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Abstract

Visser’s rules form a basis for the admissible rules of IPC. Here we
show that this result can be generalized to arbitrary intermediate log-
ics: Visser’s rules form a basis for the admissible rules of any interme-
diate logic L for which they are admissible. This implies that if Visser’s
rules are derivable for L then L has no non-derivable admissible rules. We
also provide a necessary and sufficient condition for the admissibility of
Visser’s rules. We apply these results to some specific intermediate logics,
and obtain that Visser’s rules form a basis for the admissible rules of e.g.
De Morgan logic, and that Dummett’s logic and the propositional Gödel
logics do not have non-derivable admissible rules.

Keywords: intermediate logics, intuitionistic logic, admissible rules, projective formu-

las

1 Introduction

It is a simple but interesting fact that all admissible rules of classical proposi-
tional logic CPC are derivable. Thus, knowing the theorems of CPC is knowing
its rules. For intermediate logics this is no longer true: there are intermediate
logics that have nonderivable admissible rules, i.e. admissible rules that are not
derivable. Intuitionistic propositional logic IPC is the most famous example of
such a logic, but there are many more. In [9] it was shown that the countably
many Gabbay-de Jongh logics [5] have this property too.

A lot is known about the admissible rules of IPC. Rybakov [14] showed that
admissible derivability for IPC, |∼ , is decidable and Ghilardi [7] presented a
transparent algorithm. In [10] a simple syntactical characterization for |∼ was
given. This result implied that Visser’s rules V = {Vn | . . . n = 1, 2, 3, . . .},
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where

Vn (
n
∧

i=1

(Ai → Bi) → An+1 ∨ An+2) ∨ C /
n+2
∨

j=1

(
n
∧

i=1

(Ai → Bi) → Aj) ∨ C,

form a basis for the admissible rules of IPC. Intuitively, this means that all
admissible rules of IPC can be obtained from Visser’s rules via derivability in
IPC.

In this paper we show that this result is in fact a particular case of a more
general theorem, by showing (Theorem 8) that if Visser’s rule are admissible
for an intermediate logic L, they are a basis for the admissible rules of L. In
particular, it follows that if Visser’s rule are derivable, the logic has no non-
derivable admissible rules. As we will see, the latter applies to many well-
known intermediate logics, like Gödel-Dummett logic LC and the Gödel logics
Gk. (This last fact was independently observed, using different methods, by
Matthias Baaz.)

As for the admissibility of Visser’s rules, it might not always be easy to see
whether this hold or not for a given logic. However, in many cases we can make
use of the necessary and sufficient condition for the admissibility of Visser’s rules
developed in Section 4. Namely, there we show that Visser’s rule are admissible
for a logic L if and only if L is sound and complete with respect to class of
models that has the so-called offspring property. This characterization enables
us to apply Theorem 8 to various intermediate logics and conclude that Visser’s
rule form a basis for the admissible rules of e.g. De Morgan logic KC.

Summarizing, we could say that if Visser’s rules are admissible for L, we have
a complete description of |∼

L once we have one of ⊢L, because in these cases
Visser’s rules form a basis for the admissible rules. As we will see, it is even
so that in these cases there exist formulas ΛA, so-called maximal admissible
consequences, such that A |∼

LB ⇔ ΛA ⊢L B. Therefore, having ΛA, one obtains
a description of |∼

L in terms of ⊢L. In [7] an algorithm to compute the ΛA was
presented, and based on this we have developed a proof system to derive ΛA

[11]. All this provides not only a complete description of the admissible rules of
L, but also one that is computable once ⊢L is.

What if not all of Visser’s rules are admissible? We know that such logics exist:
the Gabbay-de Jongh logics are an example [9]. We do not know of many general
results about the admissibility relation of such logics.

In short, the general connection between Visser’s rules and admissibility ob-
tained here is as follows.

• Visser’s rules are admissible ⇒ Visser’s rules form a basis (Section 3.2).

• Visser’s rules are derivable ⇒ no non-derivable admissible rules (Sec-
tion 3.2).

• Disjunction property ⇒ not all of Visser’s rules are admissible, unless the
logic is IPC (Section 4).
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1.1 Remark

Note than when Visser’s rules are admissible, then so are the rules

Vnm (
n
∧

i=1

(Ai → Bi) →
m
∨

j=n+1

Aj) ∨ C/
m
∨

h=1

(
n
∧

i=1

(Ai → Bi) → Ah) ∨ C.

As an example we will show that V13 is admissible for any logic for which
V1 is admissible. For simplicity of notation we take C empty. Assume that
⊢L (A1 → B) → A2∨A3∨A4. Then by V1, reading A2∨A3∨A4 as A2∨(A3∨A4),

⊢L

(

(A1 → B) → A1

)

∨
(

(A1 → B) → A2

)

∨
(

(A1 → B) → A3 ∨ A4

)

.

A second application of V1, with C =
(

(A1 → B) → A1

)

∨
(

(A1 → B) → A2

)

,
gives

⊢L

2
∨

i=1

(

(A1 → B) → Ai

)

∨
∨

i=1,3,4

(

(A1 → B) → Ai

)

.

Therefore, ⊢L

∨4

i=1

(

(A1 → B) → Ai

)

.

The paper is build up as follows. Section 2 contains the preliminaries. It is
somewhat long, as the necessary and sufficient condition for the admissibility
of V needs some explanation. Section 3 is devoted to the proof that if Visser’s
rules are admissible they form a basis. The proof itself is not complicated, but it
uses a lot of machinery, which is discussed in Subsection 3.1. In Subsection 3.2
the result is derived. Section 4 presents the neccessary and sufficient condition
for the admissibility of Visser’s rules. In Section 5 the results are applied to
specific intermediate logics.

