...,n.

We construct the sequence of sets as follows. Let Cp, C1,... be an enumer-
ation of all formulae in which every formula occurs infinitely often. We put
yo = x. Clearly *(yp) holds. Suppose y; is already defined. Then we put

o y; U{C;} if *(y; U{C;}) does hold
Yt = Yi if *(y; U{C;}) does not hold.

Now we take y = J,; yi;. First, we have to see that this is indeed an IPC-
saturated set. And second we have to show that there are no proper super-
sets of y which are IPC-saturated and are contained in ©.

To see that y is IPC-saturated, suppose y - AV B. Hence y; - AV B, for
some i. There are i < j < k such that C; = A and C}, = B. If (y; U {C}})
or x(y U {Ck}) holds, then clearly A or B is in y. We show that indeed
one of x(y; U{C;}) and *(y; U {C}}) must hold. Arguing by contradiction,
assume this is not the case. Thus there are Ay,... , A,, B1,... , By, such that
y;j, Cj + \/?:1 A; and yg, Cr F \/:il B; but none of Ay,... ,A,,B1,...,Bn
is in ©. Since y; C y; C yi and y; = C; V C, this implies that y; F
Vi, Ai V VL, B;, which contradicts the fact that *(y;) holds.

To see that there are no IPC-saturated proper supersets of y which are
contained in ©, consider an IPC-saturated set y C ¢/ C ©. We show that
y = y'. Consider a formula A € ¢/, and suppose C; = A. It is easy to see
that since y; C ' C © and the fact that ¢’ is saturated, *(y; U {C;}) holds.
Hence A € y. Therefore y = y/'. QED

Now we are ready to prove the following lemma.

Proposition 3.5 AR+ A > B iff B is valid on all AR-models on which A
is valid.

Proof. (=) We have to see that if AR+ A > B and A is valid on an AR-
model, then B is valid on this model as well. This can be shown by induction



to the length of the derivation of A > B in AR. The case that A > B is an
instance of the axiom scheme [ is easy. In the induction step we have to
consider the two rules. All of them are straightforward.

Therefore, we only consider V. We have to show that for any conjunct
of implications A = A" ,(E; — F;), if (A - BV () V D is valid on all
AR-models, then so is (A)(B,C, E1,... ,E,) V D. Therefore, assume that
indeed for such a formula A, (A — BV C)V D is valid on an AR-model K.
Let v be the root of K. We show that (A)(B,C, Ey,...,E,)V D is valid in
K at v, whence that (A)(B,C,Ey,... ,E,)V D is valid in K.

Arguing by contradiction, assume (A)(B,C, Ey, ..., E,)V D is not valid
at v. Hence (A — BV () is valid at v. Moreover, =A is not valid at v.
Therefore, there is a nonempty set U of nodes, such that

Va(x IF A iff for some u € U, u < x).

Since (A)(B,C, Ey, ..., FE,) is not valid at v, there are, for some m < n+ 2,
nodes u;,, ... ,u;, € U such that

VD e {B,C,Ey,... ,E,}3u € {uj,... ,u;, } ulf D.

Since we consider an AR-model the set {u;,, ... ,u;,, } has a tight predecessor.
That means that there is a node u such that

U Wiy Uy, AV = u(ug; S o', for some j < m).

If A is valid at v then B or C has to be valid at «, which contradicts the
fact that for both B and C there is a node in u;,,... ,u;,, which does not
validate the formula. On the other hand, if A is not valid at u, then since
A is valid at all nodes «' > u, E; has to be valid at u, for some j. But this
is a contradiction as well, since for every j € {1,... ,n} there is a node in
Uiy, - .. Ui, which does not validate Ej.
(<) Assume AR I/ A> B. We construct an AR-model K in which A is valid
while B is not.

First we construct an IPC-saturated set of formulas v in such a way that

Acv,B¢gov,forallC>D: if ARFCD> D and C € v, then D € v. (1)

This v will be the root of the model K we are going to construct. The
existence of v is proved in the following Claim.

Claim If AR A B, then there is an IPC-saturated set v such that A € v
and B ¢ v, which has the property that if for some C, D, ARF C > D and
C € v, then D € v as well.



