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Abstract
In this paper we prove that three of the main propositional logics of dependence
(including propositional dependence logic and inquisitive logic), none of which is
structural, are structurally complete with respect to a class of substitutions under
which the logics are closed. We obtain an analogous result with respect to stable
substitutions, for the negative variants of some well-known intermediate logics,
which are intermediate theories that are closely related to inquisitive logic.
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1 Introduction

In recent years there have appeared many results on admissible rules in logics. The
diversity of the results show that the properties of admissibility vary from logic to
logic, and the complexity of some of the results show that describing these rules is not
always an easy matter. The admissible rules of a logic are the rules under which the
logic is closed, meaning that one could add them to the logic without obtaining new
theorems. Since adding a derivable rule to a logic cannot alter what can be derived,
derivable rules are always admissible, thus showing that the notion of admissibility is
a natural extension of the notion of derivability.
For structural logics, which means logics that are closed under uniform substitution,
a rule is admissible if every substitution that unifies the premiss, unifies the conclu-
sion, where a substitution σ unifies a formula ϕ in a logic if σϕ is derivable in the
logic. Until now, most logics for which the admissibility relation has been studied are
structural. Main examples are classical and intuitionistic propositional logic and cer-
tain modal logics such as K, K4, and S4. Except for classical logic, all these logics
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have nonderivable admissible rules and their admissibility relations are decidable and
have concise axiomatizations [6, 13, 15, 21, 22]. In recent years, admissibility has been
studied for a plethora of other logics as well. However, logics that are not structural,
have received less attention. In order to obtain a meaningful notion of admissibility for
such a logic one first has to isolate a set of substitutions, as large as one thinks possible,
under which the logic is closed. Admissibility can then be studied with respect to this
class of substitutions.
In this paper we show that three of the main propositional logics of dependence, none
of which is structural, are structurally complete with respect to the class of flat substi-
tutions. We obtain an analogous result, but then with respect to stable substitutions, for
the negative variants of some well-known intermediate logics, which are intermediate
theories that are closely related to one of the logics of dependence. As a byproduct we
develop an extension of the usual logics of dependence in which the use of negation
and the dependence atom is not restricted to propositional variables, but to the much
larger class of flat formulas instead.
We think the interest in these results lies in the fact that logics of dependence, to be
described below, are versatile and widely applicable nonclassical logics. And knowing
that many nonclassical logics have nontrivial adimissible rules, establishing that in
these logics all rules that are admissible (with respect to flat substitutions) are derivable,
provides a useful insight in the logics. Moreover, these results provide one of the first
examples of natural nonstructural logics for which admissibility is studied. A paper in
which various admissibility relations of nonstructural logics, the same logics that we
treat in Theorem 5.5, have been studied is [20], but the results are different from the
ones obtained here.
Dependence logic is a new logical formalism that characterizes the notion of “depen-
dence” in social and natural sciences. First-order dependence logic was introduced by
Väänänen [24] as a development of Henkin quantifier [8] and independence-friendly
logic [10]. Recently, propositional dependence logic (PD) was studied and axioma-
tized in [23, 27]. With a different motivation, Ciardelli and Roelofsen [4] introduced
and axiomatized propositional inquisitive logic (InqL), which can be regarded as a nat-
ural variant of propositional dependence logic. Both PD and InqL are fragments of
propositional downward closed team logic (PT), which was studied in [27] and essen-
tially also in [3]. Dependency relations are characterized in these propositional logics
of dependence by a new type of atoms =( #»p ,q), called dependence atoms. Intuitively,
the atom specifies that the proposition q depends completely on the propositions #»p . The
semantics of these logics is called team semantics, introduced by Hodges [11, 12]. The
basic idea of this new semantics is that properties of dependence cannot be manifested
in single valuations, therefore unlike the case of classical propositional logic, formulas
in propositional logics of dependence are evaluated on sets of valuations (called teams)
instead.
The three logics PD, InqL and PT are of particular interest, because they are all ex-
pressively complete, in the sense that they characterize all downward closed nonempty
collections of teams. As a result of the feature of team semantics, the sets of theorems
of these logics are closed under flat substitutions, but not closed under uniform substi-
tution. As mentioned above, in this paper we prove that the three logics are structurally
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complete with respect to flat substitutions.
In the study of admissible rules there is a technical detail that needs to be addressed.
In PD and PT, negation and the dependence operator can only be applied to atoms.
Therefore, the only substitutions under which these logics are closed are renamings,
substitutions that replace atoms by atoms. However, these logics can be conservativily
extended to logics that are closed under flat substitutions. These extensions, PD and
PT, are closed under flat substitutions, and for these logics, as well as for InqL, the
notion of admissibility with respect to flat substitutions is shown to be equal to deriv-
ability (Theorem 5.4).
There is a close connection between inquisitive logic and certain intermediate logics.
The set of theorems of the former equals the negative variant of Kreisel-Putnam logic
(KP), which is equal to the negative variant of Medvedev logic (ML). It is open whether
KP is structurally complete, whereas ML is known to be structurally complete but not
hereditarily structurally complete. An interesting corollary we obtain in this paper is
that the negative variants of both ML and KP are hereditarily structurally complete with
respect to negative substitutions.

2 Logics of dependence

2.1 Syntax and semantics

We first define the language of propositional downward closed team logic. All of the
logics of dependence we consider in the paper are fragments of propositional down-
ward closed team logic.

Definition 2.1. Fix a set Prop of propositional variables and denote its elements by
p,q,r, . . . (possibly with subscripts). A sequence p1, . . . ,pk of propositional variables
will be denoted by #»p . Well-formed formulas of propositional downward closed team
logic (PT) are given by the following grammar:

ϕ ::= p | ¬p | ⊥ | > |=( #»p ,q) | ϕ∧ϕ | ϕ⊗ϕ | ϕ∨ϕ | ϕ→ ϕ.

We call the formulas p, ¬p, ⊥ and > propositional atoms. The formula =( #»p ,q) is
called a dependence atom, and it shall be read as “q depends on #»p ”. The connective
⊗ is called tensor (disjunction), and the connectives ∨ and→ are called intuitionistic
disjunction and intuitionistic implication, respectively. The formula ϕ→⊥ is abbre-
viated as ¬ϕ, and the team semantics to be given guarantees that the formula ¬p and
p→⊥ are semantically equivalent.
Fragments of PT formed by certain sets of atoms and connectives in the standard way
are called (propositional) logics of dependence. The following table defines the lan-
guage of the logics of dependence we consider in this paper.

Logic Atoms Connectives
Propositional dependence logic (PD) p,¬p,⊥,>,=( #»p ,q) ∧,⊗
Propositional inquisitive logic (InqL) p,⊥,> ∧,∨,→
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Given any of the three logics L ∈ {PD, InqL,PT}, let LL denote the language of L. We
say that a formula ϕ is in LL if all symbols in ϕ belong to LL. Clearly, LInqL is the
same as the language of intuitionistic propositional logic or intermediate logics. We
will discuss the connection between InqL and intermediate logics in the sequel. Note
that formulas in LPD are assumed to be in (strict) negation normal form, in the sense
that negation is allowed only in front of propositional variables and dependence atoms
can not be negated. We will revisit the issue about negation in Section 3.1.
For the semantics, propositional logics of dependence adopt team semantics. A team
is a set of valuations, i.e., a set of functions v : Prop→ {0,1}, where Prop denotes the
set of all propositional variables.