2 Preliminaries

In this paper we will only be concerned with intermediate logics L, i.e. logics
between (possibly equal to) IPC and CPC. We write ⊢L for derivability in L. The
letters A, B, C, D, E, F, H range over formulas, the letters p, q, r, s, t, range over
propositional variables. We assume ⊤ and ⊥ to be present in the language. ¬A
is defined as (A → ⊥). We omit parentheses when possible; ∧ binds stronger
than ∨, which in turn binds stronger than →.

2.1 Admissible rules

A substitution σ will in this paper always be a map from propositional formulas
to propositional formulas that commutes with the connectives. A (propositional)
admissible rule of a logic L is a rule A/B under which the logic is closed, i.e.

∀σ : ⊢L σA implies ⊢L σB.
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We write A |∼
LB if A/B is an admissible rule of L. The rule is called derivable

if ⊢L A → B and non-derivable if 6⊢L A → B. When R is the rule A/B, we
write R→ for the implication A → B. We say that a collection R of rules,
e.g. V , is admissible (derivable) for L if all rules in R are admissible (derivable)
for L. We write A ⊢R

L
B if B is derivable from A in the logic consisting of L

extended with the rules R, i.e. if there are A = A1, . . . , An = B such that for
all 1 ≤ i < n, Ai ⊢L Ai+1 or there exists a σ such that σBi/σBi+1 = Ai/Ai+1

and Bi/Bi+1 ∈ R. If X and R are sets of admissible rules of L, then R is a
basis for X if for every rule A/B in X we have A ⊢R

L
B. If X consists of all

the admissible rules of L, then R is called a basis for the admissible rules of L.
Thus R is a basis for the admissible rules of L if and only if |∼

L =⊢R
L

, i.e.

A |∼
LB ⇔ A ⊢R

L B.

Fact 1 If R is a basis for the admissible rules of L and all rules in R are derivable,
then L has no non-derivable admissible rules.

2.2 The disjunction property

A logic L has the disjunction property if

⊢L A ∨ B ⇒ ⊢L A or ⊢L B.

If L has the disjunction property, then A |∼
LC and B |∼

LC implies A∨B |∼
LC.

Thus in the context of Visser’s rules this implies that when the the following
special instances of Visser’s rules, the restricted Visser rules,

V −
n (

n
∧

i=1

(Ai → Bi) → An+1 ∨ An+2) /

n+2
∨

j=1

(

n
∧

i=1

(Ai → Bi) → Aj),

are admissible for L, then so are Visser’s rules. Therefore, when considering
only logics with the disjunction property, like e.g. IPC, the difference between
the Visser rules and the restricted Visser rules does not play a role. However,
when considering intermediate logics in all generality, as we do in this paper,
we cannot restrict ourselves to this sub-collection of Visser’s rules.

2.3 Kripke models

A Kripke model K is a triple (W, 4, 
), where W is a set (the set of nodes) with a
unique least element that is called the root, 4 is a partial order on W and 
, the
forcing relation, a binary relation on W and sets of propositional variables. The
pair (W, 4) is called the frame of K. The notion of forcing in a Kripke model
is defined as usual. We write K |= A if A is forced in all nodes of K and say
that A holds in K. We write Kk for the model with domain {k′ | k 4 k′} which
partial order and valuation are the restrictions of the corresponding relations of
K to this domain.
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2.4 Bounded morphisms

A map f : (W, 4, 
) → (W ′, 4′, 
′) is a bounded morphism when the following
conditions hold

1. k and f(k) force the same atoms,

2. k 4 l implies f(k) 4′ f(l),

3. if f(k) 4 l, then there is a k′ < k in W such that f(k′) = l.

K ′ is a bounded morphic image of K, K ։ K ′, whenever there is a surjective
bounded morphism from K to K ′. It is well-known (see e.g. [2]) that when f
is a bounded morphism from K to K ′, then for all k in K, for all formulas A:
k 
 A ⇔ f(k) 
′ A. Thus if K ′ is a bounded morphic image of K, it validates
exactly the same formulas as K.

2.5 Extension properties

For Kripke models K1, . . . , Kn, (
∑

i Ki)
′ denotes the Kripke model which is

the result of attaching one new node at which no propositional variables are
forced, below all nodes in K1, . . . , Kn. (

∑

·)′ is called the Smorynski operator.
Two models K, K ′ are variants of each other, written KvK ′, when they have
the same set of nodes and partial order, and their forcing relations agree on all
nodes except possibly the root. A class of models U has the extension property if
for every finite family of models K1, . . . , Kn ∈ U , there is a variant of (

∑

i Ki)
′

which belongs to U . U has the weak extension property if for every model
K ∈ U , and every finite collection of nodes k1, . . . , kn ∈ K distinct from the
root, there exists a model M ∈ U such that

∃M1

(

(
∑

i

Kki
)′vM1 ∧ (M1 ։ M)

)

.

U has the offspring property if for every model K ∈ U , and for every finite
collection of nodes k1, . . . , kn ∈ K distinct from the root, there exists a model
M ∈ U such that

∃M1∃M0

(

(
∑

i

Kki
)′vM1 ∧ (M1 + K)′vM0 ∧ (M0 ։ M)

)

.

A logic L has the extension (weak extension, offspring) property if it is sound
and complete with respect to some class of models that has the extension (weak
extension, offspring) property. Note that for all three properties the class of
models involved does not have to be the class of all models of L. However, we
might as well require that, because we will see in Section 4 that if a logic has
the offspring property, then so does the class of all its models. Since the class
of all models of a logic is closed under submodels and bounded morphic images,
this also implies that for logics

extension property ⇒ offspring property ⇒ weak extension property.
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The reason that we have chosen the definition of offspring property as given
above, not the most elegant one, is that it will turn out particularly useful for
the application to various frame complete logics discussed in the last section.
There are quite natural classes of models that satisfy the offspring property, e.g.
the class of linear models, as the reader may wish to verify for himself.

If we would not restrict our models to rooted ones, the extension property and
the weak extension property would be equivalent, at least for logics. Since we
require our Kripke models to be rooted, there is a subtle difference between the
two:

Fact 4 If a logic L has the extension property, it has the disjunction property.