Proof of Claim. Assume AR I/ A > B. We construct a sequence of finite
sets {A} = 9 C 21 C ... such that for all i, AR I/ (Az;) > B, and if
ARF (A z;) > C, then C € x; for some j. The set v we look for will be the
set |J ;.

Let Cy, (1, ... be an enumeration of all formulas in which every formula
occurs infinitely often. Given the set x;, we show how to construct ;1.

x; ifARV(/\xi)DCZ'
o x; U{C;} if ARF (A x;) > Gy, C; is not a disjunction
Titl ey x; U {Dj, Cl} if AR+ (/\ x;)>Cy, C;=D1V Dy, j=1,2
is the least such that ARt/ (A z; A Dj) > B.

It is easy to see that each of these sets z; has the desired properties, assuming
it is well-defined. Thus it remains to show that they are indeed well-defined,
i.e. that given x;, x;41 exists. Therefore, suppose AR + (A x;) > C; and
C; = (D1 V Dy). We have to see that either AR I/ (Ax; A D1) > B or
AR I/ (A x; A D2) > B. Arguing by contradiction, assume this is not the
case. But then we can derive the contradiction that AR F (A x;) > B in the
following way (we do not state all the rules used, but only the crucial ones).

AR (Azi ANDy)> B
(/\ x; N\ Dg) > B
(Azi A (D1V D)) > B (Lemma 3.2)
(Azi) > (Azi A (D1 V D)) (assumption on x;)
(Azi) > B (Cut)

Now we take v =, z;. It is easy to see that v has the desired properties.
This proves the Claim.

Thus we know that there exists an |IPC-saturated set v which satisfies
(1). Next we construct our model K as follows. Its domain consists of all
IPC-saturated sets which extend v. Its partial order < is the subset relation
C. And the forcing relation is defined via

w Ik p iff p € w, for propositional variables p.

It is easy to see that this indeed defines a Kripke model, that the model is
rooted, and that A is valid in this model but B is not. Thus it only remains
to show that K is an AR-model.

Therefore, consider nodes uy,... ,u, € K. We have to show that there
is a node u such that

U UL, ..Uy AVU = u(u; < U, for some @ < n).

10



First note that w3 N...Nwu, is not saturated in general. Therefore, although
u1 N...Nwuy, contains v, it does not have to be a node in K. Let now

A={E—-F|(E—=-F)euin...Nu, N\E¢gui N...Nuy}.

Then we have

Claim The set {C' | vUA F C} is IPC-saturated.

Proof of Claim. Suppose v UA F C; V C5. This implies that there
is a conjunct D = A",(E; — F;) of implications in A, such that v
(D — C1 V(). Thus (D — C) V (C3) € v, because v is saturated. Since
(D — C1 VvV (Cy) > (D)(C1,Cy, B, ... ,Ey,) is derivable in AR, the way v is
constructed implies that then also (D)(Cy,Cy, Eq,...,Ep) € v. And thus
one of (D — C1),(D — C3),(D — Ey),... ,(D — Ep,) is in v. Since no E;
is in uq N ... N uy, this implies that v does not contain any of (D — Ej).
Therefore v contains either (D — C}) or (D — C3). Hence v U A derives
either C7 or Cy. This proves the Claim.

By the previous claim and the fact that v U A C uy N...Nwuy, it follows
from Lemma 3.4 that {C' | vUA I C} can be extended to an IPC-saturated
set uw C uy N...Nwuy, such that there are no saturated sets v’ with v C u' C
ui N...Nu,. We show that this is the set we look for, i.e. if u’ > u for some
saturated set u/, then u; < o', for some i € {1,... ,n}.

Suppose not, that is, let v C u’ for some saturated set v’ and assume that
no u; is contained in u'. We derive a contradiction. For all i < n, we (can)
choose a formula A; € u; outside w'. Then the formula 4; V...V 4, is in
u1N...Nuy, but not in %’. From the construction of u, and the fact that u’ is
a superset of u, it follows that v’ is not contained in w1 N...Nwu,. Thus there
is a formula E € « which is not in this intersection. Now (E — A;V...VA,)
is an element of A, thus also of u. Hence A; V...V A, should be in /, a
contradiction. This finally proves the proposition. QED

3.6 Results by Ghilardi

In the proof of the characterization of the admissible rules in terms of >,
in the subsection below, we will use, besides the semantical completeness of
AR just treated, the following fact which follows from results proved by S.
Ghilardi in [Ghilardi]:

Proposition 3.7 If Ak B, then B is valid in every stable class of finite
rooted Kripke models which has the extension property (see Section 2.2)
and in which A is valid.