Definition 2.2. We inductively define the notion of a formula ϕ in LPT being true on
a team X , denoted by X |= ϕ, as follows:

• X |= p iff for all v ∈X , v(p) = 1;

• X |= ¬p iff for all v ∈X , v(p) = 0;

• X |=⊥ iff X = /0;

• X |=> for all teams X;

• X |= =( #»p ,q) iff for any v,v′ ∈X , v( #»p ) = s′( #»p ) implies v(q) = v′(q);

• X |= ϕ∧ψ iff X |= ϕ and X |= ψ;

• X |= ϕ⊗ψ iff there exist teams Y,Z ⊆X with X = Y ∪Z such that Y |= ϕ and
Z |= ψ;

• X |= ϕ∨ψ iff X |= ϕ or X |= ψ;

• X |= ϕ→ ψ iff for any team Y ⊆X , Y |= ϕ implies Y |= ψ.

We say that a formula ϕ is valid, denoted by |= ϕ, if X |= ϕ holds for all teams X . For
a finite set Γ of formulas, we write Γ |= ϕ and say that ϕ is a logical consequence of Γ

if X |=
∧

Γ implies X |= ϕ for any team X . We write ϕ |= ψ for {ϕ} |= ψ. If ϕ |= ψ
and ψ |= ϕ, then we write ϕ ≡ ψ and say that ϕ and ψ are semantically equivalent.
Two logics of dependence L1 and L2 are said to have the same expressive power if for
every L1-formula ϕ, ϕ≡ ψ for some L2-formula ψ, and vice versa.
The logics of dependence mentioned above are defined as follows. Since in this paper
we consider the logics from a semantical point of view, using the team semantics, we
define their finitary consequence relations semantically.

Definition 2.3 (Consequence relations for logics of dependence). For a logic L ∈
{PD, InqL,PT}, a formula ϕ and a finite set of formulas Γ, Γ `L ϕ if and only if ϕ
and all formulas in Γ are in LL and Γ |= ϕ. A formula ϕ is valid in L, or a theorem of
L, if `L ϕ, which is short for /0 `L ϕ. Thus theorems of PD and InqL are the restrictions
of the theorems of PT to LPD and LInqL, respectively.
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Because of the semantical definition of the consequence relation `L, soundness and
completeness with respect to the team semantics trivially holds. We will see, however,
that there do exist genuine syntactic characterizations of propositional logics of depen-
dence, as given in Theorem 2.7 and the comments thereafter. Since in this paper the
methods are purely semantical, the semantically defined consequence relations suffice
for our aims.
We writeϕ(p1, . . . ,pn) if the propositional variables occurring inϕ are among p1, . . . ,pn.
Given a set V of propositional variables, a valuation on V is a function v : V →{0,1},
and a team on V is a set of valuations on V .

Theorem 2.4. Let ϕ(p1, . . . ,pn) be a formula and Γ a set of formulas in LPT, and X
and Y two teams. Then the following holds.

(Locality) If {v � {p1, . . . ,pn} : v ∈X}= {v � {p1, . . . ,pn} : v ∈ Y }, then

X |= ϕ ⇐⇒ Y |= ϕ.

(Downward Closure Property) If X |= ϕ and Y ⊆X , then Y |= ϕ.

(Empty Team Property) /0 |= ϕ.

(Deduction Theorem) Γ,ϕ |= ψ if and only if Γ |= ϕ→ ψ.

(Compactness Theorem) If Γ |=ϕ, then there exists a finite set ∆⊆Γ such that ∆ |=ϕ.

Given a formula ϕ and a finite set {ϕi | i ∈ I} of formulas we introduce a meta-symbol⊔
and use ϕ

⊔
i∈I ϕi as an abbreviation for the statement: For all teams X: X |= ϕi

implies X |= ϕ for all i ∈ I , and X |= ϕ implies X |= ϕi for some i ∈ I .

Theorem 2.5 (Disjunction property). Let ϕ be a formula and {ϕi | i ∈ I} a finite set
of formulas in LL. If ϕ

⊔
i∈I ϕi and |= ϕ, then |= ϕi for some i ∈ I .

Proof. Let Prop be the set of all propositional variables. Since |= ϕ, for the team
X = {0,1}Prop, we have X |= ϕ. It follows from ϕ

⊔
i∈I ϕi that X |= ϕi for some

i ∈ I . Noting that every team Y is a subset of X , by the downward closure property
we obtain that Y |= ϕi, which implies |= ϕi.

A formula of PT is said to be classical if it does not contain any dependence atoms or
intuitionistic disjunction. Classical formulas ϕ of PT are flat, that is,

X |= ϕ ⇐⇒ ∀v ∈X, {v} |= ϕ

holds for all teams X . The following lemma shows that classical tautologies of PT are
exactly the tautologies of classical propositional logic (CPC).

Lemma 2.6. For any classical formula ϕ in LPT, identifying tensor disjunction with
classical disjunction of CPC, we have that |=CPC ϕ ⇐⇒ |=PT ϕ.

Proof. An easy inductive proof shows that v |=CPC ϕ ⇐⇒ {v} |=PT ϕ for all valua-
tions v and all classical formulas ϕ.
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Having the same syntax as intuitionistic logic, the logic InqL has a close relationship
with intermediate logics between ND and ML. In [4], a Hilbert-style deduction system
for InqL is given. The axioms of this system will play a role in this paper, so we present
the system in detail as follows.

Theorem 2.7 (see [4]). The following Hilbert-style deduction system of InqL is sound
and strongly complete:

Axioms:

• all substitution instances of IPC axioms

• ¬¬p→ p for all p ∈ Prop

• all substitution instances of NDk for all k ∈ N:

(NDk)
(
¬ϕ→

∨
1≤i≤k

¬ψi
)
→

∨
1≤i≤k

(¬ϕ→¬ψi).

Rule:

Modus Ponens: ϕ→ ψ ψ

ψ
(MP)

Remark 2.8. InqL extended with dependence atoms is called propositional intuition-
istic dependence logic (PID) in the literature (see e.g., [26, 27]). As noted in [26, 27],
PID and InqL have the same expressive power, as dependence atoms are definable in
InqL:

=(p1, . . . ,pn, q)≡ (p1∨¬p1)∧·· ·∧ (pn∨¬pn)→ (q∨¬q). (1)

Adding an axiom that corresponds to the above equivalence to the deduction system
of InqL, one obtains a complete axiomatization for PID. For simplicity, we will not
discuss the logic PID in this paper, but we remark that results obtained in this paper
can be easily generalized to PID.