As there are logics that do not have the disjunction property, but that have the
weak extension property, the latter is indeed stronger. We will see examples of
such logics in Section 5.

2.6 Projective formulas

We define n(A) to be the maximal nesting of implications in A. Recall that a
substitution σ is a unifier of A in IPC if ⊢IPC σA.

In [6], Ghilardi introduced the notion of a projective formula: a formula is called
projective if there exists a substitution σ such that

⊢IPC σA, and for all atoms p (A ⊢IPC σ(p) ↔ p).

We call such a σ a projective unifier for A. A projective approximation ΠA of
A(p̄) is a set of formulas such that for all B ∈ ΠA,

1. all atoms in B are among the atoms p̄ of A, n(B) ≤ n(A), B is projective
and B ⊢IPC A, and

2. for all formulas C satisfying 1., there is a B ∈ ΠA such that C ⊢IPC B.

Observe that if σ is a projective unifier for A, then A ⊢IPC σB ↔ B, for all
formulas B. This implies that for any projective formula A, for all formulas B
we have that

A |∼
LB ⇔ A ⊢L B. (1)

For if A |∼
LB, then ⊢L σB for any projective unifier σ of A. Whence A ⊢L B,

as A ⊢IPC σB ↔ B. Note that (1) implies
∨

ΠA |∼
LB ⇔

∨

ΠA ⊢L B.

Example 3 Examples of projective formulas are p, ¬p, and A → p. Their
projective unifiers are resp. σ(p) = ⊤, σ(p) = ⊥ and σ(p) = (A → p) → p,
where σ is the identity on all atoms distinct from p. For the first two, this is
easy to see. To see that the last substitution is a unifier for A → p, note that

σ(A → p) = σ(A) → ((A → p) → p) ↔ (σ(A) ∧ (A → p) → p).
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Observe that indeed (A → p) ⊢ σ(B) ↔ B, as is required of a projective unifier.
Hence (σ(A) ∧ (A → p) → p) is equivalent to ((A → p) ∧ A → p), which is a
tautology of IPC.

In [6], Ghilardi showed that projective formulas are exactly the formulas which
class of models has the extension property. This implies that e.g. p ∨ q is not
a projective formula. Nor are the formulas

∧n

i=1
(pi → qi) → pn+1 ∨ pn+2 that

occur in Visser’s rules projective.

3 Visser’s rules as a basis

We will show that once Visser’s rules are admissible for a logic they form a
basis, Theorem 8. The first subsection recalls the theorems that lead to the
mentioned result. First, we discuss results on projective formulas and admissible
rules of IPC, and how they may be connected to the admissible rules of other
intermediate logics.

3.1 Maximal admissible consequences

The important point in the proof of Theorem 8 is that for various logics there
exist formulas λA, called maximal admissible consequences, such that A |∼B ⇔
λA ⊢ B. In this section we explain the connection between such formulas and
bases of admissible rules.

Definition 1 For a formula A, let ACL
A = {B | A |∼

LB} be the set of admissible
consequences of A in L. A formula λL

A is called a maximal admissible consequence
(mac) of A in L if

∀B (A |∼
LB ⇔ λL

A ⊢L B).

We omit the superscript when L is clear from the context. In the case of IPC, we
write ΛA for λIPC

A . A formula A is called stable for admissibility in L, or stable
for short, if it is a maximal admissible consequence of itself, i.e. if

∀B (A |∼
LB ⇔ A ⊢L B).

The name maximal admissible consequence stems from the fact that such λA is
maximal in ACL

A, or equivalently that it axiomatizes ACL
A, i.e.

ACL

A = {B | A |∼
LB} = {B | λA ⊢L B}.

Note that the mac’s of a formula A in L (if any) are unique up to provable
equivalence in L. Therefore, when A has a mac in L we speak of the mac of A in
L and denote it by λL

A. The following fact provides a straightforward equivalent
for the existence of mac’s.

Fact 4 A formula λA is a mac of A in L if and only if

7



1. A |∼
LλA ⊢L A, and

2. λA is stable, i.e. ∀B (λA |∼
LB ⇔ λA ⊢L B).

Proof We assume that A has a mac λA in L and show that 1. and 2. hold.
We leave the other direction to the reader. We have ∀B (A |∼B ⇔ λA ⊢ B) by
assumption. Thus A |∼λA ⊢ A follows, which is 1. For 2., the direction from
right to left is trivial. For the other direction, assume λA |∼B. Then A |∼B by
1. and the fact that |∼ is clearly transitive. Thus λA ⊢ B by the definition of
λA. 2 The following fact expresses the relation between mac’s and bases for
admissible rules.

Fact 3 1. If λA is a mac of A in L, R a set of rules such that A ⊢R
L

λA, then
∀B (A |∼

LB ⇒ A ⊢R
L

B).

2. If all formulas A have a mac λA in L and R is a set of admissible rules of
L, then:

∀A (A ⊢R
L λA) ⇔ (R is a basis for the admissible rules of L).

Proof For the first part, assume A |∼
LB. By the definition of mac’s, λA ⊢L B

follows. Thus A ⊢R
L

λA ⊢L B, which gives A ⊢R
L

B. For the second part it
suffices to show that for all A we have

(A ⊢R
L λA) ⇔ ∀B(A |∼

LB ⇔ A ⊢R
L B).

For the direction from left to right, assume A ⊢R
L

λA. (A |∼
LB ⇒ A ⊢R

L
B)

follows from 1. (A ⊢R
L

B ⇒ A |∼
LB) follows from the assumption that the rules

R are admissible for L. The direction from right to left follows from A |∼
LλA,

see Fact 4. 2

Thus by the above fact, one approach to finding a basis for the admissible rules
of an intermediate logic L is to first check whether

(a) for every A there exists a mac λA of A in L.

And if so, to provide

(b) a set of rules R, admissible for L, such that A ⊢R
L

λA for all A.

By the previous fact it then follows that R is a basis for the admissible rules of
L.