11



This subsection is devoted to the recapitulation of the results of Ghilardi
which lead to this proposition and to its proof. First we have to introduce
some terminology.

3.7.1 Terminology

Let p be a sequence of propositional variables. We say that a formula A is
a formula in p, when all the propositional variables in A are among the
variables in the sequence p. We say that a Kripke model is a Kripke model
over p, when the forcing relation of the model is only defined for formulas
in p. If p is the sequence of all the propositional variables that occur in A,
then Mod(A) denotes all finite models of A over p.

Following Fine [Fine 74] [Fine 85], Ghilardi defines equivalence relations
~, and preorders <, between rooted Kripke models. Let K, K’ be two
rooted Kripke models with roots b and b respectively.

K Ng K’ =,; bIFpiff ' Ik p, for all atoms p in p.
K~y K = Vhke KK € K'((K)g ~n (K')ir) and vice versa.
K <F K’ =,; b IFpimplies b p, for all atoms p in p.

K S?H-l K' =,; Vke KIk' € K'((K)g ~p (K')jr).

When it is clear from the context to which sequence of variables we refer we
omit this in the notation.

Moreover Ghilardi uses a measure of complexity, ¢(-), on propositional
formulas defined as follows. Put ¢(A) = 0 if A is a propositional vari-
able, ¢(A o B) = maz{c(A),c(B)}, for o = A,V, and ¢(A — B) =1+
max{c(A),c(B)}.

3.7.2 The proof of Proposition 3.7

In the proof of Proposition 3.7 we will use four results by Ghilardi which we
will state below. The first two are about the relation <,,.

Proposition 3.8 (Ghilardi) For two finite rooted Kripke models K and K’
over p it holds that K <, K’ iff for all formulas A in p with ¢(A) < n,
K' = A implies K = A.

Proposition 3.9 (Ghilardi) If a class K of finite rooted Kripke models over
p is such that for some n for all Kripke models K over p

if there is a K’ € K with K <,, K’ then K € K,

then X=Mod(A) for some formula A in p.

12



Furthermore, he observes that under certain conditions the closure of a class
of models under <,, preserves the extension property

Proposition 3.10 (Ghilardi) If a stable class K of finite rooted Kripke
models over p has the extension property then so does the class of models

{K | K is a finite rooted model over p and IK' € K(K <, K')}.
The heart of Proposition 3.7 is the following

Theorem 3.11 (Ghilardi) Let A be a formula in p. If Mod(A) has the
extension property then there is a substitution o such that - o(A4) and for
all formulas D in p, A+ D « o(D).

Now the proof of Proposition 3.7 runs as follows.

Proof of Proposition 3.7. Suppose A B and let K be a stable class
of finite rooted Kripke models with the extension property in which A is
valid. Assume that all the propositional variables in A and B are among p.
Then let K" be the class of all Kripke models of K, but then considered as
Kripke models over p. Note that K’ is again a stable class of finite rooted
Kripke models with the extension property in which A is valid. Let n be
some number such that ¢(4) < n, and let

K" ={K | K is a finite rooted model over p and 3K’ € K'(K <,, K')}.

By Proposition 3.8, A is valid in the class K" because it is valid in K’. And by
Proposition 3.9 we know that K" =Mod(C) for some formula C' in p. Since,
by Proposition 3.10, we also know that K" has the extension property, we
can apply Theorem 3.11 to conclude that there is a substitution ¢ such that

IPCt o(C) and C' + B + o(B).

Clearly, the fact that A is valid in Mod(C) implies that C' = A. Hence
IPCF o(A). But this implies that o(B) is derivable, because A ~ B. Thus
certainly C'+ o(B), and whence C' F B. Therefore, B is valid in Mod(C').
It is easy to see that this implies that B is valid in K as well. QED

13



3.12 Characterizations of admissibility

We are now ready to give the promised characterizations of the admissible
rules of IPC. One is in terms of >, a proof system for the admissible rules.
The other two are in terms of Kripke models. Let us state them before we
consider their proofs.