The logic PD was first axiomatized by a natural deduction system in [26, 27], and
a Hilbert-style axiomatization and a labelled tableau calculus for PD can be found
in [23]. Based on these, a natural deduction system for the fragment of PT without
dependence atoms was given in [3]. Adding to the deduction system in [3] obvious
rules for dependence atom that correspond to the equivalence in (1), one easily obtains
a complete natural deduction system for full PT. Interested readers are referred to
the literature given for the exact definitions of the deduction systems. Throughout this
paper, we take for granted the strong completeness theorem for these logics.
It is important to note that the deduction systems for PD, InqL and PT do not admit
uniform substitution. Here substitutions, a crucial notion in this paper, are defined as
follows. The definition is sufficiently general to apply to both propositional logics of
dependence and intermediate logics that we consider later in the paper.

Definition 2.9 (Substitution). A substitution of a propositional logic or theory L is a
mapping σ from the set of all formulas in LL to the set of all formulas in LL, that
commutes with the connectives and atoms.
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Definition 2.10. Let `L be a consequence relation of a logic or theory L. A substitution
σ is called a `L-substitution if `L is closed under σ, i.e., for all formulas ϕ,ψ in LL,

ϕ `L ψ =⇒ σ(ϕ) `L σ(ψ).

If `L is closed under all substitutions, then we say that `L is structural.

The consequence relations of the logics PD, InqL and PT are not structural, because,
for example, p⊗ p `PD p and `InqL ¬¬p→ p, but =(p)⊗=(p) 0PD =(p) and 0InqL

¬¬(p∨¬p)→ p∨¬p.

2.2 Normal forms

In this section, we recall from [4] and [27] the disjunctive normal forms for formulas of
PD, InqL and PT. These normal forms, reminiscent of the disjunctive normal form in
classical logic, play an important role in the main proofs of this paper and are defined
as follows.
Fix V = {p1, . . . ,pn}. Let X be a team on V . For each of the logics PD, InqL and PT,
we define a formula ΘX as follows:

ΘX :=


⊗
v∈X

(p
v(p1)
1 ∧·· ·∧pv(pn)n ) for PD (2)

¬¬
∨
v∈X

(p
v(p1)
1 ∧·· ·∧pv(pn)n ) for InqL, PT (3)

where p1 := p and p0 := ¬p and we stipulate that Θ /0 := ⊥. The reader can verify
readily that the two formulas in (2) and (3) are semantically equivalent. This is why we
decide to be sloppy here and use the same notation ΘX to stand for two syntactically
different formulas. We tacitly assume that ΘX is given by (2) in the context of PD and
by (3) in the context of InqL. For PT we could as well have chosen (2) as the definition
of ΘX , as both defining formulas belong to LPT and are equivalent.
With respect to the domain V , the formula ΘX defines the family of subteams of the
team X , as stated in the following lemma, whose proof is left to the reader or see [27].

Lemma 2.11. Let X and Y be teams on V . For the logics PD, InqL and PT, we have
Y |= ΘX ⇐⇒ Y ⊆X.

The set JϕK= {X ⊆{0,1}V :X |=ϕ} is nonempty (as /0∈ JϕK) and downward closed,
i.e., Y ⊆X ∈ JϕK implies Y ∈ JϕK. We say that a propositional logic L of dependence
is expressively complete, if every nonempty downward closed collectionK of teams on
V is definable by a formula ϕ in LL, i.e., K = JϕK.

Theorem 2.12 (see [4, 27]). (i) All of the logics PT, PD and InqL are expressively
complete and have the same expressive power.

(ii) (Normal Forms) Let ϕ(p1, . . . ,pn) be a formula in LPT or LPD or LInqL. There
exists a finite collection {Xi | i ∈ I} of teams on V such that ϕ

⊔
i∈I ΘXi

. In
particular, ϕ≡

∨
i∈I ΘXi

holds for PT and InqL.
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Proof. We only give a proof sketch. For (i), let K be a nonempty downward closed
collection of teams on V . The formula

∨
X∈KΘX in LPT or LInqL satisfies K =

J
∨
X∈KΘXK by Lemma 2.11. The proof for the logic PD follows from a different

argument; we refer the reader to [27] for details.
For every formula ϕ, the set JϕK is nonempty and downward closed. Thus item (ii)
follows from the proof of item (i).

2.3 Intermediate logics

There is a close relationship between logics of dependence and intermediate theories
(i.e., theories between intuitionistic and classical propositional logic), as first formu-
lated in [4]. Here we describe this connection, and in the sections on projectivity and
admissibility we will treat dependence logics and intermediate theories side by side.
An intermediate theory is a set L of formulas closed under modus ponens such that
IPC⊆ L⊆ CPC. An intermediate logic is an intermediate theory closed under uniform
substitution. The intermediate logics that are most relevant in this paper are Maksi-
mova’s logic ND, Kreisel-Putnam logic KP and Medvedev’s logic ML (“the logic of
finite problems”). It is well-known that ND⊆ KP⊆ML, and ML is the maximal inter-
mediate logic extending ND that has the disjunction property.
We call a substitution σ stable in a logic L that has implication and negation in its
language, if σ(p) is stable in L, i.e., `L σ(p)↔ ¬¬σ(p), for all p ∈ Prop. It is easy
to verify that the substitution (·)¬, defined as p¬ = ¬p for all p ∈ Prop, is a stable
substitution in all intermediate logics. For any intermediate logic L, define its negative
variant L¬ as

L¬ = {ϕ | ϕ¬ ∈ L}.

Lemma 2.13 (see [4]). Let L be an intermediate logic.

(i) L¬ is the smallest intermediate theory that contains L and ¬¬p→ p for every p ∈
Prop.

(ii) The consequence relation `L¬ of L¬ is closed under stable substitutions.

(iii) If L has the disjunction property, then so does L¬.

Lemma 2.14. Let L be an intermediate logic such that ND ⊆ L. Every formula is
provably equivalent to a formula of the form

∨
i∈I ¬ϕi in L¬.

Proof. The lemma follows essentially from [4]. Each formula ¬ϕi is a ΘX formula as
defined in (3) for some set X of valuations, and the proof makes essential use of the
axioms of ND and Lemma 2.13(i).

It was shown in [4] that the negative variants of all of the intermediate logics between
ND and ML (including KP) are identical. Propositional inquisitive logic InqL is the
negative variant of such logics. We state this and other properties of InqL in the fol-
lowing theorem.
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Theorem 2.15 (see [4]). (i) For any intermediate logic L such that ND⊆ L⊆ML, we
have InqL= L¬.

(ii) InqL has the disjunction property and its consequence relation `InqL is closed under
stable substitutions.

There are many intermediate logics, including ND and KP, for which not much is
known about their admissible rules. In Theorem 5.5 we show that the negative frag-
ment of intermediate logics between ND and ML is structurally complete with respect
to stable substitutions. Although we cannot immediately draw conclusions from this
about the admissibility in the original logics, we hope that our results can be of help in
the understanding of admissibility in these logics some day.