In this paper we will follow this procedure. We will see that there are many
logics for which these two properties (a) and (b) hold, e.g. for the logics KC, LC,
Gk. The central point here is that (a) and (b) fold for IPC: it turns out that
for all these logics the mac of a formula A is always the same, namely ΛA, the
mac of A in IPC. That is, in Corollary 7, it is shown that in any intermediate
logic L for which Visser’s rule are admissible, ΛA is a mac of A and A ⊢V

L
ΛA.

This implies that (a) and (b) hold for L, and whence that Visser’s rules form a
basis for the admissible rules of L. Corollary 7 therefore not only allows us to
establish the basis for the admissible rules of many logics, but moreover shows
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that once Visser’s rules are admissible, this basis is always the same, namely
the collection of Visser’s rules (Theorem 8).

The main Corollary 7 follows from two theorems below: Theorem 3 by Ghilardi
[6] implies that in IPC every formula A has a mac ΛA that moreover is stable
in any intermediate logic L (Corollary 4). Theorem 6 by the author [10] states
that Visser’s rules are a basis for the admissible rules of IPC. Hence it follows
that ΛA ⊢IPC A ⊢V

IPC
ΛA. By Fact 4, these two theorems together imply that

ΛA is a mac of A in any logic in which V is admissible, which is the content of
Corollary 7. All this will be proved below and in the next subsection.

Theorem 3 (Ghilardi [6]) Every formula A has a finite projective approxima-
tion ΠA. For every unifier σ of A there is formula B ∈ ΠA such that σ is a
unifier for B too.

Corollary 4 Every formula A has a mac ΛA in IPC. Moreover, ΛA is stable in
any intermediate logic L. The disjunction of any projective approximation of A
can be taken for ΛA.

Proof Let ΠA be a finite projective approximation of A, which exists by the
previous theorem. We show that we can take

∨

ΠA for ΛA. First, we show that
ΛA is a mac of A in IPC:

∀B (A |∼
IPCB ⇔

∨

ΠA ⊢IPC B).

The direction from left to right. Assume A |∼B. Whence ⊢ σB. Thus
∨

ΠA |∼B.
Recall from Section 2.6 that

∨

ΠA |∼B implies
∨

ΠA ⊢ B. For the other di-
rection, assume

∨

ΠA ⊢IPC B and ⊢IPC σA. By Theorem 3 there is a formula
C ∈ ΠA such that σ is a unifier of C, i.e. ⊢IPC σC. Hence ⊢IPC σ(

∨

ΠA), and
thus ⊢IPC σB. This proves A |∼B.

It remains to show that ΛA is stable in any intermediate logic L, that is

∀B (
∨

ΠA |∼
LB ⇔

∨

ΠA ⊢L B).

Assume
∨

ΠA |∼
LB. Pick a projective formula C ∈ ΠA and a projective unifier

σ for C, i.e. ⊢IPC σC and C ⊢IPC B ↔ σB (Section 2.6). Thus ⊢L σC and
C ⊢L B ↔ σB. Since

∨

ΠA |∼
LB, we have ⊢L σB. Thus C ⊢L B. As we have

shown this for arbitrary C ∈ ΠA,
∨

ΠA ⊢L B follows. 2

Corollary 5 If A |∼
LΛA, then ΛA is a mac of A in L, i.e. λL

A = ΛA.

Proof By Fact 4 it suffices to show that A |∼
LΛA ⊢L A and that ΛA is stable in

L. The last part follows from Corollary 4. The first part follows from ΛA ⊢IPC A,
which again follows from Corollary 4 and Fact 4. 2

As mentioned in the introduction, Ghilardi in [7], constructed an algorithm to
compute ΛA. Based on this, we have developed a proof system that given a
formula A derives ΛA [11]. Although we will not use these results here, we
mention them because they show that and how one can obtain the ΛA “in
practice”.
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3.2 When Visser’s rules are admissible

Theorem 6 ([10]) A |∼
IPCB if and only if A ⊢V

IPC
B.

Corollary 7 If V is admissible for L, then ΛA is a mac of A in L and A ⊢V
L

ΛA.

Proof We have A |∼
IPCΛA by Corollary 4 and Fact 4. It follows from Theorem 6

that A ⊢V
IPC

ΛA. As V is admissible for L, this gives A |∼
LΛA. Corollary 5 implies

that ΛA is a mac for A in L. As A ⊢V
IPC

ΛA clearly implies A ⊢V
L

ΛA, the result
follows. 2

As explained above, this leads to the following characterization of the admissible
rules for logics for which V is admissible.

Theorem 8 If V is admissible for L, then V is a basis for the admissible rules
of L, i.e. |∼

L =⊢V
L

when V is admissible.

Proof By 2. of Fact 3 and Corollary 7. 2

Corollary 9 If V is admissible for L then all admissible rules of IPC are admis-
sible for L.

Proof By Corollary 7 and Theorem 4

A |∼
IPCB ⇔ ΛA ⊢IPC B ⇒ ΛA ⊢L B ⇔ A |∼

LB.

2 Note that the last corollary follows already from the fact that V is a basis
for the admissible rules of IPC.

Corollary 10 If V is derivable for L then L has no non-derivable admissible
rules.

Proof By Corollary 8 and Fact 1. 2 Note that this theorem implies that CPC

has no non-derivable admissible rules, as stated in the introduction, a fact that
can also be derived directly from the definition of admissible rules.

In Section 5 we will apply the results above to specific intermediate logics and
obtain characterizations of their admissible rules. We conclude this section by
some general facts on admissible rules for the case that Visser’s rules are not
admissible, before we proceed in the next section with a semantic criterion for
the admissibility of V .

3.3 General remarks

For completeness sake we include the following known facts for logics for which
Visser’s rules are not admissible. They only provide necessary conditions for
admissibility.

Fact 11 If A |∼
LB, then CPC ⊢ A → B.
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Proof Suppose A |∼
LB. This means that for all σ, ⊢L σA implies ⊢L σB.