Theorem 3.13 A~ B iff ARF Ap> B.
Corollary 3.14 A b B iff B is valid in every AR-model in which A is valid.

Corollary 3.15 A~ B iff B is valid in every stable class of finite rooted
Kripke models with the extension property in which A is valid.

The second and third characterization are corollaries of the first one in com-
bination with Proposition 3.5 and Lemma 3.16, the last of which also is
needed in the proof of the first one. Lemma 3.16 shows that there is a nat-
ural correspondence between AR-models and stable classes of finite rooted
Kripke models with the extension property. Therefore, the two corollaries
are in some sense the same. We first treat this lemma and then we prove
Theorem 3.13.

Lemma 3.16 For all n and all finite sequences of propositional variables p
we have the following correspondence:

(a) For every AR-model K there is a stable class K of finite rooted Kripke
models with the extension property such that

for all A in p with ¢(A) <n: K = Aiff £ = A.

(b) For every stable class K of finite rooted Kripke models with the extension
property there is an AR-model K such that

forall A: K =Aiff K = A.

Proof. Let n be some number and let p be some finite sequence of propo-
sitional variables. First of all, let A be the set of all formulas A in p with
¢(A) < n. This set is, modulo provable equivalence, finite.

To show part (a) of the lemma, suppose K is an AR-model. Let K be
the class of all Kripke models K’ such that K’ is a finite rooted submodel
of K, and such that

VA€ AVz € K'(K',z I+ A iff K,z |- A). (2)
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It is easy to see that K is stable. We show that K has the extension property.

Consider models Ki,...,K, in K, with roots uq,... ,u, respectively.
Let u be a tight predecessor of uy,... ,u, in K. That means that
U< UL, .. Uy AVU = u(u; < o, for some i € {1,...,n}).

Let K’ be the submodel the domain of which is the union of {u} and the
domains of K1,...,K,. It is easy to see K’ satisfies (2). Hence K’ is in K.
This shows that K has the extension property.

It remains to show that

forall Ac A: K EAiff K = A

The direction from left to right follows from the definition of . The direc-
tion from right to left is shown by contraposition, i.e. by showing that for all
A € A it holds that whenever K [~ A there is a K’ € K such that K’ = A
(it suffices to show that K is not empty, but the proof is the same). This
again follows from the following standard result. We include the proof for
the sake of completeness.

Claim For every Kripke model K, for every node w in K, there is a finite
rooted submodel K’ of K with root w, such that

VA € AVz € K'(K',z IF A iff K,z IF A). (3)

Proof of Claim. Let A, K = (W, %,IF) and w be as in the claim. Now we
choose step by step, starting with w, a finite subset of W a copy of which
will be the domain W, of our new model K’ = (W, <w, Fw). Put oy = w.
Suppose a is defined. We choose elements o, .(p_,cy in W, for all elements
(B—=C)e{(D—E)eA|K,a; lf D— E}. The node a,.p_cy is an
element v € W such that a, < v, K,v IF B and K,v | C. Note that such
elements can always be found.

Now define Wy, = {0 | o is defined }, and define the partial order and
the forcing relation on K as

OXw T ZEip Qo X 7.
olbwp =45 aglFp, forpep.

Clearly, K' is finite, as A is finite too. It is also easy to infer that (3) is
satisfied. This proves the claim, and thereby part (a) of the correspondence.
To show part (b) of the lemma, let K be a stable class of finite rooted
Kripke models with the extension property. The model K we are going to
construct will consist of equivalence classes of nodes of models in K.
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Replace every model in K by an isomorphic copy, in such a way that the
domains of distinct models are disjoint.
Let us define for nodes k € K and k' € K’

k=k' =, (K); and (K')} are isomorphic.

(Remember that K is the submodel of I generated by k, see Section 2.2.)
We write k IF A when A is valid at £ in the unique model in K to which k
belongs.
Now we define the domain of K as the set of all Z-equivalence classes

[k] of nodes k of models in K. The partial order and the forcing relation on
K are defined via

(k] X [F] =up 3l e[k] 3 €[] (I,I' are nodes in the same model

and [ < ' holds in this model.)
kK]Fp  =u klFp.