3 Extensions of the logics and substitutions

3.1 Extensions of the logics

For intermediate logics and InqL, all possible substitutions are well-defined, meaning
that given a formula and a substitution in the language of the logic, applying that sub-
stitution to the formula results in a formula in that language. However, for the other
logics of dependence that we consider in this paper (i.e., PD and PT), substitution is
not well-defined. A counter example is the formulas =(p1, . . . ,pn, q) and ¬p, for which
the substitution instances =(σp1, . . . ,σpn,σq) and ¬σ(p) only belong to LPD or/and
LPT if σ maps every propositional variable to a propositional variable.
For the study of admissibility one has to isolate the (or a meaningful) set of well-
defined substitutions under which a consequence relation of a logic is closed. For this
purpose, in this section we expand the languages of the logics PD and PT so as to
force flat substitutions to be well-defined, and we will show in the next section that
these extensions are closed under flat substitutions.

Definition 3.1. The following grammars define well-formed formulas of the extended
logics of dependence.

• The extended propositional downward closed team logic (PT):

ϕ ::= p | ⊥ | > |=( #»ϕ,ϕ) | ¬ϕ | ϕ∧ϕ | ϕ⊗ϕ | ϕ∨ϕ | ϕ→ ϕ.

• The extended propositional dependence logic (PD):

ϕ ::= p | ⊥ | > |=( #»α,β) | ¬ϕ | ϕ∧ϕ | ϕ⊗ϕ,

where #»α,β are flat formulas.

The extended logics have arbitrary negations as well-formed formulas. This negation
will be defined as the intuitionistic negation that is conservative over the restricted
negation in the original logics. The intuitionistic negation in the team semantics con-
text can be traced back to the negation ∼↓ considered by Hodges [11, 12], and a recent
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work [17] considered this negation also in the context of modal dependence logic. The
extension PT has dependence atoms with arbitrary arguments, while in the extension
PD we only allow dependence atoms with flat arguments. The restriction for PD is
made for technical simplicity that we discuss in the sequel, but as we consider flat sub-
stitutions only, this limitation does not affect the generality of the results in this paper.
Generalized dependence atoms with flat arguments are also studied in the context of
modal dependence logic, see [5, 7].

Below we define the semantics of the new formulas. We first treat PT and then PD.

Definition 3.2. Let ϕ1, . . . ,ϕn,ψ be arbitrary formulas of PT. Define

(a) X |==(ϕ1, . . . ,ϕn,ψ) iff X |=
∧n
i=1(ϕi∨ (ϕi→⊥))→ (ψ∨ (ψ→⊥));1

(b) X |= ¬ϕ iff X |= ϕ→⊥ iff {v} 6|= ϕ for all v ∈X .

In order for these definitions to be well-defined they have to agree with previously
defined notions. For the dependence atom the observation (1) suffices. For negation, it
suffices for PT that ¬ϕ has been defined as a shorthand for ϕ→⊥, thus the semantics
for negation as given in item (b) coincides with that in this logic.
We turn to PD. To define the semantics of the new formulas we need the following
equivalence relation between valuations. Given a sequence #»ϕ = ϕ1 . . .ϕn of formulas,
define an equivalence relation ∼ #»ϕ on the set of all valuations as follows:

u∼ #»ϕ v iff ∀1≤ i≤ n({u} |= ϕi⇔{v} |= ϕi).

Definition 3.3. Define

(a) for flat formulas α1, . . . ,αk,β of PD,

X |==( #»α,β)≡df ∀v,v′ ∈X(v ∼ #»α v
′ =⇒ v ∼β v′); (4)

(b) full negation in PD as X |= ¬ϕ iff {v} 6|= ϕ for all v ∈X .

We have to show that the notions defined in Definition 3.3 are extensions of the cor-
responding notions for PD, and also special case of those of PT. Obviously for the
formula =( #»p ,q), the semantics given in item (a) coincides with the semantics given
in Definition 2.2, and we leave it to the reader to check that it also coincides with
Definition 3.2(a).
The negation defined in item (b) deserves more comments. It is straightforward from
the definition that ¬ϕ is always flat, and the so defined negation being the intuitionistic
negation coincides with that of PT. In the literature of first-order dependence logic,
negation is usually treated only syntactically, in the sense that a negated formula ¬ϕ is
defined to have the same semantics as the unique formula ϕ∼ in negation normal form
obtained by exhaustively applying the De Morgan’s laws and some other syntactic

1The authors would like to thank Ivano Ciardelli for suggesting this definition, see also [3].
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rewrite rules. The corresponding syntactic rewrite rules for propositional dependence
logic are as follows:

p∼ 7→ ¬p >∼ 7→ ⊥ (ϕ∧ψ)∼ 7→ ϕ∼⊗ψ∼
(¬p)∼ 7→ p ⊥∼ 7→ > (ϕ⊗ψ)∼ 7→ ϕ∼∧ψ∼

=( #»ϕ,ψ)∼ 7→ ⊥
(5)

It is easy to see that the syntactic rewrite procedure for a negated formula ¬ϕ of PD
defined as above always terminates on a unique dependence atom-free formula ϕ∼ in
negation normal form in LPD.
When applying the syntactic negation, special attention needs to be paid to double
negations of dependence atoms, i.e., formulas of the form ¬¬=( #»a ,b), where the vari-
ables #»a ,b are first-order or propositional. Following Hintikka’s game-theoretic per-
spective of logic (see, e.g., [9]), the negation in logics of dependence is usually treated
as a connective for which the two players in the corresponding semantic game swap
their roles. This way ¬¬=( #»a ,b) should have the same meaning as =( #»a ,b). However,
this reading is not consistent with the syntactic rewrite rules as in (5). To avoid ambi-
guity, most literature of logics of dependence does not allow double negation to occur
in front of dependence atoms. In this paper, in the extended logic PD we do include
double negated dependence atoms as well-formed formulas, but as we do not take
the game-theoretic approach to propositional logics of dependence, the semantics of
double negated dependence atoms is computed simply according to Definition 3.3(b),
namely, ¬¬=( #»p ,q) is always semantically equivalent to > (noting that =( #»p ,q) is
always true on singleton teams). Given such interpretation of the double negated de-
pendence atoms, the negation defined in Definition 3.3(b) coincides with the syntactic
negation given by the rewrite rules in (5), as we will show in the next lemma. However,
on the other hand, in the context of first-order dependence logic, regardless of how dou-
ble negated dependence atoms are treated, the negation defined as in Definition 3.3(b)
does not coincide with the syntactic negation given by the rewrite rules; rather, it cor-
responds to the defined connective ∼↓ in Hodges [11, 12]. For instance, the reader
who is familiar with the semantics of first-order dependence logic can easily verify that
M 6|={s} ∀x=(x) holds for all assignments s on all models M , assuming that the do-
main of a model has at least two elements. Thus by Definition 3.3(b)M |=X ¬∀x=(x)
for all teams X on all models M , namely ¬∀x=(x) ≡ >. However, by the syntactic
rewrite rules, (∀x=(x))∼ = ∃x(=(x))∼ = ∃x⊥.

Lemma 3.4. For any formula ϕ in LPD, we have ¬ϕ≡ ϕ∼.