Suppose the variables that occur in A and B are among p1 . . . pn. Consider
σ ∈ {⊤,⊥}n. Note that for such σ, ⊢CPC σA iff ⊢IPC σA iff ⊢L σA. Whence for
all σ ∈ {⊤,⊥}n, if ⊢CPC σA then ⊢CPC σB. Thus ⊢CPC A → B. 2

Corollary 12 If A |∼
LB, then the logic that consists of L extended with the

axiom scheme (A → B) is consistent.

Fact 13 If A |∼
LB then ΛA ⊢L B.

ProofBy Corollary 4 and Fact 4. 2

4 Semantic criterion for Visser’s rules

In this section we give a semantic criterion for the admissibility of V . Both
statement and proof are similar to analogues but weaker results on intermediate
logics with the disjunction property in [9], where the following has been proved.

Theorem 14 ([9]) For any intermediate logic L with the disjunction property,
if Visser’s rules are admissible for L, then its class of models has the extension
property.

Here we find, Theorem 18, that in leaving out the disjunction property one
can obtain a similar criterion for the admissibility of V , namely the offspring
property, which is not only sufficient but also necessary. The offspring property
holds for many intermediate logics, as we will see in Section 5. This in contrast
to the extension property, which only holds for IPC:

Theorem 15 (Folklore, proof in [9]) If the class of models of an intermediate
logic has the extension property, it is the logic IPC.

As an aside, let us mention that this implies the following.

Corollary 16 If a logic has the disjunction property, not all Visser’s rules are
admissible.

Here we set out to prove that the offspring property is a necessary and sufficient
condition for the admissibility of Visser’s rules, and that the weak extension
property is a necessary and sufficient condition for the admissibility of the re-
stricted Visser rules. As we will see below, it is not so difficult to show that
the conditions are sufficient. The proofs that they are also necessary are more
involved and are based on the following idea, part of which is already present
in [10]. We explain it for the case of the weak extension property, as the proof
for the offspring property if similar. In will be shown that when the restricted
Visser rules are admissible, the class of all models of L has the weak extension
property. Thus, since we consider the class of all models, it suffices to show that
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given a model K of L and nodes k1, . . . , kn in K distinct from the root, some
variant M1 of (ΣKki

)′ is a model of L. In order to do so, we consider the ki’s as
saturated sets xi (namely as the set of formulas that are forced at ki). Then we
show that the intersection of these n saturated sets contains a saturated set x
such that there are no saturated sets properly between x and any xi. If exactly
those atoms are forced at the root of (ΣKki

)′ that are elements of x, then one
can show that this model is a model of L. In the case that Visser’s rules are
admissible, one has to repeat the same trick to construct a variant of (M1 +K)′.
The main ingredient of the proof of Theorem 18 is the next lemma that shows
the existence of the mentioned saturated set.

Definition 2 A set x is called L-saturated if it does not contain ⊥, is closed
under derivability in L, and x ⊢L A ∨ B implies x ⊢L A or x ⊢L B. A saturated
set x is called a tight predecessor of saturated set x1, . . . , xn if x ⊆ x1 ∩ . . .∩xn,
and for all L-saturated sets x ⊂ y there is some i ≤ n such that xi ⊆ y. A node
k in a Kripke model K is called a tight predecessor of the nodes k1, . . . , kn in
K, if k 4 ki for all i, and for all nodes k ≺ l in K there is some i ≤ n such
that ki 4 l. Note that in the canonical model of a logic both definitions of tight
predecessor coincide.

Lemma 17 Let L be an intermediate logic for which the restricted Visser’s
rules are admissible. Then for all n, for all L-saturated sets x1, . . . , xn for which
there is a L-saturated set x0 ⊆ x1 ∩ . . . ∩ xn, there exists a tight predecessor x
of x1, . . . , xn. If Visser’s rules are admissible for L, we can moreover construct
x in such a way that there also exists a tight predecessor x′ of x, x0.

Proof In the proof, saturated means L-saturated, ⊢ stands for ⊢L. Let x0, x1, . . . , xn

be as in the lemma. We first prove the second part of the lemma, i.e. when all
Visser’s rules, not only the restricted ones, are admissible. First we construct
x, then x′. Let

∆0 = {A | ∃B 6∈ x0 (⊢ A ∨ B)},

∆1 = {(A → B) | A 6∈ x1 ∩ . . . ∩ xn and B ∈ x1 ∩ . . . ∩ xn}.

Note that ∆0 ⊆ x0, as x0 is saturated. Consider ∆ = ∆0 ∪ ∆1. Clearly,
∆ ⊆ x1 ∩ . . . ∩ xn. Now we construct a sequence of sets z0 ⊆ z1, . . ., where
z0 = {C | ∆ ⊢ C}, such that x will be the union of the zi.

The explanation behind the set’s ∆i is as follows. Since x has to be such that
we can construct a tight predecessor x′ of x, x0, we should at least be able to
construct a saturated set in x ∩ x0. This implies that the following has to hold
for x:

⊢

m
∨

i=1

Di ⇒ ∃i ≤ m(Di ∈ x ∩ x0). (2)

Observe that when ∆0 ⊆ x, this indeed is the case. For assume ⊢
∨m

i=1
Di. If

Di ∈ x0 for all i, then clearly Di ∈ x0 ∩ x for some i, because x is saturated.
Therefore, assume not all Di belong to x0. Note that some Di ∈ x0. W.l.o.g.
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assume that there is a number 1 ≤ k < m such that D1, . . . , Dk ∈ x0 and
Dk+1, . . . , Dm 6∈ x0. Whence

∨m

i=k+1
Di 6∈ x0. Thus by the definition of ∆0,

∨k

i=1
Di belongs to ∆0, and thus to x. The saturatedness of x implies that

whence Dh ∈ x for some h ≤ k, which proves (2). The set ∆1 is put in x in
order to make x a tight predecessor of the xi. The exact use of this set will get
clear later on in the proof when we prove that for all x ⊂ y there is some i such
that xi ⊆ y.