Since every two Z-equivalent nodes force the same propositional variables
the notion of forcing is well-defined. We have to see that K is in fact an
AR-model and that

for all A: K = Aiff £ = A. (4)

We show that K is an AR-model and leave the proof of (4) to the reader.
Consider nodes [ki],... ,[ky] in K. Assume k; is a node in the model
K; € K. Since K has the extension property there is (an isomorphic copy
of) a variant of (3 (Kj)y,;) in K. Let b be the root of this variant. It is easy
to see that [b] is a tight predecessor of [ki],... ,[ky] in K. This proves part
(b) of the correspondence. QED

Corollary 3.17 The following are equivalent

(a) B is valid in every AR-model in which A is valid.

(b) B is valid in every stable class of finite rooted Kripke models with
the extension property in which A is valid.

Now we are ready to give the

Proof of Theorem 3.13. (<) (De Jongh and Visser) We have to show that
for all instances A/B of V and I, A admissibly derives B, and we have to
see that the three rules of AR preserve admissibility. That is, when reading
k for >, if the assumptions of a rule are valid then so is the conclusion.
For the two rules this is trivial. Therefore, it remains to treat the axioms.

16



For instances A/B of I it clearly is the case that A i~ B. Thus all we have
to show is that for every instance A/B of the scheme V' it holds that if A4 is
derivable in IPC then so is B.

Therefore, consider such instance A/B of V. Let X = A", (E; — F;)
and let A = X - CV D and B = (X)(C,D,E;,...,E,). Arguing by
contradiction, suppose A is derivable but B is not. This implies that none
of the formulas (X — C),(X — D), (X — Ey),...,(X — E,) is derivable.
Thus there are Kripke models K7, ... , K12 at which X is valid but at which
respectively C, D, Fy, ... , E, are not valid. Consider the model (3 K;)" and
call its root b. Since A is derivable A is valid at b. Note furthermore that
none of the formulas C, D, Fy,...,F, can be valid at b. Therefore, the
conjunction X cannot be valid at b. But it cannot be not valid either. For if
so0, there is some i < n for which there is a node above b at which Fj; is valid
while F; is not valid. As X is valid at all nodes except b the only possibility
for this is the node b itself. Thus one of the formulas Eq,... , E, would be
valid at b, which cannot be.

(=) Immediate from Proposition 3.7, Corollary 3.17 and Proposition 3.5.

QED
3.18 A basis and a subbasis
Let Ry, denote the rule corresponding to V; (see Section 3.1), i.e let
n n
RVi (/\(pl — Ql) —rV 8) Vt/(/\(pl — Ql))(pla s 7pn77478) \az
i=1 i=1
Further, let
n n
R;/l (/\(pz — Ql) —>rV 5)/(/\(pz — QZ))(plv s 7pn7T75)'
i=1 i=1

We need one more lemma to establish that the sets of rules {Ry,, Ry,,... }
and {R‘_,1 Ry, ... } are respectively a basis and a subbasis for the admissible
rules of IPC.

Lemma 3.19 If AR - A > B then the rule A/B is derivable in IPC from
the set of rules {Ry,, Ry, ... }.

Proof. We prove the proposition by induction on the length n of the deriva-
tion of A> B in AR. For n = 0 there is nothing to prove.
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For n > 0, suppose the last rule applied in the derivation of Ar> B is the
Conjunction rule. This implies that there are By, Bs such that B = By A Bo,
and such that Ar>Bq and Ar> By are derivable, and moreover have derivations
of length smaller than n. By the induction hypothesis, A/B; and A/B; are
derivable in IPC from {Ry,, Ry,,...}. And thus A/B; A By is derivable in
IPC from {Rv,, Rv,, ...} as well. The case that the last rule applied in the
derivation of A > B is the Cut Rule is completely similar. QED

Theorem 3.20 {Ry;, Ry, ...} is a basis for the admissible rules of IPC.

Proof. Immediate from Lemma 3.19 and Theorem 3.13. QED

Corollary 3.21 {Ry,, Ry, ...} isasubbasis for the admissible rules of IPC.

Visser (1998) showed that the admissible rules of IPC are the same as the
propositional admissible rules of HA. This gives us

Corollary 3.22 {Ry,, Ry,,... } and {Ry,, Ry, ...} are respectively a basis
and a subbasis for the propositional admissible rules of HA.
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