Proof. We prove by induction on ϕ that X |= ¬ϕ ⇐⇒ X |= ϕ∼ for all teams X .
The case ϕ = p or ⊥ or > is easy. If ϕ = ¬p, then ϕ∼ = p and we have that X |=
¬¬p ⇐⇒ ∀v ∈X : {v} 6|= ¬p ⇐⇒ ∀v ∈X : {v} |= p ⇐⇒ X |= p.
If ϕ==( #»p ,q), then ϕ∼ =⊥ and we have that X |= ¬=( #»p ,q) ⇐⇒ ∀v ∈X : {v} 6|=
=( #»p ,q) ⇐⇒ X = /0 ⇐⇒ X |=⊥.
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If ϕ= ψ∧χ, then ϕ∼ = ψ∼⊗χ∼ and we have that

X |= ¬(ψ∧χ)
⇐⇒ ∀v ∈X : {v} 6|= ψ∧χ
⇐⇒ ∃Y,Z ⊆X s.t. Y ∪Z =X, (∀v ∈ Y : {v} 6|= ψ) and (∀u ∈ Z : {u} 6|= χ)

⇐⇒ ∃Y,Z ⊆X s.t. Y ∪Z =X, Y |= ¬ψ and Z |= ¬χ
⇐⇒ ∃Y,Z ⊆X s.t. Y ∪Z =X, Y |= ψ∼ and Z |= χ∼ (by the induction hypothesis)
⇐⇒ X |= ψ∼⊗χ∼.

If ϕ= ψ⊗χ, then ϕ∼ = ψ∼∧χ∼ and we have by the induction hypothesis that

X |= ¬(ψ⊗χ) ⇐⇒ ∀v ∈X : {v} 6|= ψ⊗χ
⇐⇒ ∀v ∈X : {v} 6|= ψ and {v} 6|= χ

⇐⇒ X |= ¬ψ and X |= ¬χ
⇐⇒ X |= ψ∼∧χ∼ (by the induction hypothesis).

It is evident from Definition 3.3(b) that the full negation of PD is a semantic connective.
A k-ary connective > is called a semantic connective, if

[ϕ1 ≡ ψ1, . . . , ϕk ≡ ψk ] =⇒ >(ϕ1, . . . ,ϕk)≡>(ψ1, . . . ,ψk).

Lemma 3.4 states that the semantic negation of PD defined in Definition 3.3(b) and
the syntactic negation given by (5) coincide. It is worth emphasizing that in contrast
to PD and other familiar logics with negation, the syntactic negation of first-order de-
pendence logic is not a semantic connective (regardless of how double negated depen-
dence atoms are treated), as shown by Burgess [1] and Väänänen and Kontinen [16].
For an illustration, ∀x=(x) ≡ ∀x∀y(x = y), whereas, by the syntactic rewrite rules,
(∀x=(x))∼ = ∃x⊥ 6≡ ∃x∃y(x 6= y) = (∀x∀y(x= y))∼.
The logics PD and PT are expressively complete, therefore their extensions have the
same expressive power as the original ones. Thus it is straightforward to verify that
Theorem 2.4 and Theorem 2.12 hold also for the extended logics PD and PT. One can
easily extend the deduction systems of the original logics by adding characterization
rules for the negation and generalized dependence atoms and prove the sound and com-
pleteness theorems for the extensions. To characterize the negation, to the deduction
systems of PT and PD one adds the obvious rules that characterize the equivalence
between ¬ϕ and ϕ→ ⊥, and the obvious rules that characterize the rewrite rules in
(5), respectively. To characterize the generalized dependence atoms, to the deduction
system of PT one adds obvious rules that correspond to the equivalence in Defini-
tion 3.2(a). For PD, following the idea in [27] one generalizes the rules for dependence
atoms in the deduction system of PD according to the equivalence in Definition 3.2(a)
in an obvious way. To prove the completeness theorem for such obtained system of
PD, one observes that whenever ϕ1, . . . ,ϕn,ψ are flat,

=(ϕ1, . . . ,ϕn,ψ)≡
∨

f∈{0,1}X

⊗
v∈X

(ϕ
v(ϕ1)
1 ∧·· ·∧ϕv(ϕn)

n ∧ψf(v)) (6)

12



holds, where X = {0,1}{ϕ1,...,ϕn}, ϕ1
i = ϕi and ϕ0

i = ¬ϕi, and modifies the defini-
tion of a realization of a generalised dependence atom accordingly. Note that if the
arguments ϕ1, . . . ,ϕn,ψ of a generalized dependence atom are not assumed to be flat,
Equation (6) will no longer hold, and we do not see at this moment how to obtain a
complete axiomatization of the extended logic also in the general case. But since the
notion of admissibility we study in this paper concerns theoremhood of our logics only,
and we intensionally defined the consequence relations of our logics in a semantic man-
ner (see Definition 2.3), this obstacle in the axiomatization of the extended logic is not
essential for the main results of this paper. In view of this, for the sake of simplicity in
PD we only allow generalized dependence atoms with flat arguments.

3.2 Closure under flat substitutions

The consequence relations of the logics PD, InqL, and PT are not structural. In this
section we prove, however, that the consequence relations of these logics are closed
under flat substitutions, i.e., substitutions σ that map propositional variables to flat
formulas. To this end, we define the following translation on teams. For any valuation
v and any substitution σ, define a valuation vσ as

vσ(p) =

{
1 if {v} |= σ(p)
0 if {v} 6|= σ(p)

For any team X , we define Xσ = {vσ | v ∈X}. Given a team Y ⊆Xσ , let Y σX denote
the set {v ∈X | vσ ∈ Y }. Clearly Y σX ⊆X and (Y σX)σ = Y .

Lemma 3.5. Let L ∈ {PD, InqL,PT}. For all formulas ϕ and all flat substitutions σ in
LL,

X |= σ(ϕ) ⇐⇒ Xσ |= ϕ.

Proof. We prove this lemma for all three logics at the same time by induction on the
complexity of ϕ, where we use the following complexity c(ϕ) on formulas in LPT. The
use of the complicated clause for the dependence atoms will become clear in the proof
below.

c(p) = 0 p a propositional variable
c(⊥) = 0
c(>) = 0
c(¬ϕ) = c(ϕ)+1

c(ϕ◦ψ) = c(ϕ)+ c(ψ)+1 ◦ ∈ {∧,→,⊗}
c(=( #»ϕ,ψ)) =

(
∑
n
i=1(2c(ϕi)+4)

)
+2c(ψ)+4 where ~ϕ= ϕ1, . . . ,ϕn

The cases ϕ = ⊥ and ϕ = > are trivial. Since σ(p) is flat, the following equivalences
hold:

X |= σ(p) ⇐⇒ ∀v ∈X({v} |= σ(p)) ⇐⇒ ∀vσ ∈Xσ({vσ} |= p) ⇐⇒ Xσ |= p.