We proceed with the construction of the zi. Let C0, C1, . . . enumerate all for-
mulas, with infinite repetition. Define the property ∗(·) on sets via

∗(z) iff ∀A1, . . . , Am

(

z ⊢

m
∨

i=1

Ai ⇒ ∃i ≤ m (Ai ∈ x1 ∩ . . . ∩ xn)
)

.

Define zi as follows.

zi+1 =















zi if not ∗ (zi ∪ {Ci})
zi ∪ {Ci} if Ci no disjunction and ∗ (zi ∪ {Ci})
zi ∪ {D, Ci} if Ci = D ∨ E, ∗(zi ∪ {Ci}) and ∗ (zi ∪ {D, Ci})
zi ∪ {E, Ci} if Ci = D ∨ E, ∗(zi ∪ {Ci}) and not ∗ (zi ∪ {D, Ci})

We show that ∗(zi) holds with induction to i.

For i = 0, assume ∆ ⊢
∨m

h=1
Ah. Whence there are k, l ∈ ω, (Bi → Di) ∈ ∆1

and Ej ∈ ∆0 such that

⊢

k
∧

i=1

(Bi → Di) ∧

l
∧

j=1

Ej →

m
∨

h=1

Ah.

By assumption there exists for all j ≤ l formulas E′
j 6∈ x0 such that ⊢ Ej ∨ E′

j .
Thus by elementary logic

⊢
(

k
∧

i=1

(Bi → Di) →

m
∨

h=1

Ah

)

∨

l
∨

j=1

E′
j .

Let B =
∧k

i=1
(Bi → Di). As Vkm is admissible for L by Remark 1.1, an

application of Vkm (with
∨l

j=1
E′

j for C) gives

⊢

k
∨

i=1

(B → Bi) ∨

m
∨

h=1

(B → Ah) ∨

l
∨

j=1

E′
j .

As x0 is a saturated set it follows that it contains (B → Bi) for some i ≤ k,
or (B → Ah) for some h ≤ m, or E′

j for some j ≤ l. Since the E′
j do not

belong to x0, only the first two possibilities remain. Since x0 ⊆ x1 ∩ . . . ∩ xn it
follows that some (B → Bi) or some (B → Ah) belongs to x1 ∩ . . . ∩ xn. Since
B ∈ x1 ∩ . . . ∩ xn and Bi 6∈ x1 ∩ . . . ∩ xn, it follows that it has to be one of the
(B → Ah). Thus Ah ∈ x1 ∩ . . . ∩ xn which is what we had to show.
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For i > 0, the only nontrivial case is that in which Ci = D ∨ E and zi+1 =
zi∪{E, Ci}, as the other cases follow immediately from the induction hypothesis.
If ∗(zi∪{E, Ci}) we are done. Therefore, suppose not ∗(zi∪{E, Ci}). Note that
not ∗(zi ∪ {D, Ci}), as otherwise zi+1 would have been zi ∪ {D, Ci}. Therefore
there are k, l ∈ ω and F1, . . . , Fl such that Fj 6∈ x1 ∩ . . . ∩ xn for all j ≤ l, and

zi ∪ {D, Ci} ⊢

k
∨

j=1

Fj and zi ∪ {E, Ci} ⊢

l
∨

j=k+1

Fj .

But this implies

zi, Ci, D ∨ E ⊢

l
∨

j=1

Fj ,

and thus zi, Ci ⊢
∨l

j=1
Fj , which contradicts ∗(zi ∪ {Ci}). This completes the

proof that for all i, ∗(zi) holds.

Let x = ∪izi. We have to show x is a tight predecessor of x1, . . . , xn. For
x ⊆ x1 ∩ . . . ∩ xn, note that zi ⊆ x1 ∩ . . . ∩ xn. We show the saturation of x.
If ⊥ ∈ x, then ⊥ ∈ zi for some i. Because ∗(zi) this implies ⊥ ∈ x1 ∩ . . . ∩ xn,
contradicting the fact that the xi are saturated. x is closed under derivability
because zi ⊢ A and ∗(zi) implies ∗(zi ∪ {A}). If x ⊢ A ∨ B, then zi ⊢ A ∨ B for
some i. Thus ∗(zi ∪{A∨B}). The construction of the zi guarantees that either
A or B will be an element of x.

The proof that x is a tight predecessor is finished once we have shown that
for all saturated sets x ⊂ y there is some i ≤ n for which xi ⊆ y. Arguing by
contradiction assume x ⊂ y and xi 6⊆ y for all i ≤ n. For all i ≤ n choose Ai such
that Ai ∈ xi\y. Observe that x cannot be extended to a larger saturated set
inside x1∩ . . .∩xn, i.e. for no saturated set z it holds that x ⊂ z ⊆ x1∩ . . .∩xn.
For if so, there would be an i such that Ci ∈ z\x. The fact that z is saturated
and a subset of x1 ∩ . . . ∩ xn implies that ∗(z). Thus certainly ∗(zi ∪ {Ci}),
since zi ∪ {Ci} ⊆ z, which would imply Ci ∈ x. As x ⊂ y, this observation
gives y 6⊆ x1 ∩ . . . ∩ xn. Thus there is a formula B ∈ y\(x1 ∩ . . . ∩ xn). Hence
(B →

∨n

i=1
Ai) ∈ ∆ ⊆ x ⊂ y. Since B ∈ y,

∨n

i=1
Ai ∈ y, contradicting the fact

that y is saturated and whence should contain one of the Ai. This completes
the proof that x is a tight predecessor of x1, . . . , xn.

Finally, we have to see that there exists a tight predecessor x′ of x, x0. We
proceed in a similar way as for the construction of x: we construct a sequence
of sets y0 ⊆ y1 ⊆ y2 . . ., where y0 = {C | ∆2 ⊢ C}, such that x′ will be the
union of the yi. Here

∆2 = {A → B | B ∈ x ∩ x0, A 6∈ x ∩ x0}.