Thus the case ϕ= p is proved.
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Case ϕ = =(
#»

θ ,ψ). For PT, we know from Definition 3.2(a) that ϕ is semantically
equivalent to a formula in its language whose subformulas are of lower complexity,
thus this case is reduced to the other cases. However for PD, the equivalent formula
given by Definition 3.2(a) is not in its language, neither is the equivalent formula given
by Equation (6). Since PD is expressively complete, there indeed exists a formula ϕ′

in the language of PD that is equivalent to ϕ. However, this translation is not done in
a compositional manner, nor in an inductive manner (see Theorem 2.12). We therefore
cannot reduce this case to the other cases for PD, as the reduction would assume

ϕ≡ ϕ′ =⇒ σ(ϕ)≡ σ(ϕ′),

a fact that we establish only in Theorem 3.7. To avoid such a circular argument, we
now proceed to prove this case for PD directly, using the equivalent semantics given in
Definition 3.2(a) and assuming that ~θ and ψ are flat.
For the direction “=⇒”, assumeX |==(σ(~θ),σ(ψ)) and Y |=

∧n
i=1(θi∨¬θi) for some

Y ⊆Xσ . As (Y σX)σ = Y and c(
∧n
i=1(θi∨¬θi))< Σni=1(2c(θi)+4)< c(=(

#»

θ ,χ)), by
the induction hypothesis, we obtain that Y σX |=

∧n
i=1(σ(θi)∨¬σ(θi)). Clearly Y σX ⊆

X , thus the assumption implies that Y σX |= σ(ψ)∨¬σ(ψ), which by the induction
hypothesis again gives the desired (Y σX)σ |=ψ∨¬ψ, because c(ψ∨¬ψ) = 2c(ψ)+3<
c(=(

#»

θ ,ψ)). The other direction “⇐=” is symmetric, using Yσ ⊆Xσ for anyX,Y with
Y ⊆X .
The cases that ϕ = ψ ∧χ and ϕ = ψ ∨χ follow immediately from the induction hy-
pothesis.
Case ϕ= ψ⊗χ. We first prove the direction “=⇒”. Assume X |= σ(ϕ) and consider
Y,Z ⊆X such that X = Y ∪Z and Y |= σ(ψ) and Z |= σ(χ). Using that Yσ ∪Zσ =
Xσ , this implies Xσ |= ψ⊗χ by the induction hypothesis.
For the direction “⇐=”, assume Xσ |= ϕ and consider Y,Z ⊆Xσ such that Xσ = Y ∪
Z, Y |= ψ and Z |= χ. Thus Y σX |= σ(ψ) and ZσX |= σ(χ) by the induction hypothesis.
Since X = Y σX ∪ZσX , this implies X |= σ(ψ)⊗σ(χ), as required.
Case ϕ= ψ→ χ. We first prove the direction “=⇒”. Assume X |= σ(ϕ) and consider
Y ⊆ Xσ such that Y |= ψ. As (Y σX)σ = Y , Y σX |= σ(ψ) follows by the induction
hypothesis. And as Y σX ⊆X , this implies Y σX |= σ(χ). Hence Y |= χ by the induction
hypothesis, as required. The direction “⇐=” is similar.
Case ϕ = ¬ψ. It follows from the induction hypothesis that X |= ¬σ(ψ) ⇐⇒ ∀v ∈
X : {v} 6|= σ(ψ) ⇐⇒ ∀v ∈X : {vσ} 6|= ψ ⇐⇒ Xσ |= ¬ψ.

Lemma 3.6. The set of flat formulas in LPT is closed under flat substitutions, i.e.,
whenever ϕ is a flat formula and σ is a flat substitution, σ(ϕ) is flat too.

Proof. Suppose X is a team such that for all v ∈X , {v} |= σ(ϕ). To show that X |=
σ(ϕ), by Lemma 3.5, it suffices to show that Xσ |= ϕ. As ϕ is flat, we therefore have
to show that {vσ} |= ϕ for all s ∈ X . Again by Lemma 3.5 it suffices to show that
{v} |= σ(ϕ) for all v ∈X . But that is what we assumed, so we are done.

As a consequence of the above lemma, for every generalized dependence atom =(ϕ1, . . . ,ϕn,ψ)
in LPD, whereϕ1, . . . ,ϕn,ψ are flat formulas, the resulting formula =(σ(ϕ1), . . . ,σ(ϕn),ψ)
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under an arbitrary flat substitution σ is still a well-formed formula in LPD. This shows
that flat substitutions are well-defined in PD.

Theorem 3.7. The consequence relations of PD, InqL, and PT are closed under flat
substitutions. In particular, we have for all flat substitutions σ that ϕ ≡ ψ implies
σ(ϕ)≡ σ(ψ).

Proof. By the definition of the consequence relations, it suffices to prove that for all
formulas ϕ and ψ, ϕ |= ψ implies σ(ϕ) |= σ(ψ) for all flat substitutions σ.
Assume ϕ |= ψ. For any team X , any flat substitution σ,

X |= σ(ϕ) =⇒Xσ |= ϕ (by Lemma 3.5)
=⇒Xσ |= ψ (by the assumption)
=⇒X |= σ(ψ) (by Lemma 3.5).

Hence σ(ϕ) |= σ(ψ).

4 Flat formulas and projective formulas

Having proved that our logics are closed under flat substitutions we work towards the
proof of our main results by showing that flatness in these logics is nothing but projec-
tivity, a key notion in the study of admissible rules.
The formulas ΘX that play a crucial role in the normal form of formulas in LPT defined
in Section 2.2 turn out to be of particular interest. They actually serve as a syntactic
characterization of flat formulas, as the following lemma shows.

Lemma 4.1. Let ϕ(p1, . . . ,pn) be a consistent formula in LPT. The following are
equivalent.

(i) ϕ is flat

(ii) ϕ≡ΘX for some nonempty team X on {p1, . . . ,pn}

(iii) ϕ≡ ¬¬ϕ

(iv) |= ϕ⊗¬ϕ

Proof. (ii)⇒(i) and (iii)⇒(i) follow from the fact that negated formulas are flat, and
(i)⇒(iii) follows immediately from the definition of negation.
(i)⇒(ii): In view of Lemma 2.11 and Theorem 2.12, without loss of generality, we may
assume that ϕ(p1, . . . ,pn) =

∨k
i=1 ΘXi

, where {X1, . . . ,Xk} is a collection of some
nonempty maximal (with respect to set inclusion) teams on {p1, . . . ,pn}. Suppose
ϕ is flat and k > 1. For each 1 ≤ i < k, pick vi ∈ Xi \Xi+1 and pick vk ∈ Xk \
X1. The maximality of the Xi’s guarantees that such vi’s exist. Since {vi} ⊆Xi and
{v1, . . . ,vk} *Xi for all 1 ≤ i ≤ k, by Lemma 2.11, {vi} |= ΘXi

and {v1, . . . ,vk} 6|=
ΘXi

for all 1 ≤ i ≤ k, thereby {vi} |= ϕ for all 1 ≤ i ≤ k whereas {v1, . . . ,vk} 6|= ϕ.
Hence we conclude that k = 1 and ϕ= ΘX1 , as required.
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(i)⇒(iv): If ϕ is flat, to show (iv), it suffices to show {v} |= ϕ⊗¬ϕ, i.e., {v} |= ϕ or
{v} |= ¬ϕ, for all valuations v. But this is obvious.
(iv)⇒(i): Suppose {v} |= ϕ for all valuations v in a team X . Then Y 6|= ¬ϕ for all
nonempty Y ⊆ X . Now, if |= ϕ⊗¬ϕ, then we must have that X |= ϕ, which shows
that ϕ is flat.