Instead of ∗ we consider the property ⋆:

⋆(y) iff ∀A1, . . . , Am

(

y ⊢
m
∨

i=1

Ai ⇒ ∃i ≤ m (Ai ∈ x ∩ x0)
)

.
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We define yi+1 inductively as the zi+1 above but with the property ⋆ instead of
∗:

yi+1 =















yi if not ⋆ (yi ∪ {Ci})
yi ∪ {Ci} if Ci no disjunction and ⋆ (yi ∪ {Ci})
yi ∪ {D, Ci} if Ci = D ∨ E, ⋆(yi ∪ {Ci}) and ⋆ (yi ∪ {D, Ci})
yi ∪ {E, Ci} if Ci = D ∨ E, ⋆(yi ∪ {Ci}) and not ⋆ (zi ∪ {D, Ci})

Again, we have to show that ⋆(yi) holds for all i. The induction step is similar
as for the zi. We only treat the case i = 0. Therefore, assume ∆2 ⊢

∨m
h=1

Ah.
Whence there are k, l ∈ ω, (Bi → Di) ∈ ∆2 such that

⊢

k
∧

i=1

(Bi → Di) →

m
∨

h=1

Ah.

Let B =
∧k

i=1
(Bi → Di). As Vkm is admissible for L by Remark 1.1, an

application of Vkm (with C empty) gives

⊢

k
∨

i=1

(B → Bi) ∨

m
∨

h=1

(B → Ah).

By (2) it follows that x ∩ x0 contains (B → Bi) for some i ≤ k, or (B → Ah)
for some h ≤ m. Since B ∈ x0 ∩ x and Bi 6∈ x0 ∩ x, we have to be in the latter
case. Because B ∈ x ∩ x0, this implies that Ah ∈ x ∩ x0 for some h, which is
what we had to show.

Let Let x′ = ∪iyi. The proof that x′ is a tight predecessor of x, x0 is analogues

to the proof for x above, and therefore omitted. This proves the second part of
the lemma.

For the proof of the first part of the lemma, the case that only the restricted
Visser’s rules are admissible, take ∆ = ∆1, then the construction of the tight
predecessor is completely similar to the construction of x above. 2

Theorem 18 For any intermediate logic L, Visser’s rules are admissible for L

if and only if L has the offspring property.

Proof In the proof we omit reference to L, i.e. saturated means L-saturated, ⊢
denote ⊢L etc. First the direction from right to left. Let U be a class of models
with the offspring property with respect to which L is sound and complete. Let

A =
n
∧

i=1

(Ai → Bi), A′ = An+1 ∨ An+2, B =
n+2
∨

j=1

(A → Aj),

and suppose L ⊢ (A → A′) ∨ C. We have to show that L ⊢ B ∨ C. Arguing by
contradiction, assume this is not the case. Then there is a model K ∈ U with
root k0 such that K 6|= B ∨ C. We show that there is a model K ′′ such that
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K ′′ 6|= (A → A′)∨C. Note that k0 6
 B and k0 6
 C. Thus there are ki ∈ K such
that ki 
 A and ki 6
 Ai, for all i ≤ n + 2. First suppose all ki are distinct from
the root of K. Then by assumption, there is a variant M1 of (

∑n+2

i=1
Kki

)′ such
that a bounded morphic image M of some variant M0 of (M1 +K)′ is contained
in U . Recall that M and M0 validate the same formulas (Section 2.4). We leave
it to the reader to verify that the root of M1 forces A but not A′. This gives
M1 6|= (A → A′). Whence M0 does not force (A → A′). As is clearly does not
force C either, this gives M0 6|= (A → A′)∨C. Thus M 6|= (A → A′)∨C. Since
M ∈ U , this implies L 6⊢ (A → A′) ∨ C. If one of the ki is the root of K, say
kj , this implies that A is forced at the root, but as none of the Ai are forced at
the root, A′ is not forced there either. Thus kj 6|= (A → A′). Since also kj 6
 C,
K 6|= (A → A′) ∨ C follows. This also implies L 6⊢ (A → A′) ∨ C.

The direction from left to right. We show that the class of all models of L

has the offspring property. This will prove that L has the offspring property.
Consider a model K of L and nodes k1, . . . , kn in K that are distinct from the
root. Let k0 be the root of K, let Ki be Kki

and xi = {A | ki 
 A}. Note that
the xi are saturated sets such that x0 ⊆ x1∩ . . .∩xn. By Lemma 17 there exists
saturated sets x, x′ such that x is a tight predeccessor of x1, . . . , xn and x′ is a
tight predeccessor of x, x0. This means that x ⊆ x1 ∩ . . . ∩ xn and x′ ⊆ x ∩ x0,
and that for all saturated sets y

(

x ⊂ y ⇒ ∃i ≤ n(xi ⊆ y)
)

∧
(

x′ ⊂ y ⇒ (x0 ⊆ y ∨ x ⊆ y)
)

. (3)

We first define a variant K ′ of (
∑

Ki)
′ by defining for the root k′ of (

∑

Ki)
′,

k′ 
 p iff p ∈ x, for atoms p. Then we define a variant K ′′ of (K ′ + K)′ by
defining for the root k′′ of K ′′, k′′ 
 p iff p ∈ x′. Note that the fact that
x′ ⊆ x ∩ x0 and x ⊆ x1 ∩ . . . ∩ xn guarantees the upward persistency in the
model. To show that this is a model of L it suffices to show that for all formulas
A

k′ 
 A iff A ∈ x k′′ 
 A iff A ∈ x′. (4)

We use formula induction, and only treat implication, for the case k′, x. Consider
A = (B → C). If (B → C) ∈ x then k′ 
 (C → D) follows easily. For the
other direction, assume (B → C) 6∈ x. This implies that there is a saturated
set y ⊇ x such that B ∈ y and C 6∈ y. By (3), x = y or xi ⊆ y for some
i = 1, . . . , n. In the first case the induction hypothesis gives k′ 
 B and k′ 6
 C,
thus k′ 6
 (B → C). In the latter case (B → C) 6∈ xi, and thus ki 6
 (B → C).
Hence k′ 6
 (B → C). This proves (4), and thereby the theorem. 2

Theorem 19 For any intermediate logic L, the restricted Visser rules are ad-
missible for L if and only if L has the weak extension property.