Since some of the logics we consider in this paper do not have implication in the lan-
guage, and none of them is closed under uniform substitution, we modify the usual
definition of projective formula.

Definition 4.2 (Projective formula). Let L be a logic, and S a set of L-substitutions. A
formula ϕ in LL is said to be S-projective in L if there exists σ ∈ S such that

(a) `L σ(ϕ),

(b) ϕ,σ(p) `L p and ϕ,p `L σ(p) for all propositional variables p.

Such substitutions are called S-projective unifiers for ϕ in L.

Because of the Deduction Theorem (Theorem 2.4) of those of our logics that have
built-in implication, the notion of projectivity can in those cases be formulated purely
in terms of theoremhood. A standard inductive proof shows that the condition in Def-
inition 4.2(b) implies that ϕ,σ(ψ) `L ψ and ϕ,ψ `L σ(ψ) hold for all formulas ϕ and
ψ of our logics.
The proof of the following lemma uses what is known as Prucnal’s trick, which consists
of a method to prove projectivity via a connection between valuations and substitutions.

Lemma 4.3. Let L ∈ {InqL,PT} and X a nonempty set of teams on a finite set
of propositional variables. The formula ΘX in LL (defined by Equation (3)) is F-
projective in L, where F is the class of all flat substitutions.

Proof. Put ϕ = ΘX and pick v ∈ X . View ϕ as a formula of CPC. Clearly we have
v(p

v(p1)
1 ∧·· ·∧pv(pn)n ) = 1, and thereby v(ϕ) = 1. Define a substitution σϕv as follows:

σϕv (p) =

{
ϕ∧p if v(p) = 0
ϕ→ p if v(p) = 1

(7)

Put σ = σϕv . Clearly, σ(p) (in both cases) is classical, thus flat.
By a standard inductive argument, one proves that

`CPC σ(ψ) ⇐⇒ v(ψ) = 1 (8)

for all subformulas ψ of ϕ. Now, as v(ϕ) = 1, we obtain `CPC σ(ϕ). Since ϕ is a
classical formula, by Lemma 2.6 we derive `L σ(ϕ). Moreover, it follows from the
definition of σ that `L ϕ→ (σ(p)↔ p) holds for all p ∈ Prop. Hence we conclude that
ϕ is F-projective in L.
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It is known that negated formulas ¬ϕ are projective in every intermediate logic L.
This follows, for example, from Ghilardi’s characterization in [6]. Here we prove that
the same holds for the negative variants of intermediate logics and that the projective
unifiers involved are moreover stable.

Lemma 4.4. Let L be an intermediate logic. Every consistent formula ¬ϕ is ST -
projective in L¬, where ST is the class of all stable substitutions.

Proof. Take a valuation v such that v(¬ϕ) = 1. Define a substitution σ¬ϕv for ¬ϕ in
exactly the same way as in (7) of the preceding lemma. Put σ = σ¬ϕv . The definition
of σ guarantees that `L ϕ→ (σ(p)↔ p) holds for all p ∈ Prop. By (8) and Glivenko’s
Theorem (see e.g. Theorem 2.47 in [2]), we obtain that `L ¬σ(ϕ). Hence we have
proved that ¬ϕ is projective in L. Now, by Lemma 2.13 L⊆ L¬, thus ¬ϕ is projective
also in L¬.
It remains to check that the σ defined as above is a stable substitution in L¬, i.e., `L¬
σ(p)↔ ¬¬σ(p) for all p ∈ Prop. If v(p) = 0, then by the definition, we have that
σ(p) = ¬ϕ∧p. Since `L¬ ¬¬p→ p (by Lemma 2.13), we have that

¬¬σ(p) = ¬¬(¬ϕ∧p) a` ¬¬¬ϕ∧¬¬p a` ¬ϕ∧p= σ(p), 2

as required. If v(p) = 1, then by the definition we have that σ(p) = ¬ϕ→ p. Since
`L¬ ¬¬p→ p, we have that

¬¬σ(p) = ¬¬(¬ϕ→ p) a` ¬¬¬ϕ→¬¬p a` ¬ϕ→ p= σ(p),

as required.

Lemma 4.5. For any nonempty team X on a set {p1, . . . ,pn} of propositional vari-
ables, the formula ΘX in LPD (defined by Equation (2)) is F-projective in PD.

Proof. This lemma is proved using a similar argument to that of Lemma 4.3 too. Put
ϕ = ΘX . Take an arbitrary v ∈X . Clearly, v(ϕ) = 1 when ϕ is viewed as a formula
of CPC (hereafter in the proof, we identify the tensor disjunction ⊗ with the classical
disjunction). Define a substitution σϕv as follows:

σϕv (p) =

{
ϕ∧p if v(p) = 0
¬ϕ∨p if v(p) = 1

Put σ = σϕv . Clearly, the formula σ(p) (in both cases) is classical, thus flat.
As in the proof of Lemma 4.3, we have that (8) holds for all subformulas ψ of ϕ, thus
`CPC σ(ϕ). Now, since the formula σ(ϕ) is classical, we obtain by Lemma 2.6 that
`PD σ(ϕ).
It remains to show that ϕ,σ(p) `L p and ϕ,p `L σ(p) for all p ∈ Prop. If v(p) = 0, then
clearly ϕ,ϕ∧ p `PD p and ϕ,p `PD ϕ∧ p. If v(p) = 1, to see that ϕ,¬ϕ⊗ p `PD p, if
X |=ϕ∧(¬ϕ⊗p), then for all v ∈X , we have that {v} |=ϕ∧(¬ϕ⊗p), which implies
that {v} |= p, thereby X |= p, as required. That ϕ,p `PD ¬ϕ⊗p follows from the fact
that p `PD ¬ϕ⊗p.

2The notation ϕ a` ψ is short for ϕ ` ψ and ψ ` ϕ.
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Lemma 4.6. Let L∈ {PD, InqL,PT}, and ϕ a consistent formula in LL. The following
are equivalent:

(i) ϕ a`ΘX for some nonempty n-team X

(ii) ϕ is flat

(iii) ϕ is F-projective in L

Proof. (ii)⇐⇒ (i)=⇒(iii) follows from Lemmas 4.1, 4.3 and 4.5. Now, we show that
(iii)=⇒(i). Suppose ϕ is F-projective in L and σ is an F-projective unifier for ϕ.
Then `L σ(ϕ), which implies |= σ(ϕ). By Theorem 2.5, this implies that there exists
1≤ i≤ k such that |= σ(ΘXi

). Since ΘXi
is in LL and thus so is σ(ΘXi

), `L σ(ΘXi
)

follows. On the other hand, we also have that ϕ,σ(ΘXi
) `L ΘXi

. It then follows that
ϕ `L ΘXi

. Hence ϕ≡ΘXi
, which gives ϕ a`ΘXi

.

Lemma 4.7. Let L be an intermediate logic such that ND ⊆ L and ϕ a consistent
formula in LL. The following are equivalent:

(i) `L¬ ϕ↔¬¬ϕ

(ii) ϕ is ST -projective in L¬

Proof. (i)=⇒(ii) follows from Lemma 4.4. For (ii)=⇒(i), by Theorem 2.15, in L¬ we
have that ϕ a`

∨
i∈I ¬ϕi for some formulas {¬ϕi | i ∈ I}. By a similar argument to

that in the proof of “(iii)=⇒(i)” of Lemma 4.6, we obtain in L¬ that ϕ a`¬ϕi for some
i ∈ I , which implies that `L¬ ϕ↔¬¬ϕ.