Proof Similar as the proof above, using the first part of Lemma 17 instead of
the second part. 2

From the Theorem 18 and 19 we also derive:
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Corollary 20 For any intermediate logic L, the (restricted) Visser rules are
admissible for L if and only if the class of all models of L has the offspring (weak
extension) property. Whence L has the offspring (weak extension) property iff
and only the class of all models of L has the offspring (weak extension) property.

Proof If a logic has the offspring property, then Visser’s rules are admissible
by Theorem 18. As the proof of this theorem shows, this again implies that the
class of all models of L has the offspring property. Similar reasoning applies to
the weak extension property. 2

5 Intermediate logics

In this section we apply the results of the previous theorems to the following
specific intermediate logics. When we say “axiomatized by ...” we mean “ax-
iomatized over IPC by ...”. For a class of frames F , L is called the logic of the
frames F when L is sound and complete with respect to F .

Bdn The logic of frames of depth at most n. Bd1 is axiomatized by bd1 =
p1 ∨ ¬p1, and Bdn+1 by bdn+1 = (pn+1 ∨ (pn+1 → bdn)) [3].

Dn The Gabbay-de Jongh logics [5], axiomatized by the following scheme:
∧n+1

i=0
((Ai →

∨

j 6=i Aj) →
∨

j 6=i Aj) →
∨n+1

i=0
Ai. Dn is complete with respect to the class

of finite trees in which every point has at most (n + 1) immediate succes-
sors.

Gk The Gödel logics, first introduced by Gödel [8]. They are extensions of LC

axiomatized by A1 ∨ (A1 → A2)∨ . . .∨ (A1 ∧ . . .∧Ak−1 → Ak). Gk is the
logic of the linearly ordered Kripke frames with at most k − 1 nodes [1].

KC De Morgan logic (also called Jankov logic), axiomatized by ¬A∨¬¬A. The
logic of the frames with one maximal node.

KP The logic axiomatized by (¬A → B ∨ C) →
(

(¬A → B) ∨ (¬A → C)
)

,
called Kreisel-Putnam logic. It constituted the first counterexample to
 Lukasiewicz’ conjecture that IPC is the greatest intermediate logic with
the disjunction property [12].

LC Gödel-Dummett logic [4], the logic of the linear frames. It is axiomatized
by the scheme (A → B) ∨ (B → A).

Mn The logic of frames with at most n maximal nodes. Note that M1 = KC.

Sm The greatest intermediate logic properly included in classical logic. It is
axiomatized by

(

(A → B) ∨ (B → A)
)

∧ (A ∨ (A → B ∨ ¬B)) and it is
complete with respect to frames of at most 2 nodes [3].

V The logic axiomatized by V →
1 , that is by the implication corresponding to

the rule V1:
(

(A1 → B) → A2 ∨ A3

)

→
∨3

i=1

(

(A1 → B) → Ai

)

.
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Theorem 21 Visser’s rules form a basis for the admissible rules of the logics
KC and Mn. Visser’s rules are not derivable in these logics.

Proof The first part is proved by showing that the classes of models based on
the frames for these logics as mentioned in the list above, have the offspring
property. Then apply Theorem 18. To see that the logics have the offspring
property, the following claim suffices.

Claim Let W be a class of frames, and let U be the class of models based on
frames in W . U has the offspring property if for every F ∈ W , for all k1, . . . , kn

in F distinct from the root k0, the frame that consists of attaching a new node
l1 below k1, . . . , kn and a new node l0 below l1, k0, also belongs to W .

Proof of Claim Left to the reader.

The second part of the theorem can be shown by constructing appropriate coun-
termodels to the formulas V →

n , which we leave to the reader. 2 Note that
all the logics in the previous theorem are also examples of logics which have the
weak extension property, but not the extension property, as they do not have
the disjunction property (see Fact 4). That they do not have the disjunction
property follows from the fact that the only logic with the disjunction property
for which all Visser’s rules are admissible is IPC, recall Corollary 16.

Theorem 22 Visser’s rules are derivable in Bd1, Gk, LC, Sm and V. Whence
these logics do not have nonderivable admissible rules.

Proof The first four logics are complete w.r.t. to classes that contain only
models with linear frames. It is easy to see that in any linear model the im-
plications V →

n are valid (for the notation R→ see Section 2.1). In fact, even
(A → B ∨ C) → (A → B) ∨ (A → C) holds in every linear model. Then apply
Corollary 10. For V one uses the fact that all V →

n are derivable from V →
1 , which

was first observed in [13]. 2

Theorem 23 For Bdn, n ≥ 2, the restricted Visser rules are admissible but not
derivable.

Proof Use Theorem 19 by showing that the class of models of depth n has
the weak extension property. To see that the restricted Visser rules are not
derivable it suffices to construct a countermodel of depth 2 to V →

1 , which is left
to the reader. 2

Theorem 24 V1 is not admissible for KP. For the logics Dn (n ≥ 1), Vn+1 is
admissible, while Vn+2 is not.

Proof The part about the Dn’s is proved in [9]. For KP, let X = (¬p → q ∨ r)
and Y = (¬p → q) ∨ (¬p → r). Then (X → Y ) is derivable in KP. If V1 would
be admissible, then KP would derive

(

X → (¬p → q)
)

∨
(

X → (¬p → r)
)

∨ (X → ¬p).
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Since KP has the disjunction property, this would imply that at least one of
(

X → (¬p → q)
)

,
(

X → (¬p → r)
)

or (X → ¬p) is derivable in KP. However,
these formulas are note even derivable in classical logic. 2
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