5 Structural completeness of the logics

In this section we prove the main results of our paper, namely that the three proposi-
tional logics of dependence PD, InqL, and PT are F-structurally complete and that the
negative variants of logics extending ND are hereditarily ST -structurally complete. In
both cases the proof of the fact is based on the existence, for every formula ϕ, of certain
S-projective formulas ϕi such that ϕ

⊔
i∈I ϕi, where in the first case S consists of all

flat substitutions and in the second case of all stable ones. As mentioned in Remark 2.8,
it is not hard to prove by the same methods that also the logic PID is F-structurally
complete, where PID is an extension of propositional intuitionistic dependence logic
PID in the same manner as PT is an extension of PT.

Definition 5.1. Let L be a logic, and S a set of `L-substitutions. A rule ϕ/ψ of L is
said to be S-admissible, in symbols ϕ |∼SL ψ, if for all σ ∈ S , `L σ(ϕ) =⇒`L σ(ψ).
In case S is the set of all substitutions, we write |∼ for |∼S , and such a rule is called an
admissible rule.

Definition 5.2. A logic L is said to be S-structurally complete if every S-admissible
rule of L is derivable in L, i.e., ϕ |∼SL ψ ⇐⇒ ϕ `L ψ. In case S is the set of all
substitutions and L is S-structurally complete, we say that L is structurally complete.
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Informally, a rule is admissible in a logic L if its addition to the logic does not change
the theorems that are derivable. Clearly, if S is a set of L-substitutions, then ϕ`L ψ=⇒
ϕ |∼SL ψ for all formulas ϕ and ψ in LL. In particular, by Theorem 3.7, all derivable
rules of PD and InqL are F-admissible in the logics. A logic that is S-structurally
complete has no nontrivial S-admissible rules: all such rules are derivable in the logic.
Classical logic is structurally complete, but intuitionistic logic is not, as neither are
many other intermediate logics. The well-known example showing that intuitionistic
logic is not structurally complete uses Harrop’s Rule:

ϕ→ ψ∨θ |∼IPC (ϕ→ ψ)∨ (ϕ→ θ) but ϕ→ ψ∨θ 6`IPC (ϕ→ ψ)∨ (ϕ→ θ).

Recall the definition of
⊔

just below Lemma 2.4: ϕ
⊔
iϕi holds if and only if ϕi |= ϕ

for all i, and for all teams X: X |= ϕ implies X |= ϕi for some i.

Lemma 5.3. For any L which is an intermediate theory or one of PD, InqL or PT,
and any set S of L-substitutions, if for every consistent formula ϕ in LL there exists
a finite set {ϕi | i ∈ I} of S-projective formulas in LL such that ϕ

⊔
i∈I ϕi, then L is

S-structurally complete.

Proof. We show that every S-admissible rule ϕ |∼SL ψ of L is derivable, i.e., ϕ `L ψ.
If ϕ is inconsistent, then clearly ϕ `L ⊥ `L ψ. Now assume that ϕ is consistent. By
assumption there exists a finite set {ϕi | i ∈ I} of S-projective formulas such that
ϕ
⊔
i∈I ϕi. Let σi ∈ S be the projective unifier of ϕi. Thus `L σi(ϕi). Hence `L σi(ϕ)

for all i ∈ I . From ϕ |∼SL ψ we derive `L σi(ψ) for each i ∈ I . Since σi is a projective
unifier for ϕi, we have that ϕi,σi(ψ) `L ψ. It follows that ϕi `L ψ for each i ∈ I .
Therefore ϕ `L ψ.

Theorem 5.4. PD, InqL and PT are F-structurally complete.

Proof. By Theorem 2.12 for the extended logics, Lemmas 4.6 and 5.3.

Let L be an intermediate theory/logic and S a set of `L-substitutions. We say that L is
S-hereditarily structurally complete if for any intermediate theory L′ such that L ⊆ L′

and S is a set of `L′ -substitutions, L′ is S-structurally complete. In case S is the class
of all substitutions of L, then we say that L is hereditarily structurally complete. It is
known that none of ND, KP and ML are hereditarily structurally complete.

Theorem 5.5. For any intermediate logic L such that ND ⊆ L, its negative variant L¬

is ST -hereditarily structurally complete. In particular, ND¬, KP¬ and ML¬ are ST -
hereditarily structurally complete.

Proof. By Theorem 2.15, Lemmas 4.7 and 5.3.

6 Concluding remarks

We have shown that the three propositional logics of dependence, PD, PT, InqL, are
structurally complete with respect to flat substitutions and that the negative variant of
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every intermediate logic that is an extension of ND is hereditarily structurally com-
plete with respect to stable substitutions. In particular, ND¬, KP¬ and ML¬ are ST -
hereditarily structurally complete. The reason for this are the strong normal forms that
hold in these logics or theories. In this aspect they resemble classical logic, with its
disjunctive normal form, that is also hereditarily structurally complete.
Apart from [20] there has not been much research on admissibility on intermediate
theories that are not intermediate logics, and for propositional logics of dependence the
above results are the first of that kind. Thus, naturally, many questions remain open.
We discuss several of them.
Theorem 5.5 states that the negative variants of extensions of ND are hereditarily struc-
turally complete. It follows from results of Maxsimova and Prucnal that any struc-
turally complete intermediate logic with the disjunction property contains KP and is
contained in ML, and in [25], which recaptures these results, it is moreover shown that
KP itself is not structurally complete. The same holds for ND, since it is properly con-
tained in KP. One wonders whether the fact that the negative variants of ND and KP
are structurally complete could shed some light on admissibility in the original logics.
In this paper the results on admissibility are with respect to sets of substitutions, such as
the flat and the stable substitutions. There exist logics for which establishing whether
admissibility has certain properties, such as decidability, seems hard. These problems
are often considered only for admissibility with respect to all substitutions, but one
could start with smaller sets of substitutions, which may be easier to deal with, and
although certain properties, such as decidability of admissibility, do not transfer from
a smaller set of substitutions to its extensions, understanding a restricted case may still
help understanding the general case.
On a more abstract level, there are two definitions of admissibility in the literature that
in most instances amount to the same notion. Although intuitively clear, the proper
connection between the two is not completely straightforward [14, 19]. It is mostly
considered only for admissibility with respect to the set of all substitutions. It would
be nice to see whether this connection can be generalized to admissibility with respect
to any set of substitutions.
The results obtained in this paper made essential use of the disjunctive normal form
of formulas of propositional logics of dependence. It is known from the literature
that modal dependence logic and propositional independence logic both have a similar
disjunctive normal form [26, 18, 5]. We conjecture that the argument in this paper may
apply to these two logics and lead to similar results.
The authors would like to thank Ivano Ciardelli, Dick de Jongh and Jouko Väänänen
for useful discussions on the topic of this paper.